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ABSTRACT

In a dissipative plasma the magnetic flux is not conserved. If,
however, the dissipation is sufficiently slight, the helical flux in a
slowly helically perturbed toroidal plasma is still conserveﬂ as an adiabatic
invariant, up to first order in the inverse aspect ratio, while the toroidal

and the poloidal fluxes are not.
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1. THE PHYSICAL MODEL

In the present paper we shall apply the theory of the adiabatic
invariants to a toroidal plasma formed by slightly interacting particles.
It will be shown that, if the interaction is sufficiently weak as to give
rise only to a small resistivity, an adiabatic invariant exists up to first
order in the inverse aspect ratio, which can be interpreted as a helical
" magnetic flux.
The motion of the system of particles with charge ej and mass Mj is

described by the Hamiltonian
& oY
-, . -
(p(]) - A/ + AU (1)

where A is the vector potential related to the magnetic field B and U

is an electrostatic potential describing the coulomb interaction between the

particles
e, e,
U=5 ——i— (2)
ij |r(_'|) _ r(l)l

We assume that the temperature of the system is very high so that the average
effect of the coulomb collisions is only a very small perturbation of the
particle motion, characterized by the smallness parameter A . We consider
an initial unperturbed magnetic configuration with axisymmctric toroidal
geometry whose lines of force will be described using a curvilinear coordinate

system in which they are straight lines:
e = L + const (3)
a(o) ¢ '

Here © and ¢ are the azimuthal and toroidal coordinates respectively and
q(r) is the safety factor on the magnetic surface r = const. The unperturbed
motion (A = 0) of the guiding centres of the circulating particles (neglecting

the perpendicular drifts) is simply periodic on any rational magnetic surface.
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Indeed in this case the trajectories of the guiding centres which are the
lines of force, are exactly closed.
Neglecting the interaction between the particles, the Hamiltonian (1)

is separable in the coordinates ?(J)of each particle. Under this circum-

stance, as known[l], an invariant J(J) exists for each particle, given by
the expression
3D 23 g ) )
158 Pg s

where the line integration is taken along a closed trajectory around the
torus, including the Larmor gyration, which in a small Larmor radius
expansion, contributes to J(j) only at first order. This first order
contribution describes, as known [2] [3], the conservation of the magnetic
moment u of the particle. 1In the following we will neglect systematically
the first order terms in the Larmor expansion and so we will be concerned

(1)

only with the part of J which is related to the rotation of the guiding

centre along the closed line of force.

In the presence of particle interaction, the variables ?(J) are no
longer separated in the Hamiltonian (1) and, as a consequence, the J(J)

are no longer invariant. It is however a known result of the canonical
perturbation theory that, if the interaction is sufficiently small (as is
just our case), the J(j) are still invariant apart from terms of higher
order of smallness than the order A of the interaction. The application

of this result to the present case is discussed in the Appendix. We are

then in a physical situation in which one can take into account all the
effects of the coulomb interation at lowest order while the J(j) given by
Eq (4) are still invariant. One of these effects is the existence of a
small electrical resistivity which will be reflected in some kind of slow
dissipation of the magnetic configuration. The resistivity is indeed pro-
portional to the product eiej (which is of the same order as )\ , compare
Eq (2)) and is then of an order O()\) lower than that of the non-conserved
(i)

terms of J » which are at least O(A2?) (see Appendix).
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In the Hamiltonian (1) A describes the true magnetic field experienced by a single

particle, including the part created by the other particles. The detailed form of this

field is, of course, unknown, as the knowledge would imply the complete

solution of the N-body problem. Nevertheless it is sufficient for our

purposes to assume that the slow dissipation of the magnetic configuration,
resulting, on the macroscopic scale, from the overall mutual interaction considered
above, can be taken into account phenomenologicallyby considering that K'depends
explicitly on time through a suitable set of parameters a(t) , characterising

the decaying magnetic configuration. This time dependence is supposed to be
adiabatically slow, namely slow with respect to the period of rotation of a
particle along an initially closed line of force. Under this circumstance

the J(j) are still conserved as adiabatic invariants.

The J (dropping henéeforth the index j ) represent useful constants
of the motion when one is able to calculate the actual trajectory appearing
in the line integral (4). Then, as will be seen, the J can be related to
the behaviour of the magnetic flux across suitably defined surfaces. For
the calculation of the J it is sufficient, as discussed abové, to consider
the Hamiltonian (1) at the order A = 0 , but considering the time dependence
and the loss of axisymmetry of the dissipating magnetic field.. Moreover,
since we are only interested in the guiding centre motion, it is convenient
to introduce a Hamiltonian such that the Larmor gyration is eliminated

‘through a canonical transformation. This Hamiltonian will be introduced in
the following section.
2, THE GUIDING CENTRE HAMILTONIAN

In our perturbed situation, as a consequence of the slow dissipation,
the lines of force will gradually lose their individuality. Nevertheless an
intermediate period of time will exist in which the particles which were
originally following a closed line of force will continue to describe almost

closed orbits around the torus, before the memory of their original

equilibrium trajectory is completely lost. Indeed, if the local change of



the magnetic field is sufficiently slow, the particle motion does not change
essentially during a certain time. On the other hand, even a very small
amount of dissipation is sufficient to produce immediately a change in

the topology of the overall magnetic configuration which is not simply
describable in terms of a displacement of the lines of force, frozen to the
plasma. In such a situation the magnetic field cannot be characterised, even
in the intermediate period considered above, by «,3 coordinates which are
constant on a line of force and related to E by B = Va xVf@3 , as these
coordinates do not exist, in general, as regular functions of time.

It is then not possible, even in a slightly dissipative system, to apply
the canonical formalism for the guiding centre motion involving the a,B as
canonical variables, as was developed by Northrop and Teller [3] and
Taylor [4]. It is however still possible to describe the motion in a
canonical formalism starting from the basic equation of motion for the guiding

centre

Mz = s ? X B(3,t) - nKZ,t) + eE(Z,t) (5)
where z denotes the guiding centre position of a particle. The equation
above can be derived from the rigorous Lorentz equation of motion in a
number of ways [5] [6] [7], all essentially implying an average over the
Larmor rotation. As is well known, the perpendicular component of the
inertial term Mi only contributes to the higher orders in the adiabatic
iteration procedure [7].

The motion of the guiding centre is then described by the following

Hamiltonian

olo

= 1 ik 3 B
H=oy8 (pi- Ai/(\ Pk"cAk> el ' (6)



Indeed the equation of motion (5) and the ordinary expression for the

canonical momentum p,6 = Mxi + eAi/c are obtained from the canonical system:
i :

: [ oH > : <aﬁ )
p. = - _— s L. = — £ . (7)
i l\ 31'1 pi 1 apl Il |

In Eq (6) gik is the metric tensor appropriate to our curvilinear co-
ordinates mi = (r,06,9) ; the Ai are the covariant components of the vector
potential. We suppose that H can be splitinto a zero order part HO(G)
describing the guiding centre motion in the toroidal axisymmetric equilibrium,
in the absence of dissipation, and a perturbed part nH,(6,np-me,a(t))

of order m representing the dissipative effects which produce, at the same
time, a slow time dependence of the magnetic configurationthrough the adiabatic
parameters a(t) and a hélical magnetic deformation described by the variable

ng - moé

==]|
I

H (6) + m H,(6,n9 - me,a(t)) . (8)

The 6 dependence in H is a consequence of the toroidal geometry only and

r/R , where R is the major radius. H 1is a periodic

is then of order ¢
function of © and np - m& . It must be noted that in orde: to be consistent
with the approximations implied by our physical model the order mn of the
dissipative helical perturbation must be much smaller than the order €

characterising the toroidicity of the unperturbed equilibrium:
n«e<l .

We find it convenient to separate in the Hamiltonian the dependence of order ¢
and the depeudence of order n by introducing new angle variables, instead.

of the 6,9 , through the following transformation



o
(9)
= - Do - mb
P mqP3 WO qmn

where m,n are integers different from zero.
Starting from the canonical system (7) (where = (r,0,¢9) ) and expressing

the Hamiltonian in terms of the new variables, one obtains

P= e %~ ap
(10)

_ _0H o = oH

P Bwb’ o Op

showing that the transformation (9) is canonical.

In the new variables the Hamiltonian H and the invariant J take the form

H = HO(P,WO) + nI{I(P,p,WO,wO,a(t))
(11)

J=4¢ Pﬂ%%—é pm%

The Wo dependence in H is of order ¢ while the L dependence is of

order m . In the expression for J the effect of the perpendicular drifts

on the guiding centre orbit was neglected by putting dx! =dr =0 .

3. THE HELICAL FLUX
The contribution of the inertial term M? of the canonical momentum

to the time derivative of J 1is given by the expression

g, Mg vds =

< § Airey S5 (12)

dt v

pol=

where the deformation of the orbit during one cycle was neglected, so that
d/dt commutes with the line integral for J . Eq (12) is the change of the
kinetic energy during one cycle and will be assumed as negligible in the

following. The only contribution to g% then comes from the Ai . In the
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absence of the helical perturbation mH, one has W, = const along the unperturbed

trajectory represented by the line of force with q=m/n . In this case one
obtains J.= é p dv =0 and J reduces to the first part only
° 2mmn
B Iy e
J =W, =¢ P Al =S¢ (nh, +mA,) i cn/(nAz +mA,) de
o
) (13)
=9j§A. dz™ = - 2 ¢
c i c
w_ = const

o]

where -x 1is the magnetic flux across a helical ribbon enclosed by the
axis located at r = 0 and a closed curve defined by W, = const ,
T = const

In the presence of thé dissipative magnetic perturbation, iﬂo is no
longer conserved and the same holds for the helical flux -y . In order to
calculate the order of magnitude of the time dependent terms of JWO we
shall use sténdard results of the canonical perturbation theory (see
e.g. Ref [8]).

Introducing the Hamilton-Jacobi function S(Wo v T Jw) generating a

transformation from the (WO w Jw J ) wvariables associated with Ho 5

w

o Yo
to the new (WWVJW JW) variables associated with Ho + n H; and expanding
S = S0 +nS8;+n?8,+ ... (14)

one can calculate the perturbed Jy, 1in the form (compare e.g. Ref [8])

- 85, 89S, 925,85, 7 '
Jy (W,w)=J_ + [_n — + 7? ( - 3 ) (15)
o W W W, T aWE Ay, ) |

where JW is invariant.

Since H, is periodic in W,, w,, it can be expanded in Fourier

series



1
Hy = Erll H( ) (JWO,JWO) exp i(ny W  + n, w) (16)

n,n
12
nl

where we have neglected, for the moment, the time dependence described by the
adiabatic parameters.
Expressing S, also in Fourier series
1
S, = L S( )

n n n; n,
12

(JW,JW) exp i(n, W+ n, wo) (17)

one finds in the canonical perturbation theory [8] that

(1
H
0 SR n,n,
Sayn, | Zringv, + npvp (18)
where n, #0 , n, 40 and
9H (Jy ) 9H (Jw.)
v, = T 8 y Ug = _0 9 _o . (19)

By, 3w,

Using these results one can now discuss the order of magnitude of the terms
in the r.h.s. of the Eq (15) for on(w,w). The terms asllawo and 352/8W0
do not give any contribution after averaging over one cycle. The only

contribution then results from the last term, quadratic in §; . Now the

{1}
n;n,

for n, #0 , n, #0 . But the terms with mn, # 0 describe just the W

order of magnitude of S, is the same as the -order of magnitude of H

dependence of H, , which is of order € in the toroidicity. The time
dependence of Jy (W,w) is then 0(e2 nn2) . It follows that the helical
o

flux -y = § JWO(W,W) is conserved up to the first order in € .

4. TFINAL REMARKS

As is known from the theory of the adiabatic invariants [8], any action
variable J which is invafiant for a time-independent Hamiltonian, remains
an adiabatic invariant when the parameters a(t) of the Hamiltonian change
slowly. We can then state, from the result of the foregoing section, that

the helical flux is adiabatically conserved with respect to the dissipative
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helical perturbation n H,(a(t)) , apart from terms of order n2? €? . The
same conclusion cannot be drawn for the toroidal flux & and the poloidal
flux ¥ , for the reason that the invariants from which their conservation
could be derived, cease to exist already in the order n . Indeed & and

¥ are defined by the relations

27 27
»=[A, do g ¥Y=-[/A,do . (20)
o o]

In the absence of the dissipative perturbation H, , the magnetic configuration
is axisymmetric and the variables 6 and ¢ can be separated in the canonical
formalism. The invariance of & and ¥ then follows (provided that the
inertial terms can be neglected) from the existence of the following

two invariants for the unperturbed motion of the circulating particles

27 27
Joo = [ P, e , Jo3 = J ps do_ (21)
o o
J .= 27 p; being even an exact invariant. When the dissipative helical

03

perturbation H, exists, Joo and J,,; are no longer constants., Their
time behaviour cannot be calculated with the perturbation formalism of the
foregoing section because the case is degenerate (see Ref [8]). 1Indeed the
unperturbed motion occurs along a closed line of force, so that one has the
relation m éo -n ¢0=(l Since the angle variables are linear functions of

time with frequencies w; and w, respectively, one has the relation
muw, -nw, =0

which is characteristic of the degeneracy. However the time behaviour of

Jo2 »Jo3 can be obtained directly by solving the canonical system:

. oH,
Joz = -1 30
o

(22)

oH,

jua = -7 5“
?
o

= § =



We once again expand H, in a Fourier series with respect to eo and

meo-ncpo.
(1)

o, 7, (Jo,) exp (in;0.) exp [i z'lz(tne0 - ncpo)] . (23)

H,= T H
o, n,

We write H,; in the form

H, = F(me0 - n mo) + G(Go,ineo - nwo) (24)

1
where

_ (1 , .
F = Enz Honz(Joi) exp [in,(m eo - ncpo)]

(25)

G= L H(l) (Joi) exp (i nleo) exp [in,(m eo—ncpo)]

n,70,n, D;D;

While integrating the canonical system, one substitutes for eo(t) and (po(t)

the expressions of the unperturbed motion, which imply meo(t) - n(po(t) = const .

One then obtains the following result for Jg,(t)

I—I(]'I)1 (n;+ n,m)
n— t- bR 12 exp (i n,6,) exp [i n,(m6_-mno )] .
860 nnﬁ“'O,nz n;Wy P e p[ : @ po

-Joz(t) = Jg,(0) -

We see. that the contribution of order m coming from F is a secular

term increasing linearly with time. A comparable result can be obtained for

Jos(t)

< I =



APPENDIX

In our physical model the basic Hamiltonian (1) describes, at zero order
in A , the particle motion in the magnetic configuration including the
collective magnetic effects resulting from the particle interaction, while
the collisional coulomb interaction is considered at the order )\ . As we
know from section 3, the motion with X = 0 can be described in the lowest

~order of the small Larmor radius expansion introducing angle and action
variables (ijfij' Jw,) for each particle labelled by j . 1In the presence
of the coulomb integacégon, the particle coordinates can no longer be separated.
However the action variables remain constant up to the order X . TFor

instance, applying the canonical perturbation theory to the Hamiltonian (1)

and transforming to new angle variables ﬁ} ’;3 one has that at first order

in A, Jy; is modified as follows (compare Eq (15) )
A
- . - /98
J. W,w,) =T, + X —— Al
LI W, \ OV, )«sﬁ_ , . sl (AL)
J J J J

~

where Jw is invariant. The first order part S5, of the Hamilton-Jacobi
]
function can be expanded, as usual, in a Fourier series:

N ~ o~
g. = ¥ z §,(3, ,J ) exp i(n,, W, + n,y, w.) (A2)
Y13 mimy, W 13 %5 7% 7

where N is the number of particles in the system.

It is then seen that the average of BSI/BWj over ome period of the
uncorrelated motion of the particles is equal to zero, so that qW- is invariant
in the average up to the first order in )\ . !
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