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ABSTRACT

An anisotropic high-f equilibrium is derived for the counterstreaming beam
tokamak (CBT). The critical B of the CBT is found to be of comparable magnitude
to that occurring in a similar model of a scalar pressure tokamak. It is shown
that the toroidal current which is essential for equilibrium can be maintained
by the counterstreaming ions. Finally, a brief discussion of the stability

of the device is given.
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I. INTRODUCTION

The fusion reactor potential of counterstreaming beams of Deuterons and
Tritons was first comsidered alt the beginning of the C.T.R. programme, for
example,by Hawkins [I]. The basic concept is to fuse Deuterons and Tritoms
by firing 60 keV beams of these ions at each other. The recent production of
50 amp ion sources has revived interest in this subject. However,it can be
shown that the current density in each beam has to be of order 107 amps/cm
for a significant number of fusion reactions to occur in a pathlength of a
few metres. Thus to obtain large current densities and increase the pathlength
the ions are injected into a torus where they are stacked as counterstreaming
distributions of Deuterons and Tritons,

Both species of ions lose their energy mainly through Coulomb collisions
with the background electrons, and recent calculations [2] [3] have shown that
during a slowing down time there are sufficient fusion reactions so that the Q
of this system (Q is the ratio of the thermonuclear power to the injected
beam power) can be considerably greater than unity. These systems have a
further advantage that Q > 1 is achieved with quite modest values of nt
(v 1012) [4],and hence small scale experiments can be conceived to demonstrate
the reactor feasibility of this device.

In this paper we show that a high-B tokamak-like magnetic field configuration
can be produced by counterstreaming beams alone, thus combining the above
advantages of the CBT (counterstreaming beam torus) with the known advantages
of a tokamak. The most significant difference between the CBT equilibrium
and the conventional tokamak is that the pressure in the CBT is highly

anisotropic, with py >> p, . Typically, it is found from Fokker-Planck studies [4]



of the collisional interaction between the ions, that p"/PL " 4, Thus in
section II of this paper, using an expansion in the inverse aspect ratio
E(=rO/RO), we derive a model of a high-f equilibrium with the ordering
Py~ Ep This equilibrium exhibits all the typical properties

of a scalar pressure model of a high-f tokamak, namely, a critical B for
current reversal and an upper limit to the pressure that can be confined.
Interestingly, it is found that this upper limit is of similar magnitude to
that obtained in a scalar pressure model of tokamak with the same current

distribution [5,6].

From the equilibrium model the toroidal current density is deduced, and
then in section ITII it is shown that this current can be established by either
using an electric field, as in the conventional tokamak, or by the beams themselves.
In principle, using beams alone would remove the necessity for the usual transformer
and its circuitry,and also,which is more important, allow for steady state operation
of the device. It is shown in Section III that for a pure plasma (:%ff = 1),
the beams themselves lead to a zero net current. With impurities present (:%ff # 1),
however, a net current can be established. In order to control the toroidal
current profile in the CBT it is suggested that helium should be injected and
estimates are obtained for the injected current required both in a present day
tokamak and a future reactor.

In Section IV we give a cursory discussion of the stability of the CBT.
We would expect, that as well as the normal tokamak instabilities, there would
be additional unstable modes in the CBT due to the pressure anisotropy, for
example, the mirror and firehose instabilities. In fact, in the first part of
Section IV,it is shown that these modes are stable. The authors are unaware
of any further MHD modes driven by anisotropy, although some may exist.
As far as the conventional tokamak modes are concerned, the localised interchange
has been discussed [7], but only for low-B (B ™ £2). However, the indicatioms are
that for these B values, anisotropy with p; >> p, has a beneficial effect. The

influence of anisotropy upon the kink instability has been studied for the



skin current model [8], but the more relevant diffuse current profiles have yet
to be investigated. Recent work (9] on microinstabilities suggests that the
most dangerous modes of instability will be the parallel sound and iomn cyclotron
modes. Conditions for the stabilisation of these modes are given.

Thus despite a fairly thorough appraisal of the known literature we have

been unable to find any mode which seriously influences the viability of the

CBT concept.

II. AN ANISOTROPIC HIGH-8 TOKAMAK EQUILIBRIUM

Mondelli and Ott[ld, and more recently, Connor and Hastie[?]., have
investigated anisotropic equilibria in a large aspect ratio, low-f tokamak of
circular cross—-section. These workers follow Shafranov [11] and develop the
equilibrium as an expansion in e, the inverse aspect ratio. To order €? the
flux-surfaces are circles with the centres of their cross-sections displaced
inward by a variable digtance A from the magnetic axis, and where A v e. The
analysis is general and applies to any pressure and current profiles for which
B ~ €2,

In conventional scalar pressure. tokamak analysis a number of authors [5,6,12]
have considered high-B equilibria for which B v €, and where A v~ 1. For these
investigations it is necessary to prescribe simple forms for the pressure and
toroidal current density distributions. A feature common to all this work is
that for a given shape of plasma cross—section there is an upper limit to the
8 which can be confined. A more practical limit is set by the onset of
toroidal current density reversal, which occurs at a somewhat lower value of f. In the
present section we investigate a simple model of a large aspect ratio, circular
cross—section, high-f tokamak, with anisotropic pressure (p, >> p,). It is of

particular interest to elucidate any B-limitations which may occur for this case.



In the CBT we envisage the resulting mass flow of the two ion species

to be very small. Thus we consider the equations

; g .
JxB = div p s j = VxB =
j (N
and v.B =0 ,
where B is the magnetic field, j the current density, and the pressure tensor
ey ;
p 1s given by
b s 2 =
P = pL( I'- e:e ) +p, e:e > (2)
where e is the unit vector along B. For an axisymmetric torus
poTe _Zexw
2ERTY¢ - 2
where R is the distance from the major axis, E;¢is the unit vector in the
toroidal direction, ¥ the poloidal flux and T is an arbitrary function of
position. Choosing an orthogonal coordinate system (Y,0,x%) and defining
By - Py -
g, B ————— p=z(py ) > (3)
B2
we obtain [13] from Eq. (1),
T(1-o_) = g(¥) (4)
QEJ: 2 30’_
1 —_ =0
3x 8B ox )
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where g is an arbitrary function of V. Following Mercier and Cotsaftis [13]
we assume
o= a_(¥) T = T() p=pM
and using Eq. (6) it is straightforward to derive the equation
Hy = -Rj¢ g {7



where using cylindrical coordinates (R,$,Z) based on the axis of symmetry,

the operator H is given by

2 2
ge L2128 @)
dR?  3z2 R 3R
/
a
2 = e _:;jyﬂli [: 1= - Lt m2 ot 2—} 1
and qu) = (15 ) + | TT' (1-0_) - 30_ T + p R T~ (9)

We now apply Eq. (7) to a circular cross—section plasma of major and minor
radii Ro’ ro respectively. Introducing local polar coordinates (r,08,¢) based

on the centre of the minor cross-section, H becomes [6 ]

3
gl B o B 1 0%  RUEE L mias ] 2. A
r dr or 2 a2 R +Tcos O r R+rcos 6 236 °
r< a6 o o

The plasma is maintained in equilibrium by an externally applied vertical
magnetic field., An approximate analytic method for determining this field for

a conventional scalar pressure tokamak has been described by Haas [6]. The

Y. is continuous, and since we

magnetic field at the plasma boundary V¥
shall consider a model in which p, = p;, = 0 at the interface, it follows that
pressure balance is automatically satisfied. We choose forms for T(y), (V)

and o_(y), which ensure that p, >> p,. Specifically, we take

by :
T(y) = = = constant (11)
(o]
P = —— Wy 2?) (12)
s R
[0] 8]
- o W) =2, (. 2-y2) (13)
- ¢B2 B s

where a, b and A are dimensionless free parameters. Substituting the above

forms into Eq. (7) and using Eq. (10), we obtain



3y
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where r is now dimensionless, r = | representing the boundary and e = ro/RO.

Taking € << | we choose a,b and A such that b2 v an A~ 1 and that b%A - a ~ g,
We treat o_(¥) to be of order e, and this is subsequently shown to be valid.

Expanding ¥ in the form

=9 (5,8 +y,(r, 8) +.... (15)

we can solve Eq. (14) order-by-order. Setting wo = wB then the leading-order

equation is satisfied trivially, To first—order we have

oy 32y
13 )y L 2 A a-2acrcos®)y =0 (16)
r or \ or 2 2 o}
r< 96
where w] =0 at r = |, This leads to the solution
1
w] = - wo (1 —r2) (a-b2A+¢arcosb) . (17)

A typical plot of ¥y is shown in the figure. The flux-surfaces enclose an
outwardly displaced magnetic axis.

It follows that p ,and p, are given to leading-order by the expressionms

v
p, = - ——— (a+4 b2y, (18)
r %R 2
[0} (o]
v
and P =-——— (a-AbBy (19)
rOZRO2

and thus confirming that our model describes a tokamak for which py >> p,. Thus
to leading-order the pressure components are functions of wl only, and hence have

an approximately parabolic radial dependence.



As a consequence of Eq. (18) above

and hence as assumed earlier o_ << l. If we regard the model as consisting of
anisotropic pressure in the presence of a scalar pressure background, P> then

for consistency we must have P,V P, "VEP,.

We now discuss the current profiles. Since T = constant there is no poloidal

current. By Eq. (9) the toroidal current density is given by

: 1 —/ o _ RZB? /')
P I cs_)(p & 3 %) o

which for the present model gives

v

i, = - 5 [ a-b%A+2acrcosb } . (20)

¢ r 2R
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The total current, I, becomes

TTI]JB .
I =~ {&-b) . (21)
o
(pJ_+ P /2) )
We define the total-f to be B = ————————— | where the average is taken
1B,

over the plasma minor cross-section. For an anisotropic pressure distribution
there is no unique definition of B, and in fact, any combination of py and p,
in the above definition is allowable. The form that we assume here, however,

is perhaps the most natural since it is the ratio of plasma energy density to
magnetic energy density. (For a fusion reactor it is probably more appropriate
to define B as B = (p” + uRL>/B2 , where o is a function of ov. In the viecinity
of the maximum value of o for tﬁe D-T reaction, o is close to unity. This
definition exemplifies the fact that the thermonuclear reaction rate ov per unit

energy, is greater for a one dimensional Maxwellian with p,-pressure than a

two dimensional Maxwellian with p, -pressure.)



Thus it follows that

a

— (a - b?%A), (22)
b2

1
B = A

. . . =2 . .
Alternatively, we can define the poloidal-f to be BI = 8ml p, dS, which gives

B = —2 ) (23)

I a - b2A

Defining the safety factor for an equivalent cylinder of radius r to be

_ 2 me B¢ r
R S
we obtain q = LEE 1 . (24)
a - b%A

We can now replace a, b and A by the physically meaningful parameters

B, q and I. Thus

J, = 2 (1 + 2B/8_ r cos 6) {25)
G c

mr
o]

and V= wB{:l + Z#%: (1 - r2) <l + ﬂ/BC r cos 6 >-] (26)

where IC = wBRo—l and Bc is the so-called equilibrium limit, which in this case

is given by
€
B = — . (27)

& q2

Note that from Eq.(25) the current density contours are vertical planes, the

magnitude of depending only on the distance from the centre of the minor

3¢

cross—section. We observe, as in the conventional model of tokamak, that as

B is increased decreases at the point A (see Figure) until at B = Bc/2

3
the toroidal current density vanishes. Any further increase in f leads to

a current density reversal. At B = Bc the poloidal magnetic field vanishes

at point A thus providing an upper limit to the contaimment,



The B "~ e anisotropic equilibrium derived in this section has an
essentially parabolic pressure profile, with current density given by Eq.(25).
Although these profiles can be established in a B © ¢ scalar pressure model [6],
the manner in which they arise is different for the two problems. This can be

seen most clearly from Eq. (6). For scalar pressure,

- rar L ) 28
J¢_Rdw+Rdw 3 ( )

_ _RBZ2 - 3p
J¢—“'—:'2——' W—*—Raw A (29)

Although the origins of j¢ are different in the two cases, for the particular
models and orderings chosen, the right hand sides of Eqs. (28) and (29) cancel in
leading—-order to give the same j¢. It is clear, of course, that the difference
in form for T together with Py Vv Ep“, means that the scalar pressure formulation
cannot be recovered from the present work. ﬁe note that the magnitude of the
equilibriqm limit is similar to that for the scalar pressure model, the latter

having the value Bc =-%-E~ on the definition adopted in this paper.
2
q

We now discuss the validity of the form for the pressure tensor adopted in
Eq. (2). For reactor conditions the mean free path for collisions will be larger
than any characteristic dimension of the system, Asserting that the Lorentz
force plays a role analagous to that of the collision term, Chew, Goldberger
and Low [14], expand the collisionless Boltzmann equation for the ions in terms
of the Larmor radius (ion mass to charge ratio). In order to satisfy the
leading-order equation for the zero-order distribution function, fo; the
electric field must be taken perpendicular to the magnetic field. This is a
good approximation since the high mobility of the electrons ensures that E,
is insignificant. More precisely, we require the electron plasma frequency
to be very large compared with the ion Larmor frequency - a condition easily

satisfied in tokamaks. It follows from this approximation that fo is constrained



to have a particular functional form. On taking moments of the Boltzmann
equation it is found by Chew et al that this constraint on fo leads to the form

of pressure tensor adopted in Eq. (2).

In this section we have established a high—B model of a tokamak with
highly anisotropic pressure. The equilibrium f-limit is of a similar magnitude
to that for the scalar pressure model, and could, presumably, be raised a further

factor of two or three by considering the plasma to have an elliptic cross-section [15].



ITI. PRODUCTION OF THE TOROIDAL CURRENT

In this section it is shown that the toroidal current which is essential
for the equilibrium can be provided either by the injected beams themselves,
or by an electric field as in the conventional tokamak equilibrium.

It was first pointed out by Ohkawa [16] that the current in a tokamak could
be supported by the injection of fast ions. The basic idea is that the transfer
of momentum from the fast ions to the electrons by Coulomb collisions accelerates
the electrons in a similar manner to an electric field and thereby generates a
current. The circulating fast ions also constitute a current, which is in the
opposite direction to the electron current, and only if the Z of the injected
beam is different to the Zeff of the plasma is there a net current.

The calculation of the current in the CBT proceeds in a similar manner to
that given by Ohkawa [16] but a kinetic approach is used so that the toroidal
electric field may also be included. The starting point is the Fokker—Planck

equation for the electrons which can be written in the form
Bfe oF Bfe
Tt o g = Clf ) + Xc(fi,fe) (30)
7

where the collision operator Cis in the form of Rosenbluth, Macdonald and Judd [17],
for distributions which are axisymmetric about the magnetic field. To simplify
the ion-electron collision operator in Eq. (30) the usual approximation vi<< v,

is made; then to first order in vi/ve the operator becomes

- of
Virm s e B 3 o -]
ELF(fe,fi) ;Z}iv”i Zi v [:2 E 57 v 3E (1 E )fe

i i
_ 1 32 ] .2 ]_ 32 = 3 -1
3;;;;15“ S vy BV ) e (B v )
3f_~
1 2 -3 E_f _ o e |
s :-ni 22 v aE}_‘(l &2 = j | (31)

1
where £ = v”/v, nv“i is the mean flux of the ith species along the field lines

and Zi is the charge of the ith species,

- 11 =



In the velocity frame in which

2
Zniv“i Zi =0 (32)

i
the above collision operator reduces to

] 3 3 d afe N
ot 2y 2 s - E2Yy =
%C(fe’fi) =73 % Tx Zi ¥ B <(1 £%) 9E . (33)

i i

This is now identical to the electron—ion collision operator for electrons
colliding with cold stationary ions and is the operator used by Spitzer, Cohen
and Routly in their calculation of the electrical conductivity of plasma.

Thus using their results[l18] the current may be written as follows,

j = E/n +Zgﬁe n.v . Z. (34)
Coid i

i
where the first term is the contribution from the electric field with N the

Spitzer [18] resistivity. The second term is the contribution from the motion of

the injected ions, background ions and ‘any impurities.

Using Eq. (32) and defining zeff = I n. Zi/n (where n is the electron density
ik
n= Ing Zi), Eq. (34) can be rewritten as
l -
c=Ev e\ mvT oz a-z./z ) . (35)
1735 il Ti i’ eff
J

This form has the advantage that it is invariant under velocity transformatiomns

so nv, . can be specified in any reference frame. The above calculation is a
uniform geometry one, and does not include the main effect of toroidal geometry which

is the trapping of particles in the toroidal field gradient. This effect, however,

has been calculated elsewhere [19] , and the result may be trivially added to Eq.(35),
By examination of Eq. (35),one can see that if only Deuterons and Tritons are
injected (Z = 1),then the beam contribution to Eq. (35) is zero, unless there

1. Thus with no impurities i.e. Z =1

are some impurity ions giving Z off

eff %

the current has to be generated by an electric field as in the conventional

tokamak. With a radial distribution of imputities,giving Zeff > 1, the injected



D-T beams alone can produce a current if the mean ion flux is non zero
(Znv,, % 0), however the current profile and impurity profile will

- |‘l
i
be related in the manner given by Eq. (35), and it may not be possible to

obtain the current profile required to establish a stable equilibrium.

A better approach would be to. inject a small density of 3He or “He, at a
high energy. Expanding in the small parameter n3He/nD, the current density

in the absence of any applied electric field, can be written in the form,

. = Ta. -2
] = en3He|:2 Vi 3He n< Vip * HTV“T)] - (36)

Since the D and T beams are injected in opposite directions the second term in

the square brackets will be close to zero. The current profile in this case is
dependent upon the deposition profile of the injected helium, which can be
varied to some extent by changing the direction of injection.

We now give examples of typical CBT operation, based on the model of this
paper. To demonstrate the existence of the CBT equilibrium and investigate
its stability (which is discussed in the next section), we could for example
inject 100 amps of 60 keV Deuterium or Hydrogen ions (50 amps in each direction)
into a present generation tokamak of the size of say DITE (R = 110cm, r = 23cm
B¢ = 30 kg). With an nt_ " 5 x ]0]] cm_3 secs, the electron temperature would
be 3 keV, and from the Q calculations [2] [3], this would give Q = 1 in an equivalent
system with D-T injection., The equilibrium limit for q = 3, is Bc = 0,02 and this
limit would be reached with the above injection power. The toroidal current
required for the equilibrium is 200 K amps and this could be provided by
injecting 3 amps of 80 keV “He.

A reactor CBT with parameters, R = I0m, r = 1 m, B

¢
13 =3
0 cm ~ secs the electron temperature

= 55 kg, would have
BC = 0.05 for q = 2.5. For an B, 1
would be 10 keV giving Q = 5 T4], thus the injection of 166 Megawatts

of D-T at 80 keV would give a thermal output of 1000 Megawatts. The toroidal



current of 1 Megamp which is required for equilibrium could be provided by the
. , | <1013 -3

injection of 60 amps of helium at 80 keV. The plasma density would be 6_ 10 "em 7,

and this allows the 80 keV fast neutral atoms to adequately penetrate the plasma,
So to summarise this section, to produce a toroidal current without

an electric field requires the presence of impurities, and to obtain a given

profile one may have to resort to the injection of a small number of high

energy helium ions. The injection requirements for CBT operation in the present

generation of tokamak experiments and future fusion reactors have been given,

and these are well within the range of present technology.

IV, DISCUSSION OF STABILITY

In the present section we discuss the stability theory relevant to our
equilibrium. We begin with the magnetohydrodynamic modes. Using the CGL
Energy Principle [I14], Mercier and Cotsaftis [13] have discussed the localised
interchange perturbations in an axisymmetric toroidal plasma. They show that

a necessary condition for stability is

\: 1 +5/3 UJ_—J

where o, = pJ_/B2 and ¢g_ = Ezi;;th . The left-hand inequality is generally
referred to as the mirror instability, whilst the right-hand inequality is
referred to as the firehose instability. These criteria are required to be
satisfied at all points throughout the plasma. It is clear that the equilibrium
described in the first section of this paper satisfies both inequalities,

The validity of the CGL Energy Principle is uncertain. In particular, the
heat flux along the magnetic field is neglected in order to close the moment
equations, and it can be shown that this Energy Principle leads to optimistic
results., Kruskal and Oberman [20], and Rosenbluth and Rostoker [ 21] have developed
the so-called Kinetic Energy Principle. This is valid under conditiomns, and in

situations, where the CGL principle is invalid. Further,it takes account of

trapped particles. Recently, Connor and Hastie [7]have used this form to obtain

= [l -



a criterion for stability against localised interchanges in general
axisymmetric toroidal equilibria. Their result contains an additional
stabilising contribution due to trapped particles. In carrying through their

programme of minimisations they require

o_<1land I + g, >o , (38)

where cl is now defined to be

2p-L + C
B2

C being a 'pressure-like' moment of the form

C = mi/ﬁ_é-s_ (uB)“ dpde .

i
We observe that the first criteriom in Eq. (38) above is identical with the
firehose condition of Mercier and Cotsaftis[l3], whereas the second condition
is a modified version of the mirror criterion. Both conditions, however, are
again satisfied by our high-f equilibrium. Iﬁ has not proved possible to apply
Connor and Hastie's general criterion for localised interchanges to the high-8
equilibrium obtained in this paper. So we must content ourselves with reviewing
the application of their criterion to low-B equilibria.

To simulate the effect of parallel injection, they assume

P,=p,(r) , C=-2p , p,=p_ +p,

~

o

where P, is the scalar background pressure and p, is an additional longitudinal
pressure introduced by the beam. They find that the beam produces a more stable
situation than an isotropic plasma. In fact, ignoring the role of trapped
particles which are only important near the magnetic axis, the safety factor
on axis, q,» may be reduced from q, = 1 to q, = 0.8 for sufficiently large
parallel pressures.

As regards the gross or kink instabilities, no calculations pertaining
to anisotropic plasmas with diffuse currents in tokamak geometry are known to
us. We expect that modes corresponding to those occurring in scalar pressure

tokamaks should not be significantly affected by anisotropy. There is

_]5_



the possibility of additional modes other than the firehose and mirror.
Investigation, however, of the admittedly unrealistic model of a cylindricél
anisotropic pinch, with a skin-current [8], shows no evidence of new modes.

For the conventional tokamak, the form of current profile [22]7and toroidi-
city [23]‘have important effects on the kink modes, so it would be necessary

to repeat these calculations for anisotropic equilibria. Consideration of the
vertical shift instability using the CGL principle shows, as anticipated,

that the stability problem for this mode is identical with that for the equiva-—

lent scalar pressure model of tokamak [15].

As far as microinstabilities are concerned there would appear to be two
possible driving mechanisms that could result in instability. These are the

anisotro >> and the positive slope of the ion distribution function
PY P, >> P, P p

of
Bv”

( > 0) at low energies. Since the injection velocity of both the D and T
beams is much less than the Alfvén speed, all of the Alf¥en wave modes of
instability discussed by Berk et al [9] are stable. However, the parallel sound
instability[9]udriven by %%— > 0, and the ion cyclotron instability [24], driven
; I
by anisotropy (pll >> pl), may be unstable. The condition for stability of the
parallel sound mode has been given by Berk et al [9] , and may be written for the CBT
in the formm v ° < 2 v. Av 2, where the subscript b refers to either of the
e e "M b "bu "
! :
beam species and Av, = Ef—-l . The above stability condition is not
bu v, ' v = Vo

usually satisfied for CBT plasmas; however the introduction of a small density

of thermal ions can stabilise this mode.

. il . . .
The ion cyclotron mode {24] has a somewhat more stringent condition

for stabilit this is, m v 3 < 2 2 i i iti
Vs > M,V move Av Once again this condition

b’
is weakened by the addition of a thermal distribution of ions [24]. For both

of these modes magnetic shear, which should be stabilising, has yet to be

included in the model.



V. CONCLUSIONS

An anisotropic high-f equilibrium has been derived for a colliding beam
tokamak device. This equilibrium is similar to the conventional tokamak,
and the critical-B that can be contained is of comparable magnitude. The
toroidal current necessary for equilibrium can be provided by the injected
D-T beams alone in the presence of impurities; however, to obtain a greater

control over the current profile it is suggested that high energy “He should

be injected.

We have shown that the firehouse and mirror instabilities are stable for
B v e in CBT devices; and we have identified the most serious microinstabilities
as being the parallel sound mode and the ion cyclotron mode. However, despite
a fairly extensive survey of the literature, we have been unable to find any

serious instability. Examples are given of CBT operation under typical tokamak

and reactor conditions.
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