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ABSTRACT

This note gives a brief discussion of the dependence of the Coulomb
logarithm (&nA) and Gaunt factor on electron tempe rature, density, and
wave frequency in the Rayleigh-Jeans 1limit. The physical bases for the
cut-off's appropriate in various limiting cases are clarified, and the
independence of quantum and shielding corrections is pointed out. Formulas
with refined numerical coefficients are displayed for cases of experimental
interest. In particular, a numerical correction is deduced to Spitzer's
£€nA, applicable to the D.C. conductivity. The results permit improved
precision in the calculation of conductivity, collision frequency, and

bremsstrahlung emission over a wide range of plasma parameters,
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It is well known that calculation of the electrical conductivity of a highly
ionized plasma gives rise to a logarithmically divergent factor of the form
(SPITZER, 1962)

en (b /b . ),

max’ min
where bma bmin = A 1is the ratio of maximum to minimum impact parameter for
the electron-ion "collision" process. A similar factor arises in the closely
related theory of radio-frequency bremsstrahlung emission by a plasma (BRUSSARD
and VAN DE HULST, 1962). The ratio A is then prevented from diverging by the
invocation of physical arguments, usually in the form of an ad hoc "cut-off",
which in turn is usually uncertain by a numerical factor of order unity. The
purpose of this Note is to clarify the physical parameters involved and display

refined numerical coefficients for important limiting cases of experimental

interest.

Among the quantities containing the logarithmic term in question are:

SPITZER'S (1962) D.C. conductivity:-
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"high-frequency" (w>> wp) effective electron-ion collision frequency for momen-

tum transfer (SHKAROFSKY, 1961):-

1
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and bremsstrahlung emission power density (energy—time-I—volume_l- radian fre-

quency interval_I) (GREENE, 1959):-
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The connection between (1) and (2) has been neatly systematized by SHKAROFSKY

(1961). The relation between the conductivity point of view, which yields (1)
and (2}, and the bremsstrahlung point of view, yielding (3), has been discussed

by OSTER (1961), THEIMER (1963), and others; in particular, the quantity G,



traditionally known as the Gaunt factor, is found to be related to the logarith-

mic term by the equivalence:-

G = -? en A. (4)

The term Yg in (1) is a correction factor to account for electron-electron
collisions. In (3), the refractive index p and the exponential temm are
usually written explicitly, although some authors incorporate them in the Gaunt

factor.

In the theoretical treatment of these processes it is necessary as a first
step to consider electrons of a given velocity; then, one may suitably average
over the velocity distribution, For brevity, we here consider only the final,
velocity-averaged quantities, assuming specifically a Maxwellian distribution.
Our concern is, then, with the dependence of A (or G) upon wave frequency ,

electron temperature T, electron density n, and ionic charge number Z.

The problem may be specified in terms of three dimensionless parameters:-
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Here Ry = 13.6 eV 1is the Rydberg energy (ionisation potential of hydrogen),

Wp is the usual plasma frequency, and ng is the cut-off density for the wave
frequency . The first two parameters measure the importance of quantum effects
in the radiation and collision processes, respectively; the third measures
collective processes, such as the Debye shielding of heavy-ion scatterers by the
plasma electrons. In the general case, the effective A , to be used in relations
such as (1)-(3), depends in a complicated way upon the various parameters, and

must be found by numerical computation (BRUSSARD and VAN DE HULST, 1962; GREENE,

1959). However, the Rayleigh-Jeans limit, P, = bhw/kT << 1, is well satisfied

.



for most laboratory plasmas throughout the radio-frequency and infra-red domains,
and will be assumed in the remainder of this Note. 1In this limit, we wish to
point out that the roles of the other two parameters become independent of each
other, a considerable simplification (DE WITT, 1958). In fact, recalling the
fundamental definition of A as the ratio of impact parameters, bmax/bmin' we

deduce from the following physical arguments that, in effect, bmin is a func-

tion of P alone, and b of P alone.
2 max 3

The impact parameter bmin emerges naturally from an impact point of view
as a close impact radius, which for classical mechanics is the impact parameter
for a 90° deflection, b/ = < Ze”/'flateomv2 > = Zez/ﬁﬂeokT, with numerical uncer-
tainties arising from details of the velocity averaging (SPITZER, 1962). For
quantum mechanics, however, the angular deflection may be regarded as the spread-
ing of the electron wave passing through an aperture of radius b (MARSHAK,
1940). Thus for 1g0° spreading", the close impact radius bmin is of the order
of the deBroglie wavelength < & /mv > = h/kaT)%. The ratio of these alter-
native evaluations is essentially Pz%. As is well known, the classical
description is dominant at low temperatures, the quantum at high. The transition

region is discussed in more detail below.

Meanwhile, for a very dilute plasma such that P = mg/mz << 1, collective
electron interactions are negligible and the appropriate cut-off, Hnax' is the
impact parameter for which the wave field goes through a complete period during
the "duration" of the collision, ~ b/v; that is, Booo * v/ ) = (kTVh)k/w.
For larger impact parameters the collision is rendered ineffective by the rever-
sal of the wave field (SILIN, 1960; YOSHIKAWA, 1961; CHANG, 1962). On the other
hand, for a relatively dense plasma (wg >> w®), the field of a scattering ion is
shielded by the surrounding cloud of plasma electrons beyond a distance of the
order of the Debye length Ay = (kmﬁn)%“b’ which is then the appropriate cut-off

1
(SPITZER, 1962). The ratio of these alternatives is simply Paé.



Now to put these physical arguments on a more quantitative basis, we review
present knowledge of the limiting cases and the respective transition regions.
A well known special case arises in bremsstrahlung emission in the classical
(P, << 1), unshielded (P, << 1) limit; that is, the variables of the problem are
ordered h“b<< hw << kT << Z2Ry. This completely classical analysis, wi thout
many-electron complications, can be dealt with precisely (KRAMERS, 1923). OSTER
(1961) has reviewed this limit in detail, pointing out that no ad hoc cut-of f
arises and giving careful attention to the velocity averaging. The result for

1,
this case (and P,%/P, >> 1) is:-
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where ¥ = 1.781 = exp(0.577) is Euler's constant and the numerical coefficlent

is presumed exact.

Another limiting case is the quantum mechanical (P2 >> 1) analog of the
preceding, which may for our purposes be found using the Born approximation
(SAUTER, 1933). This limit has also been systematically reviewed by OSTER (1961)

with the result:-

4 KT 4 1
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where again the numerical coefficient is presumed exact. The cross-—over, where

(8) and (9) are equal, occurs at Py = v®, that is:-
KT o= Y ZPR, = (T7eV)Z® = (890,000°K)Z2. (10)

The transition, as a function of P,, between the classical limit (8) and
the quantum limit (9) has been evaluated numerically by GREENE (1959) and OSTER
(1963). The exact value of A changes smoothly between the two asymptotes, and
at the cross-over is approximately two-thirds (&n % ~ -0.4) of the value given
by either asymptote. To good approximation then one may use the asymptotic form

only, following the well-known rule stated by SPITZER (1962) but with the revised

cross-over temperature (10).



In their pioneering work on D.C. conductivity, Spitzer and colleagues were
concerned with the classical Py == 1), due, (P, >> 1) limit. In addition to
pointing out the significance of the Debye length, rather than the mean inter-

) X
ionic spacing n ¥, as the proper cut-off, they defined the well known ratio:—
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which has since been widely used in the interpretation of plasma experiments.,
The number of electrons in a "Debye sphere" is %ﬂn RB = % Z ASp’ which must be
large if the statistical arguments used in the theory are to be valid, Because
ASp is large and occurs inside a logarithm, no great care was used in perform-
ing the velocity averaging; accordingly it is to be expected that (11) is in

error by a numerical factor of order unity. In passing, we note that Spitzer's

A may be used to rewrite (2) in the form:-
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which emphasizes the fact that < Vai D << @, in most plasmas in which electron-

ion collisions are the dominant relaxation process,

Spitzer's limit (P2 << 1 << Pa) may be approached from two different points
of view; an impact theory (SPITZER, 1962) in which b in 1S well defined while
bmax requires an ad hoc cut-off, and a wave theory (DAWSON and OBERMAN, 1962)
in which b is well defined but b . requires the cut-off. KIHARA and

max min
AONA (1963) have recently shown how to merge the two complementary theories to

obtain a precise numerical coefficient. Their result, properly averaged over a

Maxwellian distribution, is:-
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A further refinement to this limiting case arises from ion correlations. The
calculations of DAWSON and OBERMAN (1963) and ITIKAWA (1963) yield, for the

Spitzer limit including equilibrium ion correlations:-
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For instance, for hydrogen and helium:

b A = 0.21 A . =
A -
3 /4-\,—2 Sp ) Sp. (ISd)

Easily remembered approximations to (13¢c)-(13d) are to replace ASp by % ASp

or to subtract 1.6 from EHASD. To the author's knowledge, (13a)-(13d) have not
previously been given explicitly and are not generally known by experimentalists.
Although the numerical correction is small (typically ~ 15% in £nA), it is not
negligible in many plasma experiments. Indeed, but perhaps coincidentally, a
rumber of workers have recently reported experimental results in which the elec-
tron temperature inferred from the d.c. conductivity, using (1), has been somewhat
higher than that inferred from spectroscopic measurements,.as would result from

using (11) in place of (13b) (RYNN, 1964; HIRSCHBERG, 1964; BUTT et al., 1964).

The transition between the unshielded and the shielded limits (i.e., varia-
tion with Ps) requires careful consideration of the rather subtle, collective
aspects of the electron dynamics (OBERMAN, RON and DAWSON, 1962; RON and TZOAR,
1963). Numerical results, calculated from different points of view, have been
given by DAWSON and OBERMAN (1962) and by OSTER (1964) in the classical limit
neglecting ion correlations. These calculations did not provide an exact numeri-
cal coefficient for A but may be normalized by either respective asymptotic
value, (8) or (13a), the same coefficient being obtained in either case. The
numerical curve departs insignificantly from the asymptotic forms except Just
above the plasma frequency, where DAWSON and OBERMAN (1962) find a slight "bump"
due to coupling to longitudinal plasma oscillations. To very good approximation,
one may use the asymptotic forms, only, on the respective sides of the cross-

over where (8) and the appropriate version of (13a)-(13d) are equal, namely:-
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We have so far discussed three of the four possible limiting cases, yielding
(8), (9) and (13). The remaining quantum (P, >> 1). shielded (P, >> 1) case is
implicit in the work of RON and TZOAR (1963) and has been mentioned in a brief
paper by KONSTANTINOV and PEREL' (1962). It may be found by applying the P,-
variation ratio of (9) to (8) to the P3 >> 1 limit of (13b), with the result,

not previously published:-
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Our physical picture implying the independence of bmin(Pg) and bmax(Pa)
is entirely consistent with detailed calculations which show that, in the limit
Ps << 1 (GREENE, 1959; OSTER, 1963), P,A(P;) is independent of frequency and
electron density and that, in the limit P, << 1 (DAWSON and OBERMAN, 1962; OSTER,
1964), PQH% A(P3) is independent of electron temperature. Although numerical
interpolation data are available from the cited calculations, for most practical
purposes it suffices to use for A(P,,P;) the asymptotic forms [$8), (9), (13),

or (15)] appropriate to the four domains defined by the cross-over conditions

(10) and (14).

Electron-electron collisions become important for low frequencies, below the
collision frequency (2) (SPITZER, 1962; SHKAROFSKY, 1961). It is customary to

express this correction to the low-frequency conductivity (1) by the factor YE(Z).



A method for computing "exact' coefficients in this context has been given by

ITIKAWA (1963).

We have dealt here only with the case of an isotropic plasma. The anisc-
tropy introduced by a static magnetic field severely complicates the situation,
making it more difficult to ascribe simple physical meaning to the various colli-
gion terms (ELEONSKII, ZYRANOV and SILIN, 1962; OBERMAN and RON, 1963; OBERMAN
and SHURE, 1963). The magnetic field is important when the gyroradius is
shorter than the Debye length, i.e., when the cyclotron frequency, @, = eB/m,

is comparable to or above the plasma frequency wp.
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