

CLM-P450

TRANAL
A PROGRAM FOR THE TRANSLATION OF
SYMBOLIC ALGOL | INTO SYMBOLIC ALGOL Il

by

K V ROBERTS

UKAEA Culham Laboratory, Abingdon, Oxon, UK.
(Euratom/UKAEA Fusion Association)

L G KUO-PETRAVIC

Atlas Computer Laboratory, Chilton, Didcot, Oxon.,
and St Hilda's College, Oxford, Oxon, UK.

and

M PETRAVIC

Dept of Engineering Science,Oxford, Oxon, UK.

(Submitted for publication in Computer Physics Communications)

December 1975
hp

Title of program: TRANAL

Catalogue number:

Program obtainable from: CPC Program Library, Queen's University of Belfast,
Belfast BT7 1NN, N Ireland.

Computer: ICL 4-70; Installation: UKAEA Culham Laboratory

Operating system: ICL Multijob

Programming languages used: ECMA Algol, with ICL System &4 I/0 procedures

High-speed store required: 42976 bytes + Stack

No. of bits in a word: 32

Overlay structure: None

No. of magnetic tapes used: None

Other peripherals used: 2 line files for output

No.of cards in combined program and test deck: 700

Card punching code: EBCDIC

Keywords: Symbolic Algol, Translator, Magnetohydrodynamics, Vector notation.

PROGRAM SUMMARY

Nature of problem

Two symbolic styles of Algol 60 programming have previously been
developed for the expression of partial differential equations in vector
form: SAI [1] which solves the equations directly but executes slowly because
of the large number of nested procedure calls involved and SA II [2] which is
used to generate an optimized version of the program in a chosen target
language. Conversion from SAI to SAII has previously been carried out by
hand and the present program TRANAL is intended to perform this process
automatically. It is written in Algol 60 and illustrates the usefulness of
Algol for the manipulation of physics equations. The main SAT & Ii program

packages will be published in due course.

Method of solution

Each SATI equation is read character by character and converted by
recursive syntax analysis into a tree structure of the type illustrated in

Fig.3. It is then output in SAII form by an appropriate set of rules.

Restrictions on the complexity of the problem

The number and complexity of the equations can be increased by changing
the symbolic parameters in #1.2 of the program. TRANAL is written in ECMA
Algol 60 and conversion to most computer systems should only entail changing
a few system-dependent I/O procedures in # 6. The operators currently
allowed are the basic operators +, -, *, / together with arbitrary unary and
binary function operators such as CURL(A) and CROSS(A,B). Limited error
diagnostics are provided, and the working of the program can be examined on

a second output channel by including the symbol '#' in the input deck.

Typical running time

With diagnostics switched off, the Test Run which converts the SA I equa-

tions of Fig.l to the SAII equations of Fig.2 requires 3% secs on the Culham

ICL 4-70.

References
[1] K V Roberts and J P Boris. Journ.Comp.Phys. 8, 83 (1971).

[2] M Petraviec, G Kuo-Petravic and K V Roberts. Journ.Comp.Phys. 10, 503 (1972).

L INTRODUCTION

In the first paper [1] of this series omn Symbolic Algol it was suggested
that the many successes of mathematics and theoretical physics can be linked
rather closely to the availability of a widely-accepted notation which is
.elegant, compact and precise. One might expect that comparable successes for
computational physics would have to await the development of an equally lucid,
equally powerful symbolic method for expressing algorithms and programs
directly. Existing high-level languages do not yet provide such a symbolism

and a substantial amount of detailed hand coding is still required.

As an illustration of what might be achieved in practice, Roberts and
Boris [1] explored a style of programming in Algol 60 which they termed
Symbolic Algol I (SAI), and applied it to the solution of sets of non-linear
partial differential equations in vector form. An example is the magnetic

advection and diffusion equation in the TRINITY magnetohydrodynamics program

(1] :

Q| o/
||

= Vx (YX]E) +T1?2}3 (1)

where B 1is the magnetic field vector, V the fluid velocity, and T the
resistivity. In SAI this can be written as a symbolic difference equation

using a notation quite similar to that of ordinary mathematics:
NEWB:= B+DT* (CURL (CROSS(V,B)) + ETA*DELSQ(B)); (2)

In both formulae (1) and (2) the notation is powerful enough to omit explicit
reference to the dimensionality, coordinate system, vector components ana
spatial position, and in addition, formula (2) does not need to refer
explicitly to the type of difference scheme that is being used. All these

aspects can be handled by 'hidden' global variables and lower-level procedures.

Although SAI is convenient for rapid program development using small
mesh sizes, this elegance of notation is marred for production runs by the
fact that programs in SAI are quite slow to run because of the large number
of nested procedure calls that require to be executed at run time. To some
extent this deficiency might be alleviated by modifying a standard Algol 60
compiler to speed up the type of procedure call that SAI uses. Altering com-
pilers is rarely practicable nowadays, and therefore we have turned our atten-
tion to existing software and shown [2]that,k5ra simple btut somewhat cumbersome
transformation of the SAI equations to another style of programming termed
Symbolic Algel II (SAII), very efficient code in almost any Assembler or
high-level language may be generated. The SAII equivalent of (2) is

EQUATE (NEWB , SUM(B ,MULT (DT, SUM(CURL (CROSS (V,B)) ,MULT(ETA,DELSQ(B))))));
(3)

which is evidently in 1-1 correspondence with (2). The generator program
is written in Algol 60 and it incorporates problem-dependent statements such

as (3) as an integral component as explained in ref.[2].

Conversion of formulae such as (1) or (2) to the notation (3) can
actually be done quite quickly by hand since only a few lines are involved,
and in practice this is how the SAII technique has been employed for solving
physics problems [3]. Nevertheless the large number of brackets appearing in
version (3) appears awkward, and in a fully-developed problem-solving system
one would prefer to input the equations in a form such as (2) or perhaps

alternatively
DB/DT = GURL(CROSS(V,B) + ETA*DELSQ(B) (4)

which is equivalent to (1) and might then be automatically converted to (2) or

(3) as required.

The purpose of this paper is to describe how a translator program,
TRANAL, can be used for this type of conversion. TRANAL is written in
Algol 60 and an annotated listing together with a commentary is given in

Appendix A.

As a matter of practical convenience we have simplified the input equa-
tions to the form shown in Fig.l, i.e. by omitting the colon in (2), (if
present it is ignored), and allowing the variable name on the LHS of the
equation to be identical (where appropriate) to the corresponding name on
the RHS. This differs slightly from legal Algol 60 because in SAI the names
of the physical dependent variables on the RHS represent real procedures (1]
and therefore cannot also appear on the LHS of an assignment statement. Any
other minor variation of notation can readily be incorporated'by suitable

modifications to the translator program.

2. CHOICE OF LANGUAGE

It is clear that the transformation from (2) to (3) involves writing the

operators (here we include the symbol :=) in their prefix notation, i.e.

A+B ~ SUM(A,B) -

A:=B - EQUATE(A,B) (5)
while at the same time preserving all the operator precedence implied in the
original equation. The first version of the translator to be developed,
TRANSTAG [4,5] used the STAGE 2 macro-processor [6]. This string processor
has been much favoured by some systems analysts, but it can reasonably be
argued that since the generator program [2] which uses SAII as input is

written in Algol 60, it is desirable to have the SAI translator in Algol 60

too. This would then alleviate the necessity for the potential user to have
STAGE 2 available at his installation and to familiarize himself with it
before being able to take full advantage of Symboliec Algol programming

techniques.

A further reason for choosing Algol 60 rather than STAGE 2 is that the
Algol coding is considerably more intelligible, as a comparison between the
listing of TRANAL in Appendix A and the listing of TRANSTAG reproduced in
ref.[5] should make clear. Although the latter is very thoroughly commented
and is supplied with explanatory tables, nevertheless it is quite difficult
to understand. The Algol 60 version is also much faster, taking only
3% seconds on the Culham ICL 4-70 to process the 4 TRINITY equations of Fig.l
compared to 18 minutes on the ICL KDF9 using TRANSTAG, the ratio of the
machine speeds being of order 3:1. Therefore we feel that TRANAL is to be
preferred and should be published here as an example of a potentially impor-
tant field of application of the Algol 60 language to computational physics

problems.

Both the STAGE 2 program TRANSTAG and the present Algol 60 program
TRANAL make good use of recursion for syntax analysis, but while TRANSTAG
basically manipulates with strings, the present program mainly employs
pointers and tables and is consequently more economical in storage space and
time. The availability of recursion gives Algol 60 an important advantage
over other higher-level languages such as Fortran for this type of work, but
a definitive comparison with other more sophisticated string-processors must
be left for the future. In any case it is suggested that Algol 60 is a use-

ful weapon in the computational physicist's armoury.

The program package described in this paper has been developed on the
ICL 1906A at the SRC Atlas Computer Laboratory, Chilton and then finalized
for publication on the ICL 4-70 at Culham. It is punched in the ECMA hard-
ware representation. Only the control cards and a few short procedures in
#6 of the program need be changed to make it run on a different type of
computer which accepts this representation, while in most cases it should be
possible, if necessary, to convert the hardware representation to a different

form in a methodical way using a context editor.

3. DOCUMENTATION

Even though the package is written in high-level language the listing of
the card deck would still be quite difficult to follow on its own. This is

partly due to awkwardness of the ECMA hardware representation, e.g.

LEFT'({'KT')':= 'IF'MNUS'{'KT')' 'EQ' 1 6)
'THEN' DUMOPD 'ELSE' POPD;

is harder to read than the equivalent reference representation
LEFT[KT]:= if MNUS[KT]=1 then DUMOPD else POPD; o

Nevertheless even the Algol 60 reference representation needs considerable
annotation to make its working clear: it is certainly not true that high-
level languages are self-documenting for this type of program and this is
hardly surprising since ordinary mathematics usually needs to be explained by
a substantial proportion of text. Rather than incorporate the annotation as
comments and indexes in the actual code we believe that it may be more
illuminating to document a program of this kind in two parallel columns as
shown in Appendix A. The right-hand column is a typed version of the Algol 60
code in a form which is as close as practicable to the reference represent-

ation while the left-hand column contains a 'program commentary'. The two

columns are lined up horizontally so that each can be used to help interpret
the other. 1In practice this means leaving considerable gaps in the code
since this is more concise than the annotation; however such gaps do not

occur to the same extent in the punched-card version.

The program commentary is supplemented by the diagrams and tables which
appear in this paper together with a limited number of headings and comments

in the code itself which serve as pointers.

4, INPUT AND OUTPUT DESCRIPTION

The data for Test Run 1 uses the 4 equations of TRINITY shown in Fig.l.
Using the second equation as an example we see that each equation consists
of:

(i) A name on the LHS.

(ii) An '=' sign

(iii) An expression on the RHS consisting of elements termed:

operands RHO, V, DT, TEM, B, NU, RHO
numbers 2
operators ()+-*1/,

unary function operators GRAD, DIV, DELSQ
binary function operators TEN

(iv) A terminating semi-colon.

The corresponding SAII output from Test Run 1 is shown in Fig.2 and diagram-
matically in tree form in Fig.3. The identifier EQUATE is an Algol 60

procedure and all other leaves and nodes in Fig.3 correspond to typed

procedures (which for consistency with SAI are taken as real) except for the
number '2'. These SAII procedures are used to generate the required code
as explained in ref.[2]. For this purpose the operators +, -, *, / have to

be converted into binary real procedures SUM, DIFF, MULT, QUOT respectively.

A minor complication arises because the operator - can also appear in a
unary role, either after the '=' sign or after an opening bracket or comma, e.g.
X = -A*(-B+C(D,-E)) . (8)

The operator + can also appear in this role although normally it would be
omitted. To allow for this situation an operand BLANK is inserted as in
Figs.2 & 3 and this can then be arranged to modify the code generation in an

appropriate way.

Both TRANAL and the SA II generator are intended as research tools and
can readily be modified to suit particular requirements. At present only
limited error diagnostics are provided, since they would necessarily make the
working in Appendix A more difficult to follow and therefore might not be
appropriate in this paper. Any input text which is preceded by '&' and
followed by '!' is transmitted to the output channel unchanged, these con-
trol symbols themselves being deleted. This is convenient when ordinary

Algol 60 statements or comments are to be included in the SA II program.

The standard input/output channels are labelled NIN/NOUT respectively.
Error diagnostics appear on channel NOUT; if diagnostics concerning the
working of the program are required they are switched on by including a $
in the input deck? and appear on a channel NDIAG which is normally different
from NOUT. Some of the current restrictions on the input format are:

(a) There should be a variable with a name not exceeding MAXLHS=10

characters on the LHS of the equation. Change the dimension
MAXLHS of the array LSTORE for longer names.

(b) Each equation should be terminated by a semi-colon.
(¢c) Blank characters and lines are ignored.

(d) The total number of equations should not exceed MAXEQU=20.
Change this value for more equations.

(e) The input deck should be terminated by a £ sign.

(f) The total number of operands and operators in an equation
should not exceed MAXS, currently set to 200. If more are
required increase the value of MAXS, and possibly the dimension
MAXSTO of the array ASTORE should also be increased.

(g) Only unary and binary function operators are allowed.

5. METHOD OF OPERATION

The operation of TRANAL is divided into three sections:

1. procedure INPUT. Read in strings of the form shown in Fig.l, one

equation at a time, and store information about the operands and
operators in tables. Each operand or operator on the RHS is represen-
ted by the sequence number N of its initial character, blanks being

ignored. ¢

2, procedure CREATE. Analyse each input string to produce the equiva-

lent of a tree of the form shown in Fig.3. With each node N are
associated two array elements LEFT[N] and RIGHT[N], which indicate
the nodes or leaves to which it is conmnected. A unary function
operator has a dummy leaf at the left, indicated by a dashed line in
Fig.3. Procedure CREATE is called recursively, each opening bracket
causing a new copy to be entered, and a closing bracket causing a

corresponding return.

3. procedure OUTPUT. Generate SAII output of the form shown in Fig.2.

These three procedures are called in turn by procedure MAIN.

5.1 TInput

The SA I equations are presented as data to the program, and the charac-

ters are read in one by one by the statement
I:=NEXTCH . (9)

This reads the next character from input channel NIN and assigns the integer
corresponding to the internal code value to the integer I. (This code is
EBCDIC on the ICL 4-70). Various special characters are checked, and the
name on the LHS is stored character by character in the array LSTORE,

processing being terminated when an '=' sign is encountered.

The operators and operands on the RHS are then stored in the array
ASTORE, using ';' as a delimiter for separating the names, numbers or symbols.
The address MA in ASTORE of the symbol or the first character of a name or

number is stored in the array S.

In order to distinguish an operator from an operand, the address of an
operator is stored as a negative number - MA where MA is the actual address.
There are two additional arrays FUNC and MNUS which are of the same dimen-
sions as S and carry subsidiary information about operators which have no

operands on the left

9§

0s
Ly

9%

(19

%
Lt

(veE)

e
o€

[N]1HOTY

[n] 1431

“€°81d Jo 2an3dnays 2913 @y3 uy 1wadde J1as3} jou svop anq ‘aojeaado uorjouny Buip
-uodsailod ay3 Jo s50Y3 S® (I[qEI Byj U PIIINIBIG uMoys) SITIAJUD THOIY Pue TJITAT
"T+XVHN @njBA-N yats puriado Awmmp e sajouap q

6%

sy

st

(6£)

6E |
62

(zg)

(43 I
8T

[8] snsw [n]onna

swes ayj §8Y yWo) lojeiado ayg

OHMMAN

oA A~~~

OHY

bs13a

| o~ o~ o+

N3L

=~

-

NIL

qJYOLSY

9l1 96

Sii- 19

Ell- %S 9€ a I
- £s 9z 6

601- 43

Lot 1S

901~ 0¢ {4 91

zol 6y

101~ -4

S6 - Ly (02) (81)

w6 - 9%

16]

06 - v 0z 81 !
88 - £y [44 £l

98 - zy

he 1y yl zl

€8 - 0y

18 6t

08 - 8E Sl a 1
9L - LE ol a L

SL - 9€

€L - 93 L3 9

¥ v

oL - €€ L 3

89 4

L9 - {3 Y z

£9 - o€

79 - 62

[N]s N [N]IHOTY [N]IddT [N]SONK [w]oNnd

‘uonjenba £)150724 2y Joj sisAjeus Jndug

I 3lqeL

OHY

AIQ

b o~ ~ N~

-

m

Lod

WAL

OHY

avao

OHY

THOLSY

N M T N WO~ 0O

=

(a) FUNC(N)=1 4if S(N)=-MA, and MA is the address of a function
operator such as CURL or CROSS.

(b) MNUS(N) =1 if S(N)=-MA, and MA is the address of a + or -,
which must then either be the first character on the RHS or
be preceded by an open bracket or a comma.

At the end of this section the entries for the 4 arrays ASTORE, S, FUNC and
MNUS will have been completed. An example for the velocity equation is
shown in Table 1. Numerical operands are dealt with by procedure GWORD

during the output stage.

5.2 Svyntax analysis

After the RHS of a complete equation has been read in, syntax analysis
begins by a single call to the recursive procedure CREATE. The operators
and operands are represented by the sequence number N which is used to
manipulate the operator and operand stacks PSTACK and DSTACK respectively,
An operand goes on to DSTACK without comparison, while an operator only goes
on to PSTACK after comparison with the priority of the existing operator

ITOP at the top of the stack. The operator priorities are given in Table 2.

Table 2

Operator Priorities

5 1
+ 2
- 2
* 3
/ 3
functions 10

If the priority of ITOP is greater than equal to that of the incoming opera-
tor, then RIGHTLITOP] and LEFT[ITOP] in Table 1 are filled with the two
uppermost entries on the operand stack, and ITOP itself is transferred from
the operator to the operand stack. In other words a tree structure as shown
in Fig.3 is formed and stored in the arrays RIGHT[N] and LEFT[N], which con-

tain respectively the right and left operands of the operator represented by N.

The powerful recursion available in Algol 60 enables us to make the

section on syntax analysis very brief and compact. Every time an open bracket

is encountered, CREATE is called making available new operator and operand
stacks, and when the corresponding closing bracket is encountered these
stacks are emptied by transferring their information to the arrays RIGHT and
LEFT and the system returns to the previous copy of CREATE, passing back the
N-value of the root of the current branch in the global variable ROOT. These

roots are represented by boxes in Fig.3.

During the syntax analysis the operators '(),' disappear and a dummy
left leaf is introduced for each unary operator as indicated in Fig.3 by

dashed lines.

5.3 Symbolic Algol IT OQutput

At the exit of the first call to procedure CREATE the operator stack
PSTACK is empty and only one operand is left in DSTACK; this is the root of

the complete tree, namely '/' in Fig.3. It is clear that SAII is obtained

by outputting the tree in a specific manner starting from the root. The rule
for output may be formulated as follows: at every node, first go down the
left branch of the tree until an operand is output, then come back to the
node and go down thé right branch. This corresponds to the fact that in
SATI, it is required that all possible operands or operators on the left
should be output before those on the right. Here again, a stack STACK is
useful for remembering the node to return to after exhausting a branch of

the tree.

Besides the operator and operand names, we need to output opening brac-
kets, commas and closing brackets and this depends on the whole sequence of
operators and operands which have been output so far. We therefore make the

following rules for output

Table 3. Output Rules

procedure sequence output enter in TESTST
OPOP operator preceded by operator operator ((
OPDOP operator preceded by operand ;operator () (
OPOPD operand preceded by operator operand
OPDOFD operand preceded by operand ,operand 3

The integer code representation of '(' or ',' respectively is entered
into the first zero element of the array TESTST. In other words TESTST can
be considered as a stack for opening brackets and commas. Whenever a closing

bracket is output, a pair '(,' must exist at the top. We first remove this

- 10 -

from the stack and then we test if a further closing bracket should be out-

put by examining whether or not another pair '(,' 1is present. If so, then

we output a closing bracket and remove this pair from the stack. At the
end of the equation the number of opening and closing brackets should be
equal and the stack empty.
During the output process the symbols '+ - * /' are converted to the
names SUM, DIFF, MULT, QUOT respectively. Unary + and - are replaced by
SUM(BLANK, DIFF (BLANK, (10)
but the dummy operands associated with function operators are suppressed. A

positive number represented by
nce...c (11}

is replaced by
RNUM(ncc...c) (12)

where n is a digit 0-9 and cc...c 1is an arbitrary string of characters
not containing any of the reserved symbols
+-%/, 0);:8£&! . (13)
This scheme enables a variety of numerical representations such as
2 3.45 6.3@4 =6.3x 10 (14)
to be included in the SAI and SA II code but could be generalized if necessary.

6. PROGRAM STRUCTURE

The program is divided into 7 sections ##1 -7 as shown in Table 4. It
has a simple structure consisting of 2 principal blocks, an inner block in
which all the processing is done, enclosed within an outer block which is
used to set symbolic array dimensions so that these can therefore readily be.
changed by altering the default settings in #1.2. The variables in the
outer block are referred to as global in the usual way, and the statements
of the outer block as the 'prelude'. It is convenient to refer to the arrays
and procedures of the inner block as 'common' by analogy with Fortran. The
main program is a dummy which appears in #7 at the end of the inner block .and

consists of a single call to procedure MAIN at the head of #3.

It has been found that this type of 'top-down' structure makes the
hierarchical organization of Algol 60 programs much clearer, with the lead-
ing procedures at the beginning and the suﬁsidiary procedures towards the end.
All the system-dependent elements of the program are localized in #6 so that
it should only be necessary to modify this one section in order to transfer

the program to a different type of computer system.

- 11 =

Table 4

Program Structure

Begin outer block

1.

Begin inner

Global wvariables

1.1 Declarations
1.2 Prelude

block

2.
B

7

Common array declarations

Principal procedures

3.1 MAIN

3.2 PROLOG
3.3 RESET
3.4 INPUT

3.5 CREATE
3.6 OUTPUT
3.7 EPILOG

Auxiliary procedures

4,1 Stack manipulation
4.2 Operator priority
4.3 Miscellaneous

Output procedures

5.1 Operators and operands
5.2 Miscellaneous SAII
5.3 Diagnostic channel NDIAG

System-dependent procedures

6.1 Channels

6.2 Codes

6.3 Input channel NIN

6.4 Main output channel NOUT
6.5 Diagnostic channel NDIAG

Main program

End inner block

STOP:

End outer block

- 12 -

Table 5
List of procedures.

No | Name [Type | Arguments Scope Purpose Mnemonic
3. Principal procedures
P3.1 MAIN P c Main control procedure MAIN control
P3.2 PROLOG P C Initialize the run PROLOGUE
P3.3 RESET P c Reset variables and arrays for next equation RESET for next equation
P3.4 INPUT P KR [Read in the SA I equation INPUT the equation
P3.4.1 RETURN BP INPUT Condition for returning character to INPUT RETURN if true
P3.4.2 NEXCHA IP INPUT Fetch the next SA I character NEXt CHAracter
P3.4.3 RECDOP P INPUT Record an operator + = * [() , RECorD OPerator
P3.5 CREATE P c Recursive syntax analyser CREATE tree
P3.5.1 POPD IP CREATE Fetch operand from DSTACK POP up operanD
P3.5.2 PUSHD P K CREATE Store operand K on DSTACK PUSH down operanD
P3.5.3 POPP 1P CREATE Fetch operator from PSTACK POP up operatoR
P3.5.4 PUSHP P K CREATE Store operator K on PSTACK PUSH down operatoR
P3.5.5 FORK B KT CREATE Set left and right branches of node define FORK
P3.5.6 FORKB P KL,KR CREATE Set branches of bracketed node define FORK (Brackets)
P3.6 OUTPUT P Cc Qutput SAII expression OUTPUT the expression
P3.7 EPILOG P c Close I/0 channels EPILOGue
4. Auxiliary procedures
4.1 Stack manipulation
P4.1.1 STORE P KA,KN,KL C Store KN on stack KA and increment KL STORE on stack
P4.1.2 FETCH i8y KA,KL Cc Value at top of KA. Decrement KL FETCH from stack
P4.1.3 POP IP Cc Value at top of STACK. Decrement MS POP up
P4.1.4 PUSH P KN c Store KN on STACK. Increment MS PUSH down
P4.1.5 PUSHA P KN c Store KN in ASTORE. Increment MA PUSH into Astore
P4.1.6 POPT IP o Value at top of TESTST. Decrement MT POP up from Testst
P4.1.7 PUSHT P KN C Store KN on TESTST. Increment MT PUSH into Testst
P4.1.8 LOWERT P c Lower TESTST by 2 levels and clear LOWER Testst
P4.1.9 PAIR BP c Test for (, at top of TESTST test for PAIR (,
P4.1.10 PUSHL P KN c Store KN in LSTORE. Increment ML PUSH into Lstore
4.2 Operator priority
P4.2 PRTY | 1 | K | c | Define priority of operator K | operator PRioriTY
4.3 Misecellaneous
P4.3 RESETI | P I KA,KD,K | | Reset integer array KA of dimension KD to value K I RESET Integer array
3. Output procedures
Sl Operators and operands
P5.1.1 0POP P KN c Output ({operator name)(OPerator-OPerator
P5.1.2 OPDOP P KN c Output ,{operator name?(OPeranD-OPerator
P5.1.3 OBOPD P KN [Output éopetand name; OPerator-0PeranD
P5.1.4 OFDOFD P KN c Output ,{operand name})...) OPeranD~-OPeranD
5.2 Miscellaneous SA II
P5.2.1 CHECKL P K c Count characters and LNFD when required CHECK Length
P5.2.2 GCHAR P K c Generate character K Generate CHARacter
P5.2.3 GWORD P KA C Generate word or RNUM{number) Generate WORD
P5.2.4 GENEQU b c Generate 'EQUATE ({name)' GENerate EQUate
P5.2.5 GBLANK P C Generate the word BLANK Generate BLANK
P5.2.6 GRNUM P c Generate "RNUM(' Generate RNUM
P5.2.,7 GENOP P K C Generate operator name GENerate OPerator name
5.3 Diagnostic channel NDIAG
P5.3.1 PRINTA P KN,KA KD C Print name and values of array PRINT Array
PR 3.2 PRINTC B K C Print integer code and character K PRINT Character
6. System-dependent procedures
6.1 Channels
P6.1.1 CHANLS P [Define I/0 channels : CHANnelS
P6.1.2 OPCHAN P Cc Open 1/0 channels OPen CHunnels
P6.1.3 OPDIAG P c Open diagnostic channel OPen DIAGnostics
P6.1.4 CLCHAN r c Close channels CLose CHANnels
6.2 Codes
P6.2 | cobEs | P | o} | Set character codes | set character CODES
6.3 Input channel NIN
P6.3 l NEXTCH | 1P f | G | Read next character from channel NIN | NEXT CHaracter
6.4 Main output channel NOUT
P6.4.1 CHAR P K C Output character K on channel NOUT output CHARacter
P6.4.2 INT P K c Output integer K on channel NOUT output INTeger
P6.4.3 LINE P c New line on channel NOUT new LINE
P6.4.4 TEXT P KS [+ Output text on channel NOUT output TEXT
6.5 Diagnostic channel NDIAG
P6.5.1 DCHAR P K ¢ Output character K on channel NDIAG E output Diagnostic CHARacter
P6.5.2 DINT P X Cc Output integer K on channel NDIAG output Diagnostic INTeger
P6.5.3 DLINE P C New line on channel NDIAG : output Diagnostic LINE
P6.5.4 DTEXT P KS (e} Output text on channel NDIAG output Diagnostic TEXT
!
Key: B = Boolean, C = Common, I = integer, P = procedure

s L§ =

Table 6

List of variables and arrays.

Name Type Dimension Scope Purpose Mnemonic
ASTORE IA MAXSTO c Stores operand/operator names and symbols Alpha STORE
BCOUNT I G Counts brackets in SAI input Bracket COUNT
BLANK I G Integer representation of BLANK BLANK
CHARCT I G - Counts character output CHARacter CounT
CLOSEB 1 G Integer representation of ')’ CLOSE Bracket
CLOSED B G Closing bracket encountered expression CLOSED
COLON I G Integer representation of ':' COLON
COMA 1 G Integer representation of ',' COMma
COMMA B G Comma encounted in expression COMMA found
COPY B G Direct copying in progress CcorY
COPYOF I G Character to switch copying off COPY OFf
COPYON 1 G Character to switch copying on COPY ON
DCOUNT I G Counts diagnostic character output Diagnostic COUNT
DIAG B G Diagnostics required DIAGnostics
DIAGON I G Character to switch diagnostics on DIAGnostics ON
DSTACK IA MAXLEV CREATE Operand stack operanD STACK
DUMMY B G Dummy operand encountered DUMMY operand
DUMOPD 1 G N-value for dummy operand DUMmy OPeranD
ENDIN I G Character to end input END INput
«EQUALS 1 G Integer representation of '=' EQUALS sign
FUNC 1A MAXS C | if function operator FUNCtion operator
I T INPUT Current character (NEXCHA, RETURN)

IA I INPUT Address of previous operator Address

L OPOF Address of current operator Address

IC 1 INPUT Current character (INPUT) Character

1 OPOP (First) character of current operator Character
I GWORD ‘Current character being output Character

D I CREATE Level of stack DSTACK operanD level

INEXT I OUTPUT Next operator/operand to be output NEXT
1P I INPUT Previous operator Previous operator
b i CREATE Level of stack PSTACK oPerator level

IR I MAIN Return marker from input Return marker
IT I FORKB N-value at top of operator stack Top
ITOP I CREATE N-value at top of operator stack TOP
J I MAIN Loop index (equations)

I RESETI Loop index (array elements)
T OPDOPD Dummy index for WHILE statement
T GWORD Loop index (over characters)
1 GENEQU Loop index (over characters)
I PRINTA Loop index (over array elements)
K Vi PUSHD N-value
VI PUSHP N-value
VI PRTY Character
VI RESETI Value to which KA is reset
Vi CHECKL Length of string to be output
VI GCHAR Character to be output
Vi GENOP Symbolic representation of operator
VI PRINTC Character to be printed
VI CHAR Character to be output
VI INT Integer to be output
VI DCHAR Character to be output
Vi DINT Integer to be output
KA NIA STORE Array to be incremented Array
NIA FETCH Array to be decremented Array
NIA RESETI Array to be reset Array
VI GWORD Address of first character in word Address
NIA PRINTA Array to be printed Array
KD VI RESETI Dimension of KA Dimension
VI PRINTA Dimension of KA Dimension

KR
KS
KT

LEFT
LINEFD
LSTORE

M@
M9

MAXEQU
MAXLEV
MAXLHS
MAXS
MAXSTA
MAXSTO
MINUS
ML
MNUS
MS

MT

N
NDIAG
NIN
NMAX
NODE
NOUT
NUMBER

OPENB
OPIN
OPLAST

PLUS
PREFIX
PSTACK

RHS
RIGHT
ROOT

s
SEMI
SLASH
STACK
STAR

TESTST

;UQH W HH EBHHMHMHMHH HH;I—IHHHHI—IHHHHH

H;U:I

o
-

I
IA
I

IA

MAXS

MAXLHS

MAXLEV

MAXS

MAXSTA

MAXS

FORKB
STORE
FETCH
STORE
PUSH
PUSHA
PUSHT
PUSHL
OPOP
OPDOP
OPOPD
OPDOPD
PRINTA
INPUT
FORKB
TEXT
DTEXT
FORK

(e NsNel

D000 00OO0ONQAN

CREATE

DoaOan aaon

Q

Left N-value

Level of array KA

Level of array KA

Number to be added to array Ka
Number to be added to STACK
Number to be added to ASTORE
Number to be added to TESTST
Number to be added to LSTORE
N-value being output

N-value being output

N-value being output

N-value being output

Name of array

Return marker

Right N-value

String to be output

String to be output

N-value at top of PSTACK

Value of N at left branch of node
Integer representation of line feed
© Stores name on left-hand-side

Integer representation of 0
Integer representation of 9
Level of ASTORE

Maximum number of equations

Maximum level of DSTACK and PSTACK

Maximum length of lhs name

Maximum level of STACK
Maximum, contents of ASTORE
Integer representation of '-'
Current level of LSTORE

1 if unary + or =

Current level of STACK
Current level of TESTST

Operand/operator counter
Channel for diagnostics
Channel for input

Number of operators/operands
Value of N belonging to node
Channel for output

Leading digit encountered

Integer representation of '('
Incoming operator
Operator last encountered

Integer representation for '+'
Unary + or - encountered
Operator stack

Right-hand side encountered

Values of N at right branch of node

Root of RHS expression

Addresses of names in ASTORE
Integer representation of ';
Integer representation of '/'
Operator /operand stack

Integer representation of '*'

1

Stack for '(,'

Left
Level
Level
Number
Number
Number
Number
Number
N-value
N-value
N-value
N-value
Name
Return
Right
String
String
Top

LEFT branch
LINEFeeD
Lhs STORE

0

9

Astore level
MAXimum EQUations
MAXimum LEVel
MAXimum LHS

MAXimum of STAck
MAXimum STore
MINUS

Lstore level
MiNUS

Stack level
Testst level

N DIAGnostics

N INput

MAXimum

NODE

N OUTput

Word is a NUMBER

OPEN Bracket
INcoming OPerator
OPerator LAST

PLUS
operator is a PREFIX
oPerator STACK

Right Hand Side
RIGHT branch
ROOT

SEMIcolon
SLASH
STACK
STAR

TEST STack

i

Key: A = array, B =

Boolean, I = integer; N = call by name, S = string, V = call by value.

Table 5 gives a list of procedures used in the program and Table 6 a

list of variables and arrays.

Table 7 defines the action of the ICL 4-70

input-output procedures used in #6.

Table 7

ICL System 4 Input-Output Procedures

Name Type Arguments Purpose
CHARIN IP KC Read next character from channel KC
CHAROUT 4 KC,K Output character K on channel KC
CLOSE P KC Close channel KC
FORMAT IP KS Define integer code for layout string KS
IWRITE P KC,KF,K OQutput integer K on channel KC with format KF
NEW LINE P KC,K Qutput K line feeds on channel KC
OPEN P KC Open channel KC
WRITE TEXT P KC,KS Write string KS on channel KC

s DIAGNOSTICS

Since the SATI input equations are usually fairly straightforward and

few in number, as illustrated by Fig.l, errors should be readily detected by

eye and no attempt has therefore been made to incorporate the full diagnos-

tics appropriate to a compiler which would make TRANAL unnecessarily

complicated.

Procedure INPUT performs a limited error analysis to test for

overflow of tables LSTORE, ASTORE or an incorrect bracket count: when these

occur the program prints a message on channel NOUT and skips to the next

equation.

Overflow of the other tables is not checked.

The working of the program can be analysed by including a '#' in the

input deck, which switches on diagnostic output to channel NDIAG as soon as

it is encountered by procedure INPUT. The information that is currently

output is indicated in Appendix A, and additional messages can readily be

introduced by making use of the diagnostic output procedures in #5.3.

- 16 -

CONVERSION TO OTHER COMPUTER SYSTEMS

The following modifications should be all that is needed:

(a) Remove the ICL 4-70 control cards numbered
1-3,659,660,677-700,

(b) Change the hardware representation if necessary, preferably

using a context editor.

(c) Rewrite the system-dependent procedures of #6 to take account
of local input/output procedures, channel numbers and charac-

ter codes.

(d) Modify the control symbols &, £, &, ! if required.

(e) Add the control cards appropriate to the local computer system.

Identifiers have been limited to <6 characters to facilitate the transfer.

It may be necessary (as on the ICL 4~70) to remove the serial numbers on

the data cards 661-676 before carrying out the Test Run.

ACKNOWLEDGEMENTS

We would like to thank Mr W Holman and Professor P C Poole for helpful

discussions.

REFERENCES

(1] K V Roberts and J P Boris. Journ.Comp.Phys. 8, 83 (1971).

(2] M Petravic, G Kuo-Petravic and K V Roberts. Journ.Comp.Phys. 10,

503 (1972).

[3] G Kuo-Petravic, M Petravic and K V Roberts, in 'Cosmic Plasma Physics'’
Ed. K Schindler, Plenum Press, New York, p.239 (1972).

(4] ¢ Kuo-Petravic, M Petravic and K V Roberts, in 'Computing as a Language
of Physics', p.485 IAEA, Vienna (1972); also available as Culham
Laboratory Preprint CLM-P270 (Nov.1970).

(5] ¢ Kuo-Petravic, M Petravic and K V Roberts. Culham Laboratory Program
Documentation Note CLM-PDN 4/71 (April 1971).

(6] W M Waite. Comm.ACM. 13, 415 (1970).

- 17 -

$
NEWRHO=RHO=DT*DIV(RHO*V) ;
V=(RHO*V+DT* (-GRAD (RHO*TEM+DOT(B,B)/2)

-DIV(RHO*TEN(V,V)-TEN(B,B))
+NU*DELSQ (RHO*V)))/NEWRHO 3

B=B+DT* (CURL(CROSS(V,B))+ETA*DELSQ(B)) 3

TEM=TEM+DT*(-DIV (TEM*V)+KAPPA*DELSQ(TEM)
+(2=-GAMMA) *SAV(TEM)*DIV(V)
+(GAMMA—-1)*ETA*DOT(CURL(B),CURL(B))/SAV (RHO)

+ (GAMMA=1)*NU*(DOT (CURL(V),CURL(V))+EXP(DIV(V),2)))3

Fig.1 Test Run Input (with diagnostics switched on)

EQUATE (NEWRHO,DIFF (RHO,MULT(DT,DIV(MULT(RHO,V))))3

EQUATE (V,QUOT(SUM(MULT(RHO,V) ,MULT (DT, SUM(DIFF (DIFF (BLANK, GRAD(SUM(
MULT(RHO, TEM),QUOT(DOT(B,B),RNUM(2))))),DIV(DIFF(MULT(RHO,TEN(V,V)),TE
N(B,B)))) ,MULT(NU,DELSQ(MULT(RHO,V)))))) ,NEWNRHO) 3

EQUATE(B,SUM(B,MULT(DT,SUM(CURL(CROSS(V,B)) ,MULT(ETA,DELSQ(B)))))3}

EQUATE(TEM,SUM(TEM ,MULT (DT, SUM(SUM(SUM(SUM(DIFF(BLANK,DIV(MULT(TEM,V))
) yMULT(KAPPA ,DELSQ(TEM))), MULT (MULT(DIFF (RNUM(2) ,GAMMA) ,SAV(TEM)),DIV(
V))),QUOT (MULT (MULT (DIFF (GAMMA,RNUM(1)),ETA)DOT(CURL(B),CURL(B))),5AV

(RHO))) MULT (MULT(DIFF (GAMMA,RNUM(1)),NU), SUM(DOT(CURL(V) CURL(V)) ,EXP
(DIV(V),RNUM(2)))))))3

Fig.2 Test Run Output on Channel NOUT.

CLM-P450

v //
+® \NEWRHO

® \ Q

% *

7
/
, \
Ve
7

(BLANK) GRAD »_G9 % €

Z
®
by
o
o

®
/*@
@ \
6\\/
®
©® x
o
- ®
>
®
® oo [
®
®

Fig.3 Tree Structure for the Velocity Equation. The numbers
in circles indicate N-values. Roots are shown by boxes and
dummy operands by -—-0 or - - - (BLANK).

CLM-P450

APPENDIX A

Program TRANAL

PROGRAM_COMMENTARY

OUTER BLOCK
1. Global variables

1.1 Declarations

Variables defined at this point are available throughout

the program. They include the dimensions of the Common

arrays of #2,

1.2 Prelude

Set array dimensions etc.

ALGOL

begin

comment 1. Global variables;
1.1 Declarations;

integer BCOUNT,BLANK,CLOSEB,CHARCT,COLON,COMA,COPYOF,COPYON,
DCOUNT, DIAGON, DUMOPD, ENDIN, EQUALS , LINEFD,Mf, M9, M4,
MAXEQU,MAXLEV, MAXLHS ,MAXS ,MAXSTA , MAXSTO ,MINUS ,ML ,MS,
MT,N,NDIAG,NIN, NMAX ,NODE ,NOUT,OPENB, OPIN, PLUS,ROOT,
SEMI, SLASH,STAR;

Boolean CLOSED,COMMA,COPY,DIAG,DUMMY,OPLAST, PREFIX,RHS;

comment 1,2 Prelude;

MAXEQU:=20;MAXLEV:=20;MAXLHS :=10;
MAX5:=200; MAXSTA:=50;MAXSTO:=400;

INNER BLOCK

2. Common _array declarations

3. Principal procedures

P3.1 MAIN Main control procedure
Initialize the run

Set or reset variables and arrays for next equation
Read in and store the SA 1 statement

Skip if it is null

Create the tree by recursive syntax analysis

Output the SAII statement

Terminate the run

begin

comment 2. Common array declarations;

integer array FUNC,LEFT,MNUS,RIGHT,S,TESTST[L:MAXS];
integer array ASTORE[1:MAXSTOJ,LSTORE[1:MAXLHS],STACK[1:MAXSTA];

comment 3. Principal procedures;

comment P3.1;

procedure MAIN;
begin integer IR,J;
PROLOG;
for J:=1 step Ll until MAXEQU do
begin
RESET;

INPUT(IR);
if IR=1 then go to FINISH;
if IR>1 then go to NEXTEQ;
CREATE;

QUTPUT;
NEXTEQ:
end;
FINLISH:
EPILOG;
go to STOP
end;

P3.2 PROLOG Initialize the run

Diagnostics initially switched off

Define and open I/0 channels

Define character codes

Set DUMOFD to an N-value that will not be used

P3.3 RESET Reset variables and arrays for next equation

comment P3.2;
procedure PROLOG;

begin
DIAG:=false;
CHANLS ; OPCHAN;
CODES;
DUMOPD : =MAXS+1
end;

comment P3.3;
procedure RESET;
begin
RESETI(FUNC ,MAXS ,0); RESETI(LEFT ,MAXS ,0);
RESETI(MNUS ,MAXS ,0); RESETI(RIGHT ,MAXS ,0);
RESETI(S ,MAXS ,0); RESETIL(TESTST,MAXS ,0);
RESETI (ASTORE ,MAXSTO0,0); RESETI(LSTORE,MAXLHS,0);
RESETI(STACK ,MAXSTA,0);

BCOUNT:=CHARCT: =DCOUNT:=0;
CLOSED:=COMMA: =COPY : =DUMMY : =false;
MA:=ML:=MS:=MT:=0;
N:=1;
NODE:=0PIN:=R0O0T:=0;
OPLAST:=true;
PREFIX:=RHS:=false
end;

- Al -

P3.4 INPUT{KR) Read in the SAI equation comment P3.4;
procedure INPUT(KR); integer KR;

Characters are read by integer procedure NEXCHA begin
integer I,IA,IC,IP;

P3.4.1 RETURN Condition for returning a character comment P3.4.1;
to INPUT) Boolean procedure RETURN;
- - RETURN:=(I=ENDIN)
If the COPY facility is switched on only the ENDIN or (I#BLANK and I#LINEFD
character is returned. and I#COPYON and I#COPYOF
If COPY is switched off, blanks and control characters and I#DIAGON and not COPY);
are also ignored.
P3.4.2 NEXCHA Fetch the next SAI character comment P3.4.2;
integer procedure NEXCHA;
If the RETURN condition is met the character is begin
returned without being printed. Otherwise various con- ::;i;:=NEXT HiuEile mor BETURN.do
ditions are tested for and markers set accordingly. If if I=DIAGON then OPDIAG;
” PRINTC(I);
diagnostics are required the character and its integer Lf I=COPYON then COPY:=true;
code are printed on channel NDIAG, and if COPY is if I=COPYOF then COPY:=false;
if I=DIAGON or I=COPYON then I:=BLANK;
switched on it is printed on the output channel NOUT, if COPY then GCHAR(I)
control characters being replaced by blanks. end;
NEXCHA:=1
end;
P3.4.3 RECDOP Record an operator + = * [() , comment P3.4.3;
Terminate the previous entry in ASTORE with a semi- Pr:::::re RECDOP;
colon, enter the operator, record its location and type PUSHA(SEMI) ; PUSHA(IC);
in array S, note that an operator was last output, and 3FE£:;MA;OPLAST:=trUE;
update the operator/operand counter N. end;
Initialize return marker. Blank diagnostic line. KR:=0; DLINE;
Read the SAI characters in turn until a terminating for IC:=NEXCHA while IC#SEMI and IGFENDIN do
semi-colon or the ENDIN character is reached. begin
. g > g e o
Print the character and its integer code on channel NDIAG ?RINTC(IC)‘ LE MASMAXSTO~2 ‘Lhan-RR:%3}
if KR=0 then
if required. e
begin
KR#0 means that an error condition has been encountered. . if not RHS then
- begin
Oeheiwids ‘ "if IC=EQUALS then RHS:=true else
{a) Store LHS name. Terminate when '=' found. Ignore if IC#COLON then
colon. Record error condition if the name is too long. begin if ML 2 MAXLHS then KR:= 2 else PUSHL(IC) end
end
Analyse RHS: else
if IC=PLUS or IC=MINUS then
(b) '+ or -'. Set MNUS to signify a unary operator if begin
this 1s the first operator encountered, or if it is IA:= 1f N>1 then S[N-1] else 0;
preceded by '(' or ','. Then record as an operator. IP:= if IA<O then ASTORE[-IA] else 0;
MvUS[N]:= if N=1 or IP=OPENE or IP=COMA then 1 else 0;
RECDOP
end
else
(e} '* / ,'. Record as an operator if IC=STAR or IC=SLASH or IC=COMA then RECDOP
else
(d) '('. Increment the bracket count, and change any if IC=0PENB then
preceding operand to a function operator. Then begin
record '(' as an operator. BCOUNT :=BCOUNT+1;
IA:= if N>1 then 5[N-1] else 0;
if IA>0 then begin S[N-1]:=-1A; FUNC[N-1]:=1 end;
RECDOP
end
. else
{e) ')'. Decrement the bracket count, and record ')' if IC=CLOSEB then begin BCOUNT:=BCOUNT-1;RECDOP end
as an operator. else

(£) Any other symbol. Storé in ASTORE, and if it was begin

preceded by an operator record the first character PUSHA(IC);
position of the current string and increment the if OPLAST then begin S[N]:=MA', NA:=N+1 end;
operand/operator counter. Note that an operand is OPLAST:= false
being processed. end
end
end;
Print the final character which will be ';' or ENDIN. PRINTC(IC);
Note the total number of operators and operands to be NMAX :=N; N:=0;
processed.
Store the terminating semi-colon, and print diagnostics if IC:=SEMI then
if required. begin

PUSHA(SEMI); DLINE;

PRINTA('ASTORE' ,ASTORE,MA);
PRINTA('S 48 JNMAX) ;
PRINTA('FUNC ',FUNC ,NMAX);
PRINTA('MNUS ',MNUS ,NMAX)

end;

Set return markers and print failure messages. if IC=ENDIN then KR:=1;

if KR=2 then TEXT('LHS-OVERFLOW');

if KR=3 then TEXT('RHS-OVERFLOW');

if BCOUNT#Q then

TEXT('BRACKET-COUNT' }; INT(BCOUNT)
end;
if KR>1 then LINE

end;

P3.5 CREATE Create the tree by recursive syntax analysis comment P3.5;
procedure CREATE;
begin
integer 1D,IP,ITOP;
integer array DSTACK,PSTACK[1:MAXLEV];

There is one copy of the operand and operator stacks for
each level at which CREATE is called, and the stack
manipulation procedures work at each individual level

as follows:

Stack manipulation procedures comment stack manipulation procedures;
P3.5.1 PO = integer procedure POPD;POPD:=FETCH(DSTACK,ID);
¥3 5.2 Pushp(x) | Comerol the operand stack DSTACK procedure PUSHD(K);value K;integer K;STORE(DSTACK,K,ID);
P3.5.3 POPP integer procedure POPP; POPP: =FETCH (PSTACK, IP);
T35 4 PUsHP(k) | Comtrol the operator stack PSTACK procedure PUSHP(K);value K;integer K;STORE(PSTACK,K,IP);
P3.5.5 FORK(KT) procedure FORK(KT)jvalue KT;integer KT;
begin
Set the right and left branches for nodes RIGHT[KT]:=POPD;
wicthout brackets LEFTLKT]):= if MNUS[KT]=1 then DUMOPD else POPD;
PUSHD(KT)
end;

procedure FORKB(KL,KR);value KL,KR;integer KL,KR;
begin integer IT;
IT:=POPP;
RIGHT(IT]):=KR; LEFT[IT]:=KL;
PUSHD(IT); COMMA:=false

P3.5.6 FORKB(KL,KR)

Set the right and left branches for nodes
with brackets

end;
Initialization comment initialisation
ID:=IP:=0;
Zero the operand and operator stacks. RESETI(DSTACK,MAXLEV,0) ; RESETI (PSTACK,MAXLEV,0);
Clear the markers for bracket closure and comma. CLOSED:=COMMA:=false;

- A3 -

Syntax analysis

Scan over all operators and operands until a closing
bracket is found or the end of the stack is reached.

1f the Nth item is an operand (S>0) then enter it on
the operand stack and continue. Otherwise check whether
the incoming operator OPIN is:

(a) Opening bracket. Enter a new copy of CREATE, and
analyse until the corresponding closing bracket is
encountered; then return and reset the marker.
COMMA=true means that a comma has been encountered

in the top-most copy of CREATE from which we have just
returned. For example, take the expression

...CROSS(V,B)+,..

The topmost copy of CREATE contained the comma as its
root and V and B as its left and right branches
respectively. While in that copy we made COMMA=true
and NODE, a global variable, the value of N corres-
ponding to the operator comma. When we return to the
previous copy of CREATE, i.e. that which contains the
operator CROSS, we transfer the left and right branches
of NODE to that of CROSS which is represented by ITOP,
the operator which immediately preceded the opening
bracket and is at the top of the operand stack.

If no comma has been encountered we examine ITOP:

{i) Operator stack empty, or ITOP not a functionm
operator. Push the root of the expression
inside the pair of brackets from which we
have returned on to the operand stack.

(i1) Unary function operator. Make the left leaf of
ITOP a dummy operand, and the right leaf equal
to the root of the bracketed expression.

(b) Closing bracket, Examine one by one each entry
ITOP that is currently at the top of the operator
stack, The procedure FORK sets the right branch of
ITOP to the entry at the top of the operand stack, and
the left branch either to the next entry (binary
operator) or to a dummy operand (unary operator).

Then ITOP is placed on the operand stack.

A comma is recorded if one has been found.

Allow for a final increment of N in the 'for' statement

before returning.

When the operator stack is empty then the root NODE of
the bracketed expression is given by the entry at the
top of the operand stack. Print value of NODE if
diagnostics required.

(c) Any other operator. Examine one by one each entry
ITOP that is currently at the top of the operator stack,
until either the stack is exhausted, or the priority of
ITOP is less than that of the incoming operator. Set
the FORK as in (b).

If an entry ITOP remains return it to the stack, and
then place N on the stack.

At the exit from the outermost copy of CREATE, the last
operator or operand has been encountered and we have
reached the end of the statement. Unload the operator
and operand stacks setting the right and left branches.
The last operator (which has been placed on the operand
stack by FORK) is the root,

Print diagnostics if required.

comment syntax analysis

for N:N+l1 while not CLOSED and N <NMAX do
begin
if s(N]>0 then PUSHD(N)
elsge
begin
OPIN:=ASTORE[-s[N]];
if OPIN=0PENB then
begin
CREATE; CLOSED:=false;

if COMMA then FORKB(LEFT[WODE],RIGHT[NODE])

else

begin
ITOP:=POPP; if ITOPA0 then PUSHP(ITOP);
if ITOP=0 or FUNC[ITOP]=0 then PUSHD(NODE)

else FORKB(DUMOPD,NODE)
end
end
else

if OPIN=CLOSEB then

begin
for ITOP:=POPP while ITOP >0 do
begin
FORK(ITOP);
1f ASTORE[-S[1TOP]]=COMA then COMMA:= true
end
N:=N-1;

NODE : =POPD; CLOSED:= true;
DLINE ; DTEXT('NODE') ; DINT{NODE)
end

else
begin

for ITOP:=POPP while ITOP>0
and PRTY(ASTORE[-s[1Tor]] = PRTY (0OPIN)
do FORK(ITOP);

if ITOP>0 then PUSHP(ITOP);

PUSHP (M)

end
end
end;

if not CLOSED and N=NMAX then

begin
for ITOP:=POPP while ITOP >0 do FORK(ITOP);
ROOT: =POPD;
DLINE ; DTEXT('ROOT") ; DINT(ROOT) ; DLINE;
PRINTA("RIGHT" ,RIGHT, NMAX);
PRINTA('LEFT ',LEFT ,NMAX);
DLINE

end

end;

- AL -

P3.6 OUTPUT Output the SA IT statement comment P3.6;
procedure OUTFUT;

Initialize counters and marker. begin integer INEXT

Output 'EQUATE ({ name) ' . MS:=MT:=0; DUMMY:= false;
Record '(' and count {name) as a left operand. GENEQU;

Set the root of the right-hand side expressicn obtained PUSHT(OPENB);

from CREATE at the bottom of the array STACK, and output PUSH(ROOT); OPDOP(ROOT)};

it as the second operand of EQUATE.

if OPLAST th
Examine at each stage the top item on STACK until the begin 1f ORLAST then

begin
lacter is: enpry, Hnd TNEXT: LEFTIN]; PUSHON) 5
(a) Choose left or right branch. The variable INEXT PREF IX :=MNUS[N]=1
is set to the N-value for the left branch if an opera- end else
tor has last been output, and in this case the Boolean INEXT:=RIGHT[N];

variable PREFIX is set to true if this operator is a
unary + or -, If an operand has last been output then
it is set to cthe N-value for the right branch.

(b) Output the operator or operand name. If it is an

operator name, place it on the stack, then proceed as

follows: if S[INEXT] <0 then
begin PUSH(INEXT);

Zrevious wame ~ Current mame Queput if OPLAST then OPOP(INEXT) else OPDOP(INEXT)
operator operator (name }(end else
operand operator , {name) (if OPLAST then OPOPD(INEXT) else OPDOPD(INEXT)
operator operand {name) end;
operand operand ,{name)}...)

(For details see P5,1,1-5,1,4)

When the stack is empty output a semi-colon and terminate GCHAR (SEML) ;LINE
the line. end;
P3.7 EPILOG Close I/0 channels comment P3.7;

procedure EPILOG; CLCHAN;

b, Auxiliary procedures b4, Auxiliary procedures
4.1 Stack manipulation comment 4.1 Stack manipulation
P4.1.1 STORE(KA,KN,KL) Store KN on stack KA and comment P4.1.1 - P4.1.10;

Ingraisnc Level Kl procedure STORE(KA,KN,KL); value KN;

integer array KA; integer KN,KL;
begin KL:=KL+1;KA[KL]:=KN end;

P4,1.2 FETCH(KA,KL) Value at top of STACK. Decrement KL integer procedure FETCH(KA,KL); integer array KA; integer KL;
begin
If the stack is empty then zero is returned and KL is not FETCH:= if KL=0 then 0 else Ka[KL);
decremented. if KL#O then begin KA[KL]:=0; KL:=KL-1 end
end;
© P4.1.3 POP Value at top of STACK. Decrement MS integer procedure POP; POP:=FETCH(STACK,MS);
P4.1.4 PUSH(KN) Store KN on STACK. Increment MS procedure PUSH(KN);value KN;integer KN;STORE(STACK,KN,MS);
P4.1.5 PUSHA(KN) Store KN in ASTORE. Increment MA procedure PUSHA(KN);value KN;integer KN;STORE(ASTORE,KN,MA);
P4.1.6 POPT Value at top of TESTST. Decrement MT integer procedure POPT;POPT:=FETCH(TESTST,MT};
P4,1,7 PUSHT(KN) Store KN in TESTST. Increment MT procedure PUSHT(KN);value KN;integer KN;STORE(TESTST,KN,MT);
P4,1.8 LOWERT Lower TESTST by 2 levels and clear procedure LOWERT;
begin TESTSTIMT]:=TESTST{MT-1]:=0;MT:=MT-2 end;
P4.1.9 PAIR Test for '(,' at top of TESTST Boolean prccedure PAIR;
PAIR:=TESTST(MT]=COMA and TESTST[MT-1J=OPENB;
P4.1.10 PUSHL(KN) Store KN in LSTORE. Increment ML Procedure PUSHL(KN);value KN;integer KN;STORE(LSTORE,KN,ML);

4.2 Operator priority comment 4.2 Operator priority;

P4.2 PRTY(K) Define priority of operator K comment P4.2;
integer procedure PRTY(K); value K;integer K;

PRTY:= if K=COMA then 1
else if K=PLUS or K=MINUS then 2
else if K=STAR or K=SLASH then 3
else 10;

4.3 Miscellaneous comment 4.3 Miscellaneous;

P4.3 RESETI(KA,KD,K) Reset integer array KA of dimension comment P4.3;
KD to value K procedure RESETI{KA,KD,K);value KD,K;integer array KA;
integer KD,K;
begin integer J;
for J:=1 step 1 until KD do KA[J]:=K

end;
Bl Output procedures comment 5. Output procedures;
5.l Operators and operands comment 5.1 Operators and operands
.P5.1.1 OPOP(KN) Output an operator which has been comment P5,1,1;
preceded by an operator procedure OPOP(KN);value KN;integer KN;
1f the operator is one of + - * / then output operator begin integer IA, IC;
or if it is a function operator output its name. 1A:=-5[Kn]; 1c:=ASTORE[1A];

if FUNC[KN]=0 then GENOP(IC) else GWORD(IA);

Output (and record in the TESTST stack that this has GCHAR(OPENB) ; PUSHT(OPENB) ;

bekEn. dane; OPLAST:=true
Note that the name last output is that of an operator. end;
P5.1.2 OPDOP(KN) Output an operator which has been comment P5.1.2;
! receded by an operand procedure OPDOP(KN);value KN;integer KN;
Output a comma unless the previous operand was a dummy, begin if DUMMY then DUMMY:= false else GCHAR(COMA);
in which case the market is reset. In either case record PUSHT (COMA) ; OPOP (KN)
in the TESTST stack that a (real or fictitious) comma end;

has been output. Then proceed as in P5.1.1.

P5.1.3 OPOPD(KN) Output an operand which has been comment P5.1.3;
preceded by an operator procedure OPOPD(KN);value KN;integer KN;

If the operand is a dummy then either output the word begin if KN=DUMOPD;

BLANK in case the operator was + or = or set the DUMMY then begin if PREFIX then GBLANK else DUMMY:=true end

marker; otherwise cutput the operand name. . else GWORD(S[kN]);

Note that the name last output is that of an operand. Eng?LASTt=Eulse

H
P5.1.4 OPDOPD(KN) Output an operand which has been comment P5.1.4;
receded by an operand procedure OPDOPD(KN);value KN;integer KN;

J is a dummy index required by Algol 60. begin integer J;

Output a comma unless the previous operand was a dummy, if DUMMY then DUMMY:=false else GCHAR{COMA);

in which case the marker is reset. Record a comma in PUSHT(COMA) ;

the TESTST stack. Output the operand name and note its GWORD(S(KN]) ; OPLAST:=false;

type.

Output a series cf closing brackets, one for each pair . for J:=0 while MT2 2 and PAIR do

'(', at the top of the stack, lowering the level by 2 begin GCHAR(CLOSEB);LOWERT end

each time. end;

B2 Miscellaneous SA II comment 5.2 Miscellaneous SA IT;
P5.2.1 CHECKL(K) Count characters and issue LINEFEED comment P5.2.1; -
when required procedure CHECKL(K);value K;integer K;
begin if CHARCT>70-K then begin LINE;CHARCT:=0 end;

CHARCT is set to the position of the last of the K CHARCT: =CHARCT4K

characters to be output. HHds

70 characters are allowed on each line.
P5.2.2 GCHAR(K) Generate character X comment P5.2.2

procedure GCHAR(K);value K;integer K;begin CHECKI.(1);CHAR(K)end;

- A6 -

P5.2.3 GWORD(KA) Generate.word or RNUM(number) defined comment P5.2.3;
by location KA of ASTORE

procedure GWORD(KA);value KAjinteger KA;
begin Boolean NUMBER;integer IC,J;

If the first character of the word is a digit 0-9, out- IC:=ASTORE[KA];J:=0;

put the string 'RNUM('. NUMBER:=IC2 MP and IC SM9;
if NUMBER then GRNUM;

OQutput the word up to but not including the terminating for J:=J+1 while IC#SEMI do

semicolon. begin GCHAR(IC);IC:=ASTORE[KA+I] end;
{f NUMBER then GCHAR(CLOSEB)

For a number, output a closing brackec. end;

P5.2.4 GENEQU Generate 'EgUATE((name)' comment P5.2.4;

procedure GENEQU;
begin integer J;
LINE;CHARCT: =7 ; TEXT('EQUATE(');
for J:=1 step 1 until ML do GCHAR(LSTORE[J])
end;

P5.2,5 GBLANK Generate the word 'BLANK' comment P5.2.5;
procedure GBLARK;begin CHECKL(5);TEXT('BLANK')end;

P5.2.6 GRNUM Generate 'RNUM(' comment P5.2.6;
procedure GRNUM;begin CHECKL(5);TEXT('RNUM(')end;

P5.2.7 GENOP(K) Generate name of operator +,-,%,/ comment P5.2.7;

procedure GENOP(K);value K;integer K;
begin if K=PLUS then begin CHECKL(3);TEXT('SUM')end
elge if K=MINUS then begin CHECKL(4);TEXT('DIFF')end
else if K=STAR then begin CHECKL(4);TEXT('MULT')end
else if K=SLASH then begin CHECKL(4);TEXT('QUOT')end

end;
5.3 Diagnostic channel NDIAG comment S5l Diagnostic channel NDIAG;
P5.3.1 PRINTA(KN,KA,KD) Print name KN and values of comment P5.3.1;

array KA with dimension KD

procedure PRINTA(KN,KA,KD);value KD;string KN; integer array
integer KD;
begin integer J;
DLINE ; DTEXT(KN) ; DLINE;
for J:=1 step 1 until KD do
begin
DCHAR(BLANK) ; DINT(KALI]) ;
if 10%(J210)=J then DLINE
end;
DLINE
end;

10 values are allowed on each line

P5.3.2 PRINTC(K) Print integer code followed by character comment P5.3.2;
procedure PRINTC(K);value K;integer K;
7 values are allowed on each line begin
if DCOUNT 2 7 then begin DLINE;DCOUNT:=0 end;
DCHAR (BLANK) ; DCHAR(K) ; DCHAR (BLANK) ; DINT(K) ;
DCOUNT : =DCOUNT+1

KA;

end;
6. System-dependent procedures comment 6. System-dependent procedures;

The implementation of the following procedures is specific

to the ICL System &, although their names and calling

sequences are standard. To transfer TRANAL to another

type of computer, implement a corresponding set of pro-

cedures using local I/0 facilities,

6.1 Channels comment 6.1 Channels;
P6.1.1 CHANLS Define channels for input,output, comment P6.1.1-P6.1.4
disgnostics procedure CHANLS;begin NIN:=210;NOUT:=200;NDIAG:=201 end;

P6.1.2 OPCHAN Open I/0 channels procedure OPCHAN;begin OPEN(NIN);OPEN(NOUT) end;

P6.1.3 OPDIAG Open diagnostic ‘channel - procedure OPDIAG;

begin
if not DIAG and NDIAGANOUT then OPEN(NDIAG);
DIAG:=true
end;
P6.1.4 CLCHAN Close channels . procedure CLCHAN;
begin

CLOSE (NIN) ; CLOSE (NOUT) ;
if DIAG and NDIAGANOUT then CLOSE{NDIAG)

end;
6.2 Codes comment 6.2 Codes;
P6.2 CODES _Set character codes comment P6.2;
procedure CODES;
begin
BLANK := 64; CLOSEB:= 93; COLON := 122; coMA := 107;
COPYON: 80; 90; DIAGON:= 91; ENDIN := 74;
EQUALS:= 126; 21; Mp 1= 240; M9 = 249;
MINUS := 96; 77; PLUS = 78; SEMI := 094;
SLASH := 97; STAR := 92
end;
6.3 Input channel NIN comment 6.3 Input channel NIN;
P6.3 NEXTCH Fetch next'character comment P6,3;
integer procedure NEXTCH;NEXTCH:=CHARIN(NIN);
6.4 Main output channel NOUT comment 6.4 Main output channel NOUT;
P6.4.1 CHAR(K) Output character K as channel NOUT comment P6.4.,1 - 6.4.4;
procedure CHAR(K);value K;integer K;CHAROUT(NOUT,K);
P6.4.2 INT(K) Output integer K on channel NOUT procedure INT(K);value K;integer K;IWRITE(NOUT,FORMAT('-NDDD'),K);
P6.4.3 LINE New line on channel NOUT procedure LINE;NEW LINE(NOUT,1);
P6.4.4 TEXT(KS) Output text on channel NOUT procedure TEXT(KS);string KS;WRITE TEXT(NOUT,KS);
6.5 Diagnostic channel NDIAG comment 6.5 Diagnostic channel NDIAG;
comment P6.5.1 - P6.5.4;
P6.5.1 DCHAR(K) Output character on channel NDIAG -procedure DCHAR(K)ivalue K;integer K;
if DIAG then CHAROUT(NDIAG,K);
P6.5.2 DINT(K) Output integer on channel NDIAG procedure DINT(K);value K;integer K;
1f DIAG then IWRITE(NDIAG,FORMAT('-NDDD'),K);
P6.5.3 DLINE New line on channel NDIAG procedure DLINE;if DIAG then NEW LINE(NDIAG,1);
P6.5.4 DIEXT(KS) Output text on channel NDIAG procedure DTEXT(KS);string KS;if DIAG then WRITE TEXT(NDIAG,KS);
2. Main program commenf 7. Main program;
The main program of the inner block consists of a single MAIN
call to procedure MAIN. This enables the program to be STEE?;
arranged in hierarchically descending order. The run end

is terminated by 'go to STOP',

- A8 -

