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ABSTRACT

Previous attempts to model plasma-wall interactions using the well known
plasma transport codes such as that due to Dﬁchs, have assumed an arbitrary
set of boundary conditions at the edge of the plasma. In the present work
these assumptions have been replaced by others directly related to the physical
processes acting in the plasma. The method can be used to study the evolu-
tion of the temperature and density profiles in a cylindrical plasma carrying
a constant axial electric current, for different types of plasma-wall inter-~
action, and can be used in the limiting case of no plasma-wall interaction

i
where the Duchs code cannot be used.

Examples of its use are given using an accelerated time scale and a

simplified plasma-wall interaction.

{be(Submitted for publication in Nuclear Fusion)

Ly ’
<

January 1976







1. INTRODUCTION

The presence of impurities in the plasmas of Tokamak machines has a
significant effect on the discharges(l). The impurities can arise from the
interaction of particles diffusing from the plasma with the walls of the vacuum
vessel, the limiters and divertor. The evolution of impurities from the wall
can occur by several processes amongst which are the removal of neutral atoms
of wall material either by evaporation or by sputtering and the desorption of
adsorbed material from the walls. The desorbed materials typically include

oxygen and neutral atoms of ‘the parent type of the ions in the discharge.

The penetration of the evolved impurities into the discharge affects the
plasma parameters such as electron and ion temperatures Te’ Ti and the plasma
electron density N, all of which affect the plasma diffusion coefficient and
hence the rate of evolution of material from the walls. Thus there is a
strong feed back loop between the plasma parameters and the plasma-wall inter-

action and for many purposes the plasma cannot be considered as independent

of the wall.

The trend of Tokamak development to bigger machines, with more energetic
plasmas, implies that plasma-wall interactions will increase in importance, and
it is desirable, and in the future will become -essential, to calculate both the
cooling effect of the wall on the plasma, and the power flow to the walls due
to the plasma. Knowledge of these quantities will assist in the choice of

suitable wall materials.

Attempts have been made to model the plasma wall interaction by using the
computer codes developed to describe the transport processes in tokamak

2 4 ¥ T ; v s 3 o
( ’3’4)wh1ch permit the degree of ionisation of the injected impurities

plasmas
to be calculated with considerable refinement. These codes have been developed
in order that the changes of the temperature and density profiles with time
which are observed experimentally can be compared with the predictions of theory

and the diffusion coefficient thus determined.

These codes are a method of solving the coupled differential equations
which describe the time dependence of the plasma parameters Te’ Ti’ N and the
electric current flowing in the plasma cylinder of circular cross-section. The
electric current is either measured as the current density-J or in terms of
the azimuthal magnetic field Be associated with it. As with all problems

involving differential equations it is necessary to specify a number of boundary



conditions before a solution can be obtained. It is usual to specify the values

of Te’ Ti’ N and B. at or close to the edge of the plasma.

(S
If the differential equations are a true description of the processes
operating in the plasma, then the choice of a set of boundary conditions derived
from experimental observations will automatically generate a solution in which

the various constraints, such as conservation of energy, will be obeyed. On
the other hand an arbitrary set of boundary conditions could result in an

impossible solutiom.

Dangers such as this are present when attempts are made to model a plasma-
wall interaction when there is no experimental guide as to the choice of boundary
values of Te, Ti and N. The rate of injection of material from the wall into the
plasma will be strongly dependent on the boundary values. To use the codes in the
conventional way to model the wall reaction it is necessary to compute the plasma
profile and then check if the boundary values are consistent both with the plasma

model and the model of the wall reaction.

An. alternative approach followed here is to identify the processes which
relate the boundary values of Te’ Ti and N and to construct a code which auto-
matically takes the relationships into account as the equations are solved.

A code has been written to test this concept and some of the results ob-
tained are presented. Some arbitrary assumptions have been made to overcome
gaps which exist in the present knowledge of plasma transport processes, but
the solutions obtained are not very sensitive to these assumptions, so that it
is possible to set up a model of a plasma-wall interaction which can be used

for the purposes of sensitivity analysis.

2. THE GEOMETRY OF THE MODEL

The geometry is conventional, the plasma, Figure 1, is a straight cylinder
of radius R cm, with axial symmetry having a magnetic field BZ imposed
on it. The radius is defined by a diaphragm limiter, and the plasma properties
are evaluated at a sufficient distance from the limiter for there to be no
axial variation in the plasma properties. Particles diffusing out of the plasma
column enter a tenuous plasma which surrounds the main column. If the density
of the tenuous plasma is less than 1012 particles <:m-3 and if the particle
energies are greater than l0eV or so, their mean free path in the axial
direction, defined by Coulomb scattering on other charged particles, will be

greater than 10m(5)’ thus in a reasonable size of tokamak the particles, once
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they have diffused from the plasma, can reach the limiter without making a
collision with other particles and enérgy transport to the limiter is by con-
vection rather than by thermal conduction. A few of the escaping particles may
move radially from the plasma column and reach the walls of the tube surrounding
the plasma; again convective transport is assumed. The particles incident

upon these surfaces are assumed to be absorbed and a plasma wall interaction
is simulated by injecting impurities across the boundary of the plasma in a

flux of uniform density.

; : -2
The plasma column carries an axial electric current of density J(kA cm ),
the total current IO (kA) being constant. This current generates an azimuthal

magnetic field Be(kG) at radius r.

B - 2r J xr dr . (1)

3. THE DIFFUSION COEFFICIENT D

The plasma is assumed to be hydrogenous with a diffusion coefficient D,

(2

which, following.Dﬁchs ), is split into two components DP' DB as follows:

D = B, + Dy (2)
D, = G, 8.366 x 10 ° N(Te + T4) 1nk (3)
2 3,
Be Te /2
-3
o 6.3 x 10 (To + T;) (4)
b, = @
B 2 B,

12

where the plasma density N is measured in units of 10 cm_3,

ion temperatures Te' Ti are in eV, the magnetic field in kG, and time in

microseconds.

The screening term A has the value defined by Spitzer(S)

the number of plasma electrons in a Debye sphere.

Gl’ G, are numerical coefficients set at the start of each complete run.

)

Yoshikawa

(4)

later computations

have used values in the region of 520.

the electron and

» being nine times

has suggested that the factor G1 should be of the order of 140, but
The term DP is the



pseudo-classical diffusion coefficient and is infinite on the axis of the plasma

because B6 =0 on the axis. The diffusion coefficient D must be finite and is

(7)

unlikely to exceed the Bohm value and to avoid any singularity on the axis,

it has been assumed to be related to DP by equation 2, thus by a suitable choice
of G, and G

D can be made to vary from the value D_ on the axis, to a value

1 2. B
approximately equal to DP at the plasma boundary r = R. When G2 =1 and Te = Ti’
Dy is the usually accepted value of the Bohm diffusion coefficient(7). In the

examples given later Gl = 600, G2 = 1 and Bohm diffusion is predominant over

the inner 10% of the plasma volume.

4. THE TRANSPORT EQUATIONS

The plasma parameters T . TJ._.r N and Be are assumed to diffuse with time
e
t in the plasma column in a way which is described by the simplified transport

equations 5,6,7,8; the numerical coefficients in the equations are for the system

of units defined earlier.

The first of the differential equations ies that for the diffusion of the
8)

magnetic field B in a quiescent plasma with the Spizter conductivity .

3B 5.2 3 InA 1 3(xB) (5)
ot 4m  dr Te%% r oY .

The plasma diffuses across the magnetic field with a diffusivity D so that,

aN 1 3 aN

— — —_— —_— —_— +

ot r or (Dr ar) SN (e)
where SN is the rate of creation of electrons per unit volume due to the ion-

isation of impurities, in units of 1012cm_3 S 10_6.

The equation for the transport of energy amongst the electrons is:

> ary) = L 2 [ror & 4 np G4 3T | 1.6012 -3 To-Ty \2 )y
bt e ar e or T +G_ T, or A 3
e 5 1 Té /2
. 1 2 - 1
LL.7074 .05 Inh 18 (02 o oG35 . 1080 TN - s (7)
am 3 r or 3 e E
'I‘e /2



where SE is the power drain on the electrons. due to the bresence of impurities
; ; =3 -
in units of 00,4151 erg cm s « 10 6. The symbols G3, G4, G5 are numerical

factors which are set at the beginning of each computer run.

The first two terms on the right hand side of equation 7 account for the

transfer of energy by convection and conduction, the third term is that for
the energy exchange between electrons and ions, the fourth Yepresents the power
generated by the passage of the electric current and the fifth is that for the
power radiated by the plasma as free-free radiation so that G3 is identified

as the Gaunt factor (9).

The corresponding equation for the transfer of energy amongst the ions is:

| 3 , '
2 owr) = Lfpor A, o, 8, L6012 x 1073 TeoTi N21nn - 5. (g
ot i r i at 1 or A T %ﬁ T
e

where SI is the power loss of the ions to the impurities by ionisation, excitation

and charge exchange, in the same units as for SE'

The value assumed for the ionic thermal conductivity is:

- 2
6.614 x 10 4 InA N A%
c = G : (9)
1 6 B 2 . 5
Z i
where A is the mass of plasma ions relative to that of a proton, and G6 is a
numerical factor set at the beginning of each computer run. If G_ = 1 then the

6
expression is that for the classical value of ionic thermal conductivity(g).

5. THE PREVIOUSLY USED BOUNDARY CONDITIONS

The two previous sections have summarised the usual formulation of the
transport codes and the transport coefficients appearing in them, but before a
solution can be obtained a set of bpundary conditions is required. The usually

accepted sets of conditions are described below.

The symmetry of the model requires that in the axis of the plésma:

aT 9T oN
= = ——l.: — = (@] lO
Be 0] —5;1 0] - 0] Y . (10)

at all times.



On the outer edge of the plasma at r = R, the dependent variables, Be T ,
e
Ti and N take the values'BeR, TeR’ TiR’ NR.Because IO, the total current carried
by the plasma is constant then BR 1s a constant and:
21
B = =0
oR~ IOR - (11)
The codes previously used for investigating tokamak transport problems(l'2)and

(10)
a newer code , T._, N_ have predetermined values

R iR R
usually constant, or that the values of the dependent variables may be extra-

, elther assume. that Te

polated across the boundary of the plasma to a value of r= K and that the
values of Te' Ti and N at r = R’ take predetermined values. This last assumption

allows TeR' Ti and NR to vary, but has the disadvantage of introducing a

R
constraint on the values of the gradients of these quantities at the edge of the
plasma. These assumptions are legitimate if enough experimental evidence is

available to allow a suitable choice of boundary conditions to be made.

6. INTERDEPENDENCE OF THE BOUNDARY CONDITIONS

An examination is now made of the constraints which apply to the boundary
conditions and their interdependence is discussed. As before,the total current

carried by the plasma is regarded as constant so that By is known. The first

effect to be examined is the conservation of electrical energy.

The electric current flowing through the plasma supplies energy to the system
in two ways. Firstly, it heats the electrons in the plasma by ohmic heating
and secondly, it changes the magnetic energy stored inside the plasma boundary.
The rate at which electrical power is supplied to a unit length of the plasma
column can be expressed in terms of the flux of the Poynting vector, and can

be written symbolically, See Appendix 1, as:

1 5.2 InA 3 (rBy) 13 N2 3 A 5,9 19

= B S ... =1 e

81r[ . 6 ~ ar :| Z Btf By FGE ¥ emf Iy L ar(rBe)} 2y ar. (12)
e 2 r=R o} o e’?

The first term on the righthand side of equation 12 is the inductive power

supplied to the plasma, and the second term is the ohmic power. The lnA term

is only weakly dependent on the plasma parameters, and equation 5 shows that

%;? is strongly dependent on the electron temperature and only weakly dependent

on the other parameters; equation 12 thus shows that there is a strong independence

between T and B,_.
e 8



The cohmic power transmitted to the electrons per unit volume of the plasma,

is balanced by the power sinks, W, to w5, (see equation 7), where:

Wl = the rate of increase of the thermal energy of the electrons.
W2 = the power transferred to the ions by collisions.
W3 = the power radiated as free-free radiation.
W4 = the power transferred to the impurity ions by collisions.
W5 = the power transferred by convective and conductive effects,
so that equation 12 can be re-written as:
‘ R R
%[5;23/?‘\ B, a(’a‘iﬂ)J ) = %33? Bszr dr +[ 2 (W HW,+W_+W )r dr i35
e r=R o o
+ W6 + W7
where the terms WI—W4 are in units of 1012 erg cm_3 s_l 5 W6 is the power

flowing to the plasma boundary due to the convection of the electrons and

W7 is the power flowing up to the plasma boundary due to the electronic component

of the thermal conduction.

If the tokamak heating system is of reasonable efficiency the energy
conducted to the plasma boundary by the electrons, represented by the term W7 in
equation 13, should only be a small fraction of the ohmic dissipation in the
plasma. The left hand side of the equation is only weakly deﬁendent upon
the value of W7 which is the only term on the right hand side directly dependent
upon (aTe/Br)R. The proposed method of solution uses equation 13 to define a

value of T R which is self consistent with the spatial distribution of Be,
e _

assuming that W7 is negligibly small, This is equivalent to setting (BTe/Br)R =0 .

experimental evidence as to the values of the temperature gradient will be given

later. The numerical method employed to determine TeR is to assign values of

EO’ Te’ Ti and N to a set of mesh points spaced across a radius of the plasma
and also at the boundary of the plasma at time £ The updated values of the
variables at the interior mesh points at time £+ At are now found by any qf'
the standard procedures for the numerical solution of diffusion equations. This
gives enough information to obtain numerical approximations to the integrals on
the right hand sides of equations 12 and 13. Since Be is known at the boundary
for all values of time it follows that the mean value of BB{B(rBe/Br}R over the

time interval is known which then gives the mean and updated values of TeR'

The neglect of the term W7 in equation 13 has been justified on theoretical

grounds. It is also in accord with the general trend of experimental results.

_7_
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Experimentally determined profiles of electromn density and temperature such as
those given in (l)and also the results of computer simulations using the pseudo-
classical diffusion coefficient(lo)give results which show that near the plasma

boundary
T aN/or < N 3T /or,
e e

thus implying that W7 < W6 in equation 13. The method used to update TeR can
also accommodate small values of conductive power loss if it is possible to

£ind a suitable approximation for W7.

The value for TiR is found by considering the power balance of the ions.
The ions absorb power from the electrons, some of which increases the thermal
energy of the ions, some is passed to the impurities in the plasma by methods
which are included in the term S; in equation 8, and the remainder is transported
through the plasma and convected to the walls. The power carried to the plasma

boundary by the ions per unit length of the column is Ii’ where:

R -3

I.|exg cm'l s -10—6 = (4.806T) 1.6012x10 Ia TAj-szlnI\ - 5_ - jl—(NT,) rdr . (14)
i ) A T 3/2 L ot i
o e

The power is carried across the plasma boundary by the escaping ions, which are

assumed to have a radial drift velocity VB (cm s 10“6) so that we also have:

I, = 4.80
i 806 m N V, T;p R . (15)

The value of VB is open to debate and depends on the detailed model which is

set up to describe the edge of the plasma, For the illustrative example it is

assumed that:

Vs = S\ & (16)

where G7 is a parameter which is set at the beginning of each computer run. If
G7 = 1 then VB is of the order of the theiTal velocity of the ions, an assumption
sometimes made in reactor design studies( ). Because electrons and ions must
escape from the plasma at equal rates the electrons carry energy across the plasma
boundary at a rate equal to 4,806 T NR VB TeR' This power flow is equal to the
term W6 in equation (13), and it is assumed to be small compared to the ohmic

power dissipated in the plasma.



Combining equations (15) and (16) gives,

3 VA I; -
% - - . 175

.R - .
i 4.806 T NR R G7

T

This equation is used to define TiR'

The value of NR is found from the particle balance in the plasma. The rate

at which particles diffuse from the plasma column per unit length IN (lO12 cmhl
s 10~6} is:
R
_ aN
IN = 27 ‘/P r e SN dr , (18)
o
This rate of loss must equal 27 R NR VB, so that:
T
..N
N = — (19)

R  27R
T VB

thus defining NR'

The values of TiR and NR thus depend on the assumptions made concerning=
VB which in turn depends on the value chosen for G7. Some of the experimental
evidence for the value of G_ is examined in Section 9, and it is shown that if

G7 is chosen to be in the range consistent with results of present experiments,

-— -
that is, G, =10 4 . 10 7, then the calculations show that the
predictions of the model, especially the rate at which particles leave the

plasma, are not sensitive to the value chosen for G7.

7. CRGANISATION OF THE CODE

The numerical method used to integrate the equations 5,6,7,8, is to establish

a set of n mesh points equispaced across the radius of the plasma with the first
mesh point on the axis of the plasma, and the plasma boundary bisecting the -

segment between the last and the penultimate point, Figure 2. The four

differential equations are replaced by a set of difference equations in the
(lilé)has been used for updating the

usual way(12’13). The Crank-Nicholson method

values of the dependent variables.
At the beginning of the first time step it is necessary to assume an initial

distribution of the variables which is an approximate solution of the transport

equations and which also satisfies the constraints identified in Section 6.
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If the code is run for a succession of time steps using such an approximatiomn,

R’ TiR and NR oscillate with decreasing amplitude, the
oscillation becoming negligible after a few tens of steps, showing that the

then the values of T

approximation improves as the steps proceed. Because of this it is usual to
disregard the results of the first time steps and to take the time zero from
the end of the mth time step where m is in the region of 20 to 40, which is

equivalent to neglecting at most the first 60 microseconds of the life of the

plasma.

8. RESULTS FOR THE CASE OF NO PLASMA-WALL INTERACTION

The code has been run for the limiting case of no plasma-wall interaction
for which the previous codes are inapplicable. In this case the terms SE’ SI
and SN in equations 6,7, and 8 are all zero. The dimensions chosen are

typical of the present generation of tokamaks and are:
R = 25cm, BZ = 28kG, IO = 270kA, A = 1.0,

The numerical coefficients Gl' G2 governing the diffusion coefficient were set

at 600 and 1 as previously discussed, the Gaunt factor G3 was unity.

The coefficients G4, G5 G6 appearing in equations 7,8, and 9 which define
r "

the thermal conductivity of the plasma were set equal to:

G4 =1 G5 =0 G6 = 200.

These values make the electron thermal conductivity in equation 7 equal to ND and

the ionic thermal conductivity in equation 9 200 times the classical value.

The particles diffusing from the plasma were assumed to cross the plasma
boundary with a velocity VB' (equation 16), which was 0.001 times the ion speed.
No special significance is attached to this assumption; its advantage is that
it generates a solution which changes significantly in a conveniently short
computer run, making it a good standard condition for the production of illus-

trative examples.

Figures 3,4,5,6 show the calculated radial distributions of the axial current

- -3
density J, the temperatures Te' Ti and the density N at times t = 0 and 6.10 s

where:

2

(rB.) {kA cm “}. (20)



The initial distribution of J, Te’ Ti and N with r were parabolic. The striking
feature of the results is the rapid rise in the temperatures at the edge of the

plasma relative to the central values. Figure 7 shows the change in the boundary

values T r’ Tjg 3nd N and the average particle containment time Tp with time, -
e

where: J' S N HE
o

T = - . (21)
P I

Calculations with the Duchs code(é)give results that are insensitive to the
value of the ionic thermal conductivity. This result has been verified by re-
running the code with the values of G6 set equal to unity so that the ionic
thermal conductivity was equal to the classical value. The results are shown in

Figures 3,4,5,6.

The results were obtained with the assumption that the power conducted to the
plasma boundary by the electrons was negligibly small, so that (BT%/Br) should
be zero. Because the numerical solution has been obtained at a set of mesh points
and because of the method of defining TeR,the calculated gradient is finite at
the boundary. A check on the accuracy of the results can be made by estimating
the conducted power and comparing it with the ohmie dissipation. In the examples
given the conducted power did not exceed 2.10“3 of the ohmic power, so that the
accuracy of the determination of TeR is of the order of 0.15Z. In view of the
coarse spacing of the mesh points, (17 were used), and the accelerated time scale

which enhanced the losses at the edge whilst keeping the ohmic dissipation
constant, this is satisfactory.

The effect of a finite conduction of power to the boundary by the electrons
was simulated by putting W7 = 0.25 W6 in equation 13, thus making the con-
ducted power one quarter of the convected power. This lowered the value. of. T
by less than 97, and had a negligible effect upon T.. and Nps the principal
parameters governing the plasma wall interaction. Thus the neglect

of W7 in equation 13 is justified.

9. INJECTION OF NEUTRAL GAS

It remains to be shown that the code can be used with a power sink, due to
the presence of impurities in the plasma of the order of magnitude to be expected
in an experimental.situation. The transport of impurities in a plasma has been
subjected to intensive numerical investigation(2’15’16), and because these
treatments can be grafted on the present code, the test to be described has been

made with an over-simplified plasma wall interaction, and transport theory.

._11_



The impurities are assumed to be neutral atoms of the parent type of the
ions in the plasma, which are desorbed from the walls and enter the plasma at
a rate proportional to that of ions diffusing out of the plasma. When the stream
of neutrals enters the plasma it is attenuated as the neutral particles undergo
ionising and charge exchange collisions, so that the neutral demsity is greatest
near the edge of the plasma. Duchs(16)has used the approximation that the demsity

H of the neutrals a distance & inside the surface of the plasma is:

. NAL
H=H, exp| - J' (s+C) ?ar (22)
o

where H. is the density of the stream at the plasma boundary, VD is the drift
velocity of the neutrals and S,C are rate coefficients such that rate of ionisation

per unit volume is SHN and the charge exchange rate per unit volumeis C H N.

The hot neutral particles produced by the charge exchange reactions may

escape from the plasma or they may penetrate the plasma and undergo additional
charge exchange or ionising collisions. In the present examples, energy transport
inside the plasma by the hot neutrals is neglected as is the possibility that

those escaping from the plasma may rebound from the walls and also cause desorption
of gas from the wall. The neglect of the subsequent collisions of the charge
exchanged particles is not very important in the present case, because their mean
free path is large enough to ensure that they have a large probability of escaping

from the plasma.

The neutral hydrogen atoms are assumed to have the classical

ionisation cross-section by electron impact(l7). Graphs of the variation of S
: 1 ; P
with Te have been computed( 8)amt:'l. up to electron temperatures in the region of lkeV
are reasonably well fitted by:
= -1 T -0.25 2 -6
s =2.3-10 1 -exp|- 5% Te em” s 10 (23)

; . . 12 -3

where N is measured in units of 10 cm .
Riviere(lg)has reviewed the experimental measurements of the charge exchange

cross—-section G(Ei) for protons and hydrogen atoms at proton energies Ei in excess

of 100eV and has suggested the empirical relation:

=15 2 2
6.937 x 10 (L - 0.0673 1nE4{) cm (24)

S(E,) = 2
1 1+ 1.1112 x 10 5° E, 3.3

-12 -



This expression gives values for §(E,) which are approximately 20% greater than
the theoretical values of Dalgarno and Yadev(zo). Experimental values for the
cross-section at lower proton energies have not been found in the literature
but extrapclation of Riviere's formula to leV gives a cross-section of
6.9 x 10115 cm2 which compares well with the theoretical value of 4.7 x 10_15 cm2.
For this reason equation 24 has been used for all ion energies in excess of

leV. Interpretation of this cross-section over a Maxwellian distribution of ion

energies gives an expression for C:

Cnv9x lOll 8 (Ti) %E; cm3 s 10—6 . (23)

The neutral term SN appearing in equatiocn 6 is obtained directly from the

expression for SH. For the power sink term SE in equation 7, allowance must be
made for the electron atom collisions which do not ionise the atoms but which

produce radiation., It is assumed that for hydrogen that on average each ion-

ising collision corresponds to an energy sink which is a factor G8 times the

; ; » : (21)
ionisation energy, where G8 is in the region of 2-3, for typical Tckamak plasmas .
The ion energy sink term SI is obtained by multiplying the charge exchange rate

by the difference of the ion temperatures and the temperature TN of the neutrals.

The code has been run assuming the ion thermal conductivity is 200 times
the classical value, with the other disposable coefficients as before, and the
injection of neutral particles starting at time t = o. The particles are assumed
to be injected across the plasma boundary at a rate Q per unit afea proportional

to the proton loss rate
H, = oL (24)

The mean drift velocity of the neutral atoms was assumed to be 2/3 of their
thermal velocity, which corresponds to a cosine distribution of velocities about
a radius. Some results are sho?n in figures 3,4,5, and 6, the rate of injection
of neutrals being chosen to keep the number of electrons per unit length of the
plasma constant, the neutral atom temperature was assumed to be 2.0 eV and G8

was taken to be 2.0(21).
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10. THE VALUE OF THE DRIFT VELOCITY Vg

The analysis has assumed that the particles escape from the plasma by
drifting across the plasma boundary with a drift velocity Vg which was propo-

rtional to the thermal velocity of the ions at the boundary:
1
Tir Y’ -6
= —_— s 10 .
VB G7 ) cm

Although G7

equal to the thermal velocity of the ioms, mno experimental confirmation of this

is sometimes assumed to be unity, so that VB would be approximately

has been found. The properties of tokamak plasmas at radii approximately equal
to the limiter radius have not been intensively investigated, although values

of NR of 2.1012 cm—3 have been reported for the JFT-2 and ST machines(zz’ZB).

These values are only consistent with the published values of mean density and
confinement time if VB = 3.104 cm S_l (JFT-2) and 104 cm s_1 (ST). The values of
TiR are not known but are probably at least several eV so that VB is at most

0.0l times the thermal velocity of the ions and is probably less. The effect

of the variations of G7 on the computer simulations has been assessed by comparing
the results of two sets of calculations, in one of which G7 = 0.0l and in the
other G7 =0.001, the other parameters being unchanged. The results at a time

of 6 msec are summarised in Table I, The table includes the values of N
calculated at r = 24.2 cm as well as the values of NR which correspond to

r = 25 cm, the rate at which the charged particles strike the wall is propor-

: 3
tional to G7 NR TiR .

The table shows that changing G7 by a factor 10 changes the values of

T and G : by a factor of 1.8. N, is the only pérameter which

TiR’ eR’ 7 R R
changes by a factor of about 10, but the changes in the density profile of the

N T.
e 1

plasma are concentrated towards its boundary. The values of N calculated
inside the plasma boundary at r = 24,2 cm change by a factor of less than two
and the effect of changing G7 upon the calculated density profile becomes less

marked towards the centre of the plasma.

To summarise, the results of the computations are not very
sensitive to variations in the value assumed for G7 if this is confined to the
range which is compatible with the results of current experiments. The only
parameter which has a proportional change comparable with that in G7 is NR but
the severe changes in the demsity profile are limited to a thin layer near the
surface of the plasma which is thin enough to have a high transmission for
injected neutral particles. Thus, although the value of VB requires refinement

the results obtained with the present assumption are sufficiently insensitive to

- 14 =



the value of G7 to allow a model of the plasma-wall interaction to assess the

relative merits of different wall materials with an arbitrarily chosen value

of G7 in the range 0.01 - 0.001,

1L. DISCUSSION

The treatment of the boundary conditions of the plasma transport codes given
here has the advantage over the earlier methods in that it requires fewer
arbitrary assumptions and is not unduly sensitive to the assumptions for values

covering the range relevant to tokamak experiments,

The first of the two assumptions made in the present treatment is that the
power flow to the plasma boundary by the thermal conduction of electrons is much
smaller than the ohmic dissipation in the plasma. It has been shown that the
values of Tie’ TiR and NR and the rate of injection of impurities into the plasma

are insensitive to the conducted power provided that it is small.

The second assumption is related to the velocity with which the escaping
particles drift out of the plasma column. The need to make such an assumption
emphasises a gap in our present knowledge of plasma properties. However it
was shown in Section 9 that the rate of injection of atoms into the plasma is
not critically dependent upon the value of the drift velocity provided it is
chosen to be within the range consistent with present experiments. The effects
on the plama profiles of changing this assumption are mainly confined to a

narrow region near the plasma edge, so that the bulk of the plasma is insensitive

to the value of the drift velocity.

The wvalues of TiR’ Tps TeR and NR are strongly dependent upon the
existence of the plasma wall interactions. In the examples given the interaction
dominates the plasma properties in the outer half of the plasma ( r > 12 cm),
where over 60Z of the charged particles in the plasma are to be found., It is

necessary to include the wall effects in any model of the plasma.

The earlier methods of solution assumed that the values of Ti’ Te’ and N
at or near the plasma boundary were predetermined, thus implying that the plasma
wall interaction was known. The present method allows the boundary values to

vary over a wide range according to the plasma-wall interaction and is suitable

for investigating such interactions.
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TABLE 1

Plasma Parameters Calculated at t=6ms

for Different

Values of G

7

. 12 -3 Flux ofparticles to wall
P w - s
G wéll G N(EO cm ) N (1012cm 3) Tir Ter 'p (arbitrary units)
Interaction 7 r = 24.2cm R eV eV ms
Gz Np TiRr
No
0.001 6.0 0.66 77 478 24,7 5.8
No 0.01 10.7 0.044 53 426 52.3 3.2
Yes 0.001 10.8 7.6 25 132 4.0 38
Yes 0.01 19.7 1.53 19 111 2.6 67
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APPENDIX I

Inside the plasma, Maxwell's equations in the units used in the main text take
the form:

E Curl E =

s

where B is the magnetic field in kG due to the current flowing in the plasma and
E is the associated electric field in e.m.u,

times 10"9 and n = 5.2 1nA.

Expanding the vector identity for — Piv (B x E)

. 0
e Div (B x E) =

I i
an E CurlE—ZT—T—B Curl E

_Te? 2 1 3 o
B E 81fr3t-g

Integrating the identity over the column contained in a unit length of the

plasma column and transforming the left hand side into a surface integral by
Gauss' Theorem gives:

R R
)
— el 2 B - E —
8t -

2 . 1 2 BZ
= E ro:?h:+4 Btf Gl A"
e — o

As the current is in the z direction, E has one component Ez, and B one component

Be, and substituting “into the abéve equation gives equation 12 after a little
manipulation: -

R R
1 [n 3 i n 1 2 13
= L p 2 = = o dr + = ==
Br |~ 3, Do axr (*Bg) 8m f 5 \z 3r @B T At T
Te/z o Te/2 o
r=R
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