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ABSTRACT

A numerical method is.described by which a 1IDMHD non-linear Lagrangian
system may be relaxed adiabatically to pressure equilibrium by an iterative
process. The method is appropriate for problems involving a slow passage
through a sequence of quasi-equilibrium states, and although described here
in the context of the cylindrical plasma pinch it should be equally appropri-
ate in other contexts, e.g. stellar evolution. The rate of convergence of
the iterations can be given a simple physical interpretation and is very
rapid: it corresponds to squaring the residual error at every iteration step.
Results of numerical tests in double precision are given. Program EQUIL
described in this paper represents one module of a larger plasma equilibrium
and diffusion code ATHENE 1 which will be published in full elsewhere.

As a demonstration of program construction and documentation methods, the
module has been developed and tested using an on-line utility, and a listing
of the code is given together with a discussion of the programming techniques
that have been found useful. The Fortran listing is reproduced in parallel
with a version of the code in ordinary mathematical notation which is easier
to follow. It is believed that this documentation technique could have many
applications.

(To be published in Computer Physics Communications)
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1. INTRODUCTION

Several l-dimensional calculations of interest in hydrodynamics and
magnetohydrodynamics involve the slow passage of a physical system through a
sequence of states which aré in almost exact pressure equilibrium. Examples
occur in the evolution of stars [1] and in the time development of a high-P
toroidal CTR plasma in the cylindrical approximation. An equilibrium model
should be valid provided that

T >> R/VS

where T 1is the evolutionary timescale, R 1is the radius of the system and
VS is the acoustic or magnetosonic speed. As usual B is the ratio of par-

ticle to magnetic pressure.

The main purpose of this paper is to describe in some detail the method
used to achieve pressure equilibrium at each successive timestep of the
Culham 1DMHD fully-ionized plasma equilibrium and diffusion code ATHENE 1 (2].
This section of the code constitutes a module EQUIL which can conveniently be
discussed, developed and tested on its own. We explain the numerical method,
briefly discuss the theoretical and measured rate of convergence to pressure
equilibrium (which is found to'be quadratic), and describe the difference
scheme and the program notation. Only the CTR problem will be dealt with
here although the method of solution is more general. The full ATHENE 1 code
will be published elsewhere [2]. Later versions in the ATHENE series will
add further physical effects such as finite inertia (ATHENE 2 code [3]) and

partial ionization.

A secondary purpose is to illustrate, by means of a concrete example,
some of the documentation and programming techniques which have proved useful.
Computational physics relies on the development and dissemination of
algorithms and programs, but at present a serious barrier is imposed by the
limitations of existing programming languages and by the restricted character
sets that are available. These are evidently much less general than the
physicist is accustomed to use in his ordinary theoretical work, and they do
in fact make algorithms and programming methods quite hard to discuss, to

record, to communicate and to teach.

To resolve this impasse we resort to the simple practical expedient of
reproducing the Fortran code (Appendix A) in two parallel versions which are
in 1-1 correspondence with one another. Version I uses the informal notation
of standard mathematics including lower-case and Greek symBols, superscripts

and subscripts, special mathematical signs and so on, and is therefore easy



to understand; it can where necessary be supplemented by diagrams, tables etc.
like an ordinary mathematical text. Version II is a straightforward Fortran
listing, although in this particular case it has been produced on a commercial
timesharing system which allows certain useful extensions of the language,

and the comments have been printed in lower case for clarity. Each version
can be used to help interpret the other. We believe that this technique can
usefully be applied to other types of program and to other programming

languages, and a fuller discussion is given in §12.

The commercial timesharing system used for the version of EQUIL described
in this paper is the General Electric Mark III International Information
Service marketed in the UK by Honeywell. Appendix B describes the programming
techniques that have been developed for on-line use and indicates how some of

the OLYMPUS conventions [4,5] have been adapted for this purpose.

2. BASIC EQUATIONS

We use a Lagrangian description of the plasma so that the equation of

motion in SI units is

P—=7=-VP+ JxB (1)

where p 1is the denmsity, u the velocity, P the pressure, B the magnetic
field and J = curl §/uo is the current demsity. Viscous terms are omitted
because the motion is assumed to be very slow, Equation (1) is supplemented
in ATHENE 1 by other equations describing heat conducﬁion, magnetic field
diffusion, bremsstrahlung, thermonuclear reactions and other processes in

which entropy is not conserved. These are not included in EQUIL.

The inertial term on the left-hand side of (1) can be neglected if the

motion is sufficiently slow and in this case the equilibrium equation

VP =]xB (2)
is to be satisfied at all times. A simple physical picture of the evolution
of the plasma is that the entropy-generating processes continually cause a
departure from exact pressure equilibrium, which is restored by a small
displacement § = u Dt that generates an adiabatic change in the density,

electron and ion temperatures, pressure and magnetic field

DpE = -pV;:§ (3)

DT = -(Y-1)T_ V.§ (4)
e e = -

DT, = -(v-1)T; V.§ (5)



DPF = - PV, E (6)
DB = Vx (ExB) (7)
Here the density and pressure are related to the electron and ion particle
densities Ne’Ni by
p = Neme +Nimi (8)
P = N kT + N, kT, (9)
e e i i
subject to the charge-neutrality condition
N =2ZN, . (10)
e i

We assume for simplicity that there is a single ionic species with charge
number Z = 1 so that Ne = Ni = N, and that the electron and ion temperatures
are isotropic with the same specific heat ratio Y , but there is no diffi-
culty in extending the method to more general situations provided that

suitable adiabatic relations can be defined.

The ATHENE 1 code uses cylindrical polar coordinates (r,6,z) with all

functions depending only on .r , so that equations (2) - (7) become

B dB
2,1 (%2 : ).
or * o \Nr Or (x Be) * Bz or & L)
DN = -nN.& Ea__ (r€) (12)
r Or
_ 18 '
DT = - (v-DT_ . 57 (r8) (13)
= 13
DT, = - (y-DT, . = 5= (r§) (14)
_ 19
PP = -~ YB3 {xb) (15)
= _p X .
DB o By 5o (16)
B o= -3 .1 2@ (17)
z z r ©Or
where & = Dr. It is also convenient to employ the integral conservation

laws (between any two radial limits r_,r)

T b b

D Ndr =D , Bgdr =D B rdr =0 (18)
T r r. %
a a a

and the adiabatic relations:

p(r, o¥™h = (r, o =2 oV = 0 . (19)
3. MESH
A cylindrical Lagrangian mesh
0 =Ry Rys vove Ryryr s Ryowrir = Bw (20)
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is used as illustrated in Fig.l where R, 1is the fixed inner radius of the
wall surrounding the plasma and NINT is the number of mesh intervals.
Physical variables N, Te’ Ti’ P, Be, Bz are defined at the half-integral

radii (shown dashed in the figures)

R = %(Rj4-R Yo 3 =132 sae NINT (21)

j+k j+1
which are recomputed each time the mesh is moved. These variables are to be
regarded as cell averages, so that for example the particle numbers and
masses, fluxes and energies associated with cell j+% are given (apart from

constant numerical factors) by expressions such as

P

NAA, BglR, B LA, v oA (22)
where

AR = A = -

R Rty Rj+1 R (23)

= = = % 2 - 2

AA 4% RJ+% ARj+% Q(Rj+1 Rj ) . (24)

This guarantees exact mass and flux conservation. The subscript j+% has

been omitted in (22) for brevity.

4. PHYSICAL MODEL

Physically we picture the mesh (20) as an idealized mechanical, elec-

trical and thermal system with the following properties

(a) Rl is an infinitely thin wire fixed at the axis, r = o,
which is a perfect electrical conductor and has zero

thermal capacity.

(b) Rys oo RNINT are thin massless shells, free to expand or
contract radially but constrained to remain cylindrical,
which are both perfect electrical conductors and perfect
thermal insulators. Their radial motion is assumed to be

damped.

(c) RNINT+1 is a fixed wall of radius Ry which is a perfect

electrical conductor and a perfect thermal insulator.

It is intuitively clear that if an arbitrary set of individual plasma masses,
electron and ion entropies and BB and Bz fluxes is distributed amongst the
NINT cells, then the NINT-1 interior moveable shells will in general find
themselves acted on by non-zero forces and will therefore begin to move, thus
doing work against the damping forces and lowering the total energy of the
system. This process will continue until a local minimum energy state is

reached, i.e. an equilibrium which is stable against purely radial



displacements. Although energy has been lost by the system the process is
nevertheless adiabatic since all the cell masses, entropies and fluxes

remain unchanged.

5s FRACTIONAL STEP METHOD

Each timestep of the ATHENE 1 code is divided into 2 stages, or

'fractional steps'.

Stage A. The difference equations for the entropy-changing processes are
solved with a fixed non-uniform Eulerian mesh, defined by the positions of
the Lagrangian coordinates at the end of the previous timestep. During
Stage A the variables P, Be, Bz alter slightly, so causing a departure
from pressure equilibrium, i.e. equation (11) is no longer exactly satisfied.
The appropriate physical picture for this stage is that the cell boun-
daries (20) now represent thin fixed layers of finite thermal insulation with
finite electrical resistance, which therefore allow some heat and magnetic
flux (but no plasma) to pass through. The model is to be considered as a
'lumped' system in which all temperature differences and electrical currents
are concentrated in these layers. The ohmic heat generated in each layer is
appropriately divided amongst the two cells on either side, suitable provis-
ion being made at the boundaries r = o and r = RW' The inner boundary r = o
does not of course allow any heat or Bz flux to pass through or carry any
Je current, but it does carry a Jz current and allow By flux to leave the
system. Other entropy-changing processes are bremsstrahlung, synchrotron
radiation, thermonuclear burning and electron-ion equipartition, although the
latter does not cause any departure from pressure equilibrium if the electrons

and ions have the same specific heat ratio Y.

Stage B. In Stage B, which is solved by the EQUIL module and is the subject
of this paper, the entropy-chahging processes are switched off and the

interior cell boundaries are allowed to move according to

Rj* =R, + §j , (3 =2,3 ... NINT) (25)
until pressure equilibrium is reached. During this stage the variables are’
adjusted adiabatically according to equations (12)-(19). Since equation (1)
is non-linear an iterative approach is used in which equilibrium is reached
by a sequence of successive mesh displacements

L LR, o ®°=Rr,) (26)
] ] ] ] |



with

*
R, = #im R, (27)
] ]
m —> *
d ¢ m
an - Z g-
gj m=1 J .

The adiabatic variation during each iteration step is expressed by

Y Y
pmtl (pamtly T _ pmopmy (28)
+
Bem g By A" (29)
Bzm+l ﬂAm+l _ Bzm AT (30)

and similarly for N, Te, T, although in fact it is not necessary to recompute
these variables until the solution of (11) has been obtained. 1In (28) - (30)

the subscript j+% has again been omitted throughout.

6. LINEARIZATION OF THE EQUILIBRIUM EQUATION

Given a set of variables Rm, Pm, Bem, Bzm which approximately satisfy
the equilibrium equation (11) after iteration step m, our aim in this sec-
tion is to find a linearized equation to determine the displacement §m+1 .
Actually it is preferable to replace (11) by the equivalent equation

d Bg" +B,°Y By’
$<P+ R >+ i - 0 (31)

since otherwise the factor r which multiplies Be in the second term would
cause trouble: there is no exact adiabatic relation for R-+L which has to
2

be redefined at the end of each iteration step using (21).

Because the 0/dr operator which acts on the first term has to be

varied, it is convenient to wfite (31) temporarily as

~ 2

B93+B = (Bg) or

A\ P + 2. )+ = 0 : (32)
2”*0 Hor

Here ~ denotes an average over adjacent half-integral points, and

AR, =R, , -R = %R, ) . (33)

2 i-% JjHl

R,

We now assume that (32) is to hold for the 5 quantities r—l, Ar, P,

By s Bz at step (m+l), using the linearized adiabatic relations



Pl me/1 -y L B (" §m+li) (34)

\ ™
m+l m a§m+l
(Be) = (Be) (} - — (35)
or
)™ - )m<1 L B gm g“““l)) (36)
z m ~ m
r or
1 1 §m+l
Lo- (-5
T r r
m+1
™ = /-\rm<l +a—§——> (38)
o™

and drop all higher-order terms.

Dividing through by Ar once more, we obtain the inhomogeneous elliptic

5 -m+1
equation for §

2 SR ~e2 e~ 2 2 Lo g
2 (eperyi2 o). (M%) 0 5 X 1 2 (o a€)=_§.(P+Be+Bz)_f§_
"\ ho ' T Or k Or\Kgo Or/ Hordr ior r Hor © 0 3¢/ or W Hor
[1] [2] (3] (4] (5] (6] (7]

(39)

in which the index (m+l) on & and m on all other variables has been dropped

and the individual terms are numbered for future reference.

7. DIFFERENCE SCHEME

Equation (39) is now to be written in the tridiagonal form [6]

-A E _+B,LE -C.E, = D ' (40)
J 1 1] ]

1 J=1 j

and solved by the standard Gauss elimination procedure:

gj =E 65 T Fy (j=2,..NINT) (41)
with k.
B 55— c1 - , (j =2, NINT) (42)
| 3 j-1
D, +C, F,
F, = = 1 _i=t (5 =2, NOND) . (43)

. T F. -cC E.
S T T B

F. = 0) and § All

1 1

The boundary conditions are §1==0, (giving E

terms in (39) are well-behaved at the origin.

NINTHL O

To simplify both the difference scheme and the Fortran we now use a

relative notation centred on point j, indicated in Fig.2 (i.e. (++) for



(j+1), (+) for (j+%) and so on), and also remove the factor 1/p,. Lower-case

letters denote internal variables. We then obtain

A= a £, ta,ta;+ag (44)
C=c r _ te,+cgteg (45)
B = (al-+c1)r-k(a2-+c2)~+b4-#(a5-+c5) (46)
D =d, +d, (47)

where the individual terms are defined in Tables 1 and 2 together with their
Fortran equivalents. So far as possible a strict 1-1 correspondence has been
maintained between the structure of the individual terms in (39) and their
two alternative representations in Table 2, including the arrangement and
order of the factors in the denominators. The form of coding shown here is

not quite the optimum for minimizing the execution time during production

runs, since an extra improvement could be gained by removing unnecessary
division operations and also by taking advantage of algebraic relations
between Cj and Aj—l . However experience with several versions of EQUIL
suggests that full optimization makes the code hard to follow, and can lead
to considerable extra effort and machine time in removing algebraic and
coding errors and checking out the program. The present scheme is therefore
suggested for 1D codes where maximum execution efficiency is not the only
important criterion, although not necessarily for 2D or 3D codes. Table 3

indicates the mnemonics that have been used.

Construction of the coefficients (44)-(47) is mostly straightforward
but two comments may be made:

Terms 2 and 3

g, - g,
(%E_‘)J "’"r']-i-]-_—r"?-l = <§++-§__>/2 Ar (48)

s

~ ~~
Pory ) JPeif, SmTh gj‘%—l)
M. e ar . }J-r T s e,j+}2' EI‘. 2 e}j_lﬁ Er L

J 0] jt+=

A - S A
b b b
ey 6+ B+ 6~ G- )
~ be ( rilr+ : g++_CAr+ rﬁr_)g rAr_' g—_ 4 (49)

The solution (41) is obtained in #3 of the code shown in Appendix A.



8. MESH ADJUSTMENT

After ! has been obtained the radii R are mdjusted in

2 - Byant
## &4 & 8 of the code using equation (26). From the arguments given in §3
it seems clear on physical grounds that the system must eventually reach a
valid equilibrium from any starting-point however far it may have to move:
however since & is only calculated from (39) in linear approximation two
adjacent mesh boundaries might cross if § were too large at the beginning
of the iteration process. To prevent this happening we use the algorithm
m+1

A
. . +
if M;n(—m—>< 0 then §j =oe!§j (j=2,..NINT) (50)
Ar
+

where 0O, are control parameters such that
0 <go<1 : (51)

This simply causes & to be scaled down uniformly if any of the mesh cells
becomes too compressed in one iteration step or if its boundaries cross: it
may be thought of as an increase of the damping discussed in §3. The
algorithm (50) is applied recursively, so that & will if necessary continue

to be scaled down until the required condition is met. Typically

SIGMA = 0.5
ALPHA = 0.5 .

o
(52)

Scaling-down usually only occurs right at the beginning of a run when the
initial conditions do not correspond to pressure equilibrium, since the
timestep At ought to be chosen small enough so that Stage A of each time-

step only produces a small imbalance for Stage B to correct.

9. ADIABATIC UPDATING OF VARIABLES AND CONVERGENCE TEST

The variables P, B Bz are transferred to the new mesh in #5 using

e’
the exact adiabatic relations (28)-(30) rather than the linear approximations
(34)-(36) which were employed in formulating (39). Convergence is then
tested in #6 according to the criterion

|§.| )
Max M T - = GC = EPSC

. (53)
j=2,NINT Rj+1-Ry-1

The value chosen for EC is not critical, since convergence is very rapid;
however it should not be chosen so small that convergence is prevented by
round-off errors. In the tests discussed in §11 we have used double-precision

. " -15 g v 5
arithmetic and chosen e, = 10" to obtain enough iterations.



10. CONVERGENCE ANALYSIS

We examine the theoretical rate of convergence for the simple case of

plane geometry and pure plasma pressure. In this case (2) is just
3P

= 0 (54)
where o axm Y
P =P §-my v (55)
X
Let
x-x" =8 = €™ e (56)

be the displacement needed to achieve exact equilibrium from the mesh posi-

tions defined by xm; then

...ai=]_+_§_§_. (57)
ax™ ox™

so that (54) together with (55) becomes

a' dg Y |_
$[ <1+am>J—0 ; (58)
X

o o . 2 . . .
We can replace =— by —Q in (58); then expanding in a power series gives

BX ax
m c 2
2" 3 GPm a§>+ d LY(YH) y (agmH:O T
ro - Y ax™ x" 2 g
By subtracting the equation corresponding to (31) satisfied by §m+l
namely
m m+1
3P _i(YPm of ) (609
3™ A" ax™
we find for the residual error term & &= §m+2 the equation
. -2
2 (me 3(5‘5)>= 2 {Y(Yﬂ) ; (3’5)} (61)
o o a" L 2 A"

. ; +
which demonstrates the quadratic convergence when € 1is replaced by gm 1

on the right-hand side.

The numerical constant in this formula has been verified by choosing
examples in which an external pressure is applied at a free boundary and
o)

/ox™ = 0. Then (61) becomes simply

m+1,2
2 _ wzrl &)y (62)

S

which was verified to 4 significant figures within 3-4 iterations.

- 10 =



The analysis can be generalized to the cylindrical problem with magnetic
fields at the cost of some algebraic complexity, and quadratic convergence
is still expected although the simple ratio (Y+l)/2ﬂxm of equation (62) is
no longer found. Note that it is important to include all the linear terms
in equation (31), since if any linear term of relative magnitude £ 1is
omitted the relaxation will be incomplete and we shall then obtain a much

slower rate of convergence .
[e™] = £]€™| : (63)

This was observed to happen on several occasions before the code was fully
checked out, and the predicted quadratic convergence provides a very sensi-

tive check on the validity of the numerical analysis and programming.

11. NUMERICAL TESTS IN CYLINDRICAL GEOMETRY

Two tests were performed using a mesh with 10 intervals which initially

were uniformly spaced,

R =10 (radius) } (64)
Ar = 1 .
The initial fields and pressure distributions were :
Case 1 .
By = r/R
, = 1 (65)
= 1
Case 2
Be = 0
, = 1 (66)
= r/R .

In each case the plasma moved inwards to achieve pressure equilibrium satis-
fying (2). The tests were carried out with the Fortran program shown in
Appendix A on the General Electric Mark III International Information Network,
using double precision for all real variables with a double-word length of

72 bits. The iterations were continued until the accuracy was limited by

round-off errors. In the results shown in Figs.3 & 4 we define

m _  Max m m-1 7
- j=(2,NINT) ' Sy /by (67)
together with the ratio 5
™ = D (68)

which should be constant if the convergence is quadratic. From 810 A is

expected to be of order 1.

= 11 =



12. DOCUMENTATION OF FORTRAN PROGRAMS

Computational physics relies on the development of new algorithms and
programs. It is desirable that these should be readily available like
ordinary mathematics or theoretical physics [7] otherwise each worker in the
field is restricted to what he or a small group of colleagues is able to do.
To some extent algorithms can be described in mathematical notation and pub-
lished in journals such as COMPUTER PHYSICS COMMUNICATIONS or JOURNAL OF
COMPUTATIONAL PHYSICS. However it is still a considerable step to convert

these mathematical algorithms into actual working programs.

High level languages such as Fortran and Algol 60, which were intro-
duced more than 15 years ago, do go some way towards improving program
intelligibility especially when the listings themselves are well structured
and documented [4]. However it is obvious that there is still a significant
difference between the intelligibility of even the best-written program and
that of a good mathematical text, and that this difference depends to a

large extent on restrictions both of character set and also of syntax.

A glance at a typical mathematical or physics textbook will confirm
that a very wide character set is used to convey meaning: upper and lower
case letters of different sizes, italic and heavy type, Greek and Gothic
alphabets, superscripts and subscripts, special mathematical signs as well as
careful spacing and layout together with tables and diagrams. It is not
surprising that computer programs are so difficult to understand when they
are confined to a standard range of upper case letters, numerical digits and

a few extra symbols such as (+ - * / . , =).

Mathematical notation is easy to write down on paper or at the black-
board but it is much harder to type accurately, especially when even a minor
error would cause a program or a compilation to fail. Therefore a relatively

limited character set is actually more suitable for computer input than the

very extended set used for mathematical publicaticns would be. It would
certainly be useful to have a few awkward restrictions removed, but it would
be neither convenient nor economically practicable to have a full mathematical
character set available on ordinary input devices or printers, even though it
might be generated as graphical output under program control. Therefore one
must be reconciled to a limited character set for program input and for prin-

ted listings for some time to come.

The syntax of ordinary mathematics or theoretical physics is also very
flexible. Exact definitions are not required provided that the meaning is

clear to the reader, and much of this meaning is conveyed by the text.

- 12 -



Accepted notation develops gradually as the result of many individual pub-
lished papers and textbooks and is only rarely defined formally by committees.
By contrast, not only does a computer language require a precisely-defined
syntax, but it is also necessary to develop a compiler and to make this
internationally available. Once a language has reached the stage of wide-
spread acceptance it becomes very difficult to change, in spite of obvious
weaknesses, simply because it would be necessary to reach agreement between a
large number of manufacturers and then to update all the compilers and manuals.
As a consequence of this Algol 60 has remained frozen for 15 years, and
although many manufacturers have introduced their own individual and useful
extensions to Fortran the only internationally available version is still the
very limited Standard Fortran [8] subset first defined in 1964 [9]. Many new
high-level languages have indeed been developed and compilers written and used
on a limited scale, but even powerfully-supported languages such as PL/1l and
Algol 68 have not yet reached the stage at which compilers are available for

most types of machine.

It therefore seems unreasonable to expect, in the foreseeable future, to
have a high-level programming language which is optimized for human communi-
cation and which at the same time is internationally available for use by

computers.

The solution which is illustrated in this paper and proposed for general
use is simply to reproduce the program in two parallel versions, side by side
as in Appendix A. Version I is intended to be similar to ordinary mathematics
and can use whatever notation is convenient including tables and diagrams
where appropriate: even if the language of the program is Fortran there is no
reason why Version I should not borrow notation from other well-known
languages such as Algol 60 where this helps to make the notation clearer or
the symbolism more concise. Version II is a straightforward listing in a
regular programming language, in this case Fortran, although the same tech-

nique can be used for other high-level languages and also for assembler code.

There should be a 1-1 correspondence between the two versions in layout,

numbering and notation, e.g.

B ? ¢ ZBZSHP (69)
z+

as indicated in Tables 1-3. Each version then supports the other, since any
lack of precision in Version I can be removed by looking at the listing of
Version II and if necessary by running the program, whilst any lack of

intelligibility in Version II should be removed by looking at Version I.

- 13 -



The most suitable style for Version I and the appropriate number of
comments in Version II can best be decided in the light of experience. It is
intended to publish a number of full-scale OLYMFPUS Fortran [5] listings in
this dual format as Culham Laboratory Reports, and also to submit some shorter
Algol 60 and Fortran programs for publication in COMPUTER PHYSICS COMMUNICATIONS.
We hope that others will feel encouraged to do likewise and that this type of
publication will prove useful both as a means of communication between workers
in the field and also as background material for teaching courses in comput-
ational physics and programming techniques. A further advantage may be that
once a new form of nmotation has been introduced into Version I and become
generally accepted, it could in due course find its way into the formal pro-

gramming languages, thus enabling them to grow more freely than at present.

The Fortran Program EQUIL reproduced as Version II of Appendix A has been
developed on-line using the General Electric Mark IIT International Informa-
tion Service marketed in the UK by Honeywell. Mark III FOREGROUND Fortran IV
[10] contains some extensions of Standard Fortran [8] which have been adop-
ted here for convenience, notably the ability to have several statements on
one line which makes the published listing more manageable, the use of lower-
case letters (which are confined here to comments), and the simplified PRINT
statement. The listing would normally be tidied up for publication by auto-
matically removing the line numbers and transferring the Fortran statements
to col. 7 or 10, but these features have been retained in this example to

illustrate how the system is used in practice (Appendix B).

- 14 -



TABLE 1

Auxiliary Variables

Point Index notation ‘Relative notation Fortran
jtl rj+l L ZRPP
=
T z(rj+1-Fr ) ry ZRP
ArJ+% = rj+l -rj Ar+ ZDRP
4l
j+x 4% P+ ZPP
Be’j+%/¢E; by, ZBTHP
2 ~2
Be,.+l§/u0 be+ ZBTSHP
2 ~2
z,j+%/uo ot ZBZSHP
r, r ZR
J
j Arj Ar ZDR
A~ - & ~ ~
Be,j/““o by = %(bg, +bg ) ZBTH
~o “‘\2
Be’j/uo b9 ZBTSH
= By, =%, ZRM
rJ_;z Z(r rJ_l) r_
Ar =r, -1 Ay ZDRM
i-% i Ti-1 -
j-% P. P ZPM
i-% =
B . 5 ZBTHM
e,j_%/vho 8-
2 N2
Be,J_%/uo be_ ZBTSHM
2 *2
HM
Bz,j-%/uo s ZBZS
j-1 rj-l 0 ZRMM
0.0 Z0
Double 0.5 ZHALF
precision 1.0 z1
2.0 zZ2
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TABLE 3

Fortran Mnemonics

Letter Meaning

magnetic field
A

A (hat) (uo removed)

pressure

o g § =2 @m g w

+
PP ++

T

square

* (new mesh)
@-component
z-component

internal real variable

NNl—JU-lU?bU'
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Fig.1 Lagrangian Mesh

Relative notation - — -

Index notation  j-1 (j-%) |

Fortran J-1 (J-1) 7J

Fig.2 Relative Notation

WALL (r=Ry )
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[
L7,

NINT NwaLL = NINT+1

|
|
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EQUIL 10:33 11217775

TEST CASE 1. BT=R/RWALL, BZ=P=I

R = 0. 1.00 2.00 3.00 4.00 .00 6.00
p = 1.00 1.00 1.00 1,00 1.00 1.00 1.00
BT = 0.0 0.l 0.25 0.35% 0.4 0.b5 0.65
BZ = 1.00 1.00 1.00 1.00 1.00 1.00 1.00

X
2.4918%073458500257vY0D-01

U W — =
wh—uon

ITEKATION CONVERGES

R = 0. 0.88 1.76 2.66 3.98 4,53 5H.52
P = 1.17 1.16 1.1% 1,13 1,10 1.06 1.03
BT = 0.06 0.1/ 0.28 0.38 0.47 0.96 0.63
BZ = 1.30 1.28 1.26 1.22 1.17 1.11 1.04

PROGRAM STOP AT Y2200
USED 10.11 UNITS

Fig.3 Output from Test Case 1

7.00 8.00
1.00 1.00
0.7/5 0.85
1.0C 1.00
LAMBDA

6.5
0.98
0.6%
0.97

7.64
0.94
0.74
0.90

9,00 10.00
1.00 0.
0.95 0.
1.00 0.

. 223860986667222715D-02 3.581381797130802Y34D-01
. 134301272366667726D-04 1.24037248742)357348D+00
. 6298620660606849092D-07 2.035222333705141106D+00
.203725396307856833D-12 3.75713117%281661400D+00
.271346867676629734D-19 6.736148341137969652D+04

8.78 10.00
0.90 0.
0.78 Q.
0.83 0.
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EQUIL 10245 11/17775

TEST CASE 2. Br=0, BZ=1, P=R/RWALL
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 %.00 10.00

R = 0.

P = 0.05 0.1 0.25 0.35 0.4 0.5 0.65 .0.7» 0.8% 0.95 0.
BT = O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
BZ= 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 O.

X LAMBDA

3.408393223945424743D-01

7.189760121204285558D-02 6.188922073110317505D-01
1.644534223292631879D-02 3.181369506476834¥Y57D+00
1.347919813667243500D-03 4.984002205128518226D+00
¥.247050174508857231D-06 5.089499776469583051D+00
4.306209909136978390D-10 b5.036035324613234%86D+00
9.723764413686144768D-19 5.243774850150094356D+00

~OoU BMwh—=

ITERATION CONVERGES

R = 0. 0.82 1.67- 2.55 3.48 4.44 b.,45 6,51 7.61 8.78 10,00
P = 0.06 0,18 0,30 0.40 0.50 0.58 0.66 0.73 0.7¢Y 0.85 0,
BT = 0. 0. - 0. 0. 0. 0. 0. 0. 0. 0. 0.
BZ = 1.0 1.42 1.34 1.26 1.18 1.10 1.03 0.9 0,89 0.83 0.

PROGRAM STOP AT 92200

USED 10.23 UNITS

Fig.4 Output from Test Case 2

CLM-P442



OLD P7C2S1

READY
COM

PiIC25] 12:02 11717775

REAL SCALAR DT NEVER ASSIGNED A VALUE, LINE 9100.

REAL SCALAR C NOT USEDs LINE 21100.

INTEGER SCALAR LZ NEVER ASSIGNED A VALUE, LINE 21100.
INTEGER SCALAR LY NEVER ASSIGNED A VALUE, LINE 21100.
INTEGER SCALAR NZP2 NEVER ASSIGNED A VALUE, LINE 22050.
INTEGER SCALAR MZ NOT USEDs LINE 22100.

INTEGER SCALAR NYP3 NEVER ASSIGNED A VALUE, LINE 23050.
INTEGER SCALAR MY NOT USED: LINE 23100.

INTEGER SCALAR NXP4 NEVER ASSIGNED A VALUE, LINE 24100.
MAIN PROGRAM REQUIRED FOR EXECUTION.

Ready

USED l.14 UNITS

Fig.5 Mark III Compiler Diagnostics. These diagnostics were produced by an
on-line compilation in which the COMMON block was deliberately omitted.

CLM-P442
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APPENDIX B
ON-LINE PROGRAMMING TECHNIQUES

It has been found very convenient in practice to develop and test the
critical sections of new programs on-line using time-sharing services available
via the dialled telephone metwork. Such services usually have a much simpler
Job Control or Command Language than ordinary in-house computer systems, they
provide an immediate turnround and concise diagnostics for compilations and
short test runs, often on a 7-day/24-hour basis, and they can be used from
anywhere (e.g. from home). The General Electric Mark IIT International Inform-—
ation Service discussed in this Appendix has the further advantage that it can
be used for collaboration between computational physicists in different countries.

On-line test runs are normally carried out with limited mesh sizes and a
small number of timesteps in order to limit output as in the present example.
Once the program or subroutine has been checked it can subsequently be trans-
ferred to the local in-house system for more extensive tests and for production
runs, usually either via a paper tape or magnetic tape cassette or by hand
repunching, although transfer via cards, 7/9 track magnetic tape or direct
computer connection is also feasible.

Several techniques have been worked out to improve convenience and to
reduce costs. Where paper tapes are mentioned magnetic cassettes could also
be used. Mark III publications [ 10,11,12 ]should be consulted for further
details. Corresponding techniques often apply to other time—sharing services

in somewhat different forms.

Paper tape

When more than just a few Fortran statements are to be .read into a file
these should normally be prepunched off-line, e.g. using a teletype equipped
with paper tape reader and punch. This reduces. telephone and connect charges

by a considerable factor. Each line ends with the characters
CR (carriage return), LF (line feed), Rubout (B.1)

and a short leader and trailer consisting of a number of rubout characters

should also be punched at the beginning and end of the tape. The command
TAPE (B.2)
informs the system that paper tape input is required.

Fortran format

Each Fortran statement or comment begins with a line number of 1 - 5
digits and can therefore be distinguished from a system command which begins
with a letter: there is no specific 'command mode' or 'edit mode'. Similarly,

a comment has a 'C' immediately following the line number with no intervening
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blank space and can therefore be distinguished from a statement. A
continuation line has an ampersand & immediately following the line number.
These conventions which are illustrated in Appendix A have the advantage of
limiting the number of key-punch depressions needed and also the time taken to
generate a listing. The amount of paper output can be reduced and the format

improved by punching several statements on one line separated by a semi-colon.
Editing
Although a powerful context editor is available [12] the simplified

editing facilities provided by the input routine are usually sufficient for

most work:

(a) Lines can be typed in any order: they are then automatically
rearranged numerically.

(b) A line is replaced by retyping it with the same line number.

() A line is removed by typing its line number, followed immediately

by CR (or the sequence (B.l) when using paper tape).

This allows a program or subroutine to be developed or corrected in any
convenient order; e.g. the comment headings can be typed first and the statements

filled in later.

OLYMPUS conventions

The OLYMPUS card conventions [4 ] have been modified for on-line work.
In particular the line numbers are correlated with the section numbering and
the headings are shortened by removing most of the blanks. The conventions

used on Mark III are illustrated in Appendix A.

] Sections. As an example, #6 begins with

60000C -—— (20 dashes).——— (B.3)
and terminates with

69999C (B.4)
Line 60001 has:

(a) C* in columns 6 & 7
(b) 6. in columns 7 & 8
(¢) Blank in column 10

(d) Heading beginning in column 11.

Line 60002 is a 'blank comment' similar to (B.4). Subsequent lines in this
section (until #6.1) start with '"60'. They would normally be punched in

units of 50 starting from 60050 to allow for subsequent insertions. Where #6.1
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immediately follows the heading of #6, line 60002 is omitted.

i Subsections. As an example, #3.4 begins with 34000C, followed by line
34001 which has

(a) C* in columns 6 & 7
(b) Blank in column 8

(¢) 3.4 in colummns 9 - 11
(d) Blank in column 12

(e) Heading beginning in column 13,

Subsequent lines in this section start with '34' and are normally punched in

units of 50 starting from 34050.

3. Preservation of line numbers. Many on-line systems allow lines to be

automatically renumbered but this facility is not used for OLYMPUS files
because it would disturb the conventions 182. An advantage of not renumbering
program and subroutine files is that old listings remain useful for some time
if they are corrected by hand; this reduces costs and saves time by limiting

the amount of output needed.

4, Insertion of COMMON. The OLYMPUS COMMON blocks [ 4,5 ] labelled
[c1.1] - [c6.9] occupy the 4-digit line numbers 1100 - 6999 and are contained

in a single file. They can then be automatically inserted into a subroutine

using the EDIT WEAVE facility [12], e.g.

(1) EDI WEA P7C2S1; P7COM
(i1) SAVE TEMP (B.5)
(iii) CoM
(iv) SAVE STEPON.
Here file P7C2S1 contains the source file of subroutine (2.1) STEPON of program
P7, while file P7COM contains all the COMMON blocks. Command (i) merges them
together to form a 'current' file which is then saved in a new temporary file
TEMP, compiled, and the object module saved as STEPON. It can then be called
in automatically by the loader. However, COMMON is mnot used in program EQUIL

shown in Appendix A.

Compilation and Testing

A program or subroutine can be compiled using the COM command. Fig. 5
illustrates some of the error diagnostics that are available: here a short
subroutine has been compiled with COMMON omitted. The use of line-numbers
combined with the OLYMPUS numbering system makes it very easy to locate and

correct errors.

A source-language or binary program can be run using the RUN command,

—.BB_.



and again the diagnostics enable errors to be located using the line number.

Diagnostic output

The PRINT statement whose application is illustrated in Appendix A
already supplies some of the facilities normally provided by the OLYMPUS
diagnostic routines [5]. Other OLYMPUS facilities could be extended for
on-line use but have not yet been introduced. In developing a major new
program it is often convenient to test the logic with the physics edited out
and replaced by diagnostic statements indicating the flow of control, indexing

etc. This is currently being carried out for a 3DMHD code.
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