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ABSTRACT

The collapse of initially spherical, vapour- or gas-filled cavities
within a liquid, adjacent to a solid wall, or in other axially symmetric
situations, is often characterised by the formation of imploding high-speed
liquid jets, which are of interest in the study of cavitation damage, for
example. A fast, new, numerical method is described here for the solution of
cavity collapse and other bubble dynamics problems possessing axisymmetry.
Viscosity and compressibility are neglected in the liquid flow, which is
assumed irrotational, and the effects of heat and mass transfer across the
bubble wall are neglected also. Several examples are presented, illustrating
cavity collapse near a solid wall, and under gravity, with and without
surface tension on the bubble wall.
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I. INTRODUCTION

Interest in the behaviour of gas-filled bubbles and other cavities within
liquids is common to several areas of study in fluid dynamics, including
boiling heat transfer, cavitation, and under-sea explosions. It has long

(1)

been known from experimental work, and more recently from numerical cal-
culation,(z) that under many conditions of interest, initially spherical

cavities acted upon by a pressure excess will form high-speed jets of liquid
as they collapse. The formation of these jets requires some departure from
spherical symmetry in the ambient conditions, such as a density gradient in
the liquid, proximity of the cavity to a solid surface, or gravity. The

impact of liquid jets is thought to be the cause of damage to solid surfaces

(3)

exposed to a cavitating liquid, and to be responsible for intense sound

production in a liquid boiling near a heated surface. Jet impact may also

(4)

increase the heat transfer between liquids in fuel-coolant interactions,
by enlarging the area of contact.

The development of a numerical method of sufficient accuracy and speed
to allow systematic investigation of jet formation, has been the main aim of
the present work, and forms the completion of some initial studies, described
elsewhere.(s) The formulation of the problem is sufficiently general to allow
also the investigation of bubble growth at a heated interface, for example,
provided the rate of introduction of vapour into the bubble is specified. At
present heat conduction across the interface is not included although this could

(6)

perhaps be introduced using a thin thermal boundary-layer approximation.

II. EQUATIONS OF FLUID AND CAVITY

The problem we solve then, is the time-dependent motion of a cavity
surface within an incompressible liquid in an axisymmetric situation. The
pressure far from the cavity piﬁt) , and the pressure within the cavity p(t) ,
are prescribed. Alternatively, the internal pressure may be calculated using

the cavity volume and some gas law. The liquid flow is in all cases

irrotational, and viscosity is neglected, so that a fluid potential o

.



may be defined, satisfying
Vig =0 | (1)

and such that the liquid velocity v = V¢ . The boundary

condition infinitely far from the cavity is v = O , so we may take ¢ = 0
at infinity. If a solid wall is present then at each point n.Vg = 0 where
fi is normal to the wall. The boundary condition at the cavity surface is
obtained, for a liquid of constant density p , acted upon by gravity g ,

7
from Bernouilli's equation in unsteady flow,( ) applied to the interface:

Py~ P a/l 1 1
T o E oy - oty R i) Eaid = 2
5 glx - x) + p\R1+ g )tV (2)

sl

where the Lagrangian time-derivative of ¢ at points on the interface is
given by

Do _ 8¢ , 2

pt gt TV s
v being the fluid velocity, and o 1is the constant of surface tension, R,
and R, being principal radii of curvature. The vertical height, x , of
each point is measured along the symmetry axis from an arbitrary reference
level for P, s 3t «

o}

The kinematic conditions
=== 2, Vo and -— = z.Vyop (3)

describe the motion of the interface in terms of the cylindrical coordinates

(r,x) of each of its points.
Equations 1 - 3 can be written in non-dimensional form by expressing

pressures, density and length in terms of scaling values Pys By > and L0

respectively. The unit of velocity is then JPb/po, of time L&Jpo/Pb, of
N
s {) and of surface tension, (P L ).
Lop0 o o

gravity(\
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III. METHOD OF SOLUTION

(a) The Boundary-value problem

Given the position of the interface at any instant and the corresponding
values of potential there, the Laplacian problem may be solved to give the
velocity at each boundary point. Given p(t) , the boundary values may be
advanced in time using (2) and the interface moved to its new position an
instant later using (3).

Although the boundary-value problem is mathematically simple, the
changing shape of the interface makes it impossible to obtain solutions
analytically except where there is a high degree of symmetry, so numerical
aethods must in general be used. Plesset and Chapman obtained numerical
solutions of (1) - (3) for cavity collapse adjacent to a wall by setting up a
number of meshes in cylindrical coordinates, the cell-size increasing with
distance from the cavity. They then solved the boundary-value problem for
¢ , at each timestep by finite difference mefhods involving an iterative
matching procedure between the numerical solution and an asymptotic form
supposed valid beyond the outer boundary of the mesh, and satisfying the
boundary condition at infinity. An Eulerian time-difference was
employed to advance the solution variables. The interface was represented
by a sequence of nodes, and the boundary condition on ¢ was‘applied to the
computation mesh by interpolation. Although no calculation times are quoted,

this is likely to be a slow method for obtaining the velocity of the interface.

(b) Green's Function Method

In order to solve the potential problem more succinctly we have instead
developed a Green's function method which allows the interface velocity to
be computed entirely in terms of integrals and functions defined on the
interface, Large two-dimensional finite difference meshes are thus avoided,
being replaced by square matrices of modest dimensions, and in additiomn to
being fast, the method has the added advantage of providing simple and reliable

estimates of the local solution error.
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Making use of rotational symmetry, we represent the cavity by its cross-
section L, as in figure 1. Denoting distance along L by s, it may be shown
that provided L has continuously-turning tangent, and the boundary potential
¢ has a continuous, bounded tangential derivative, then a bounded, continuous

function q(s) exists, satisfying the following integral equation:

S
g G(r(s)/x(s")) q(s')ds’ = ¢(s) , 0 <5 <58 (4)
' = I"K(k)
where G(£/£ ) ’J[(.T _ Il)z + (_r +,r!)2}
_ 4rr’
and kz—[(m_$1)2+(r+rr)2] 3

K(k) being the complete elliptic integral of first kind. G(E/E') is the
Green's function which vanishes at infinity, for the Laplacian in axisymmetric
geometry, so the harmonic function
S

o(r) = [ 6(z/x(s")) q(s") ds’ (5)
defined in the region occupied by fluid, is the solution of (1) which satisfies
the given boundary conditions. Note that q(s) may be interpreted physically
as a distribution of fluid source density over the interface. Differentiation
of (5) gives the fluid velocity anywhere in the liquid, unless the point lies
on the interface. In this case, by differentiating and then taking the limit
in (5) as r approaches a given boundary point from within the liquid,
correct account is taken of the normal discontinuity of grad ¢ at the
interface. Thus, by solving equation (4) for q(s) , the values of grad o

at the boundary may be obtained. However, it is important to note that the

8r(s)|
g'- g }

1
kernel of this Fredholm equation is singular (G(r/r’) gy in |
as s’ - s) unless the field-point E(S) lies on the symmetry axis. Similarly,
the integrand in the limit expression for the velocity obtained from (5) is

singular at s’ =s , By subtracting off the singular part in the integrand



of (4) and evaluating its contribution analytically, the problem of dealing
numerically with singularities is avoided. A similar treatment is applied
to the evaluation of grad ¢ at the interface. The problem is discretised

for numerical treatment by describing the curve of cross-section L by means

M+ 1

m=1 along it, and applying

of a suitably-chosen distribution of nodes {xm, rm]
equation (4) at each node, the contour shape between the nodes being defined

by cubic splines in the parametric variable, s . Since it is generally desirable
to work to second-order accuracy in the inter-nodal distances Asm , it is

assumed that q(s) is a piecewise-linear function of s , changing gradient

at the nodes. Then we obtain a matrix equation

M+ 1
\
% Anm q = 9, » 0= 1, ... ,M+1 (6)
m:
for the nodal values of source-density, q. - Provided the matrix elements

are evaluated with sufficient accuracy, the matrix A 1is non-singular.

Similar matrix-product expressions are obtained for the nodal velocity components.
Observe that A depends only on the geometry of the interface and other
boundaries. The presence of a wall is dealt with by the method of images,

the general approach being the same, except that singularities do not arise

from the image sources.+ The detailed expressions used, and techniques

(8)

involved have been described elsewhere, so it will be sufficient here to
note that the resulting velocity solutions are obtained with second-order
accuracy in the local segment length Asm , there being two principal contri-
butions to the local erro?, proportional to 6§(= (K.mASm)2 and to

62 =~ (82q/8s?} [ < q>; As?, where K  is the local curvature, and < q >
a L J Tm m

is the root-mean-square value of q . The first of these arises in approxi-
mating segment-lengths by straight line distances, and the second from the

assumption that q(s) is'a piecewise linear function. Information about

TWhen the cavity touches a wall this is not strictly true if a point of
contact exists away from the axis of symmetry. 3ut in such a situation,
mirror symmetry can be used to eliminate the problem of singularity.
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these two quantities can, it is clear, be ,used to optimise the distribution

of nodes. Typically, accuracy better than 0.1% is ensured with 6 ,aq < 0.1.

IV. NUMERICAL AND PROGRAMMING TECHNIQUES

A computer program using the methods outlined above for solving the
potential problem has been written to solve the initial-value problem for

(9)

the interface. The conventions of the OLYMPUS system were employed, the

structure of the code being based upon the ARGOS contour—dynamics(lo) program
developed at Culham. Two methods of time-integration have been examined and
may be used as alternatives in the code: the first-order, Eulerian, and the
leap-frog, second-order accurate schemes, both being explicit methods.

Thus, for each of the nodes m=1, ... M+ 1 5

Iﬁ(tn+-l) = xm(tn4-Atn) = Eﬁ(tn) + fl(:cm(tn 1) - xm(tn))
(7)
(t )

+ f2 v
m n

with similar equations for the variables r and o ,

where
0 for Eulerian

Hh
I

1

(at /at )2 for Leap-frog
n  n

-1

and

H
]

, = At_ , for Eulerian
n

Atn(Atn+-Atn_ 1)/Atn_ , » for Leap-frog.

In order to ensure linear stability of these equations, at each step

At  must be chosen to satisfy a condition of the form

w At < a (8)
max n

where @ 1is a constant of order unity. B corresponds-to the highest
wave-frequency or instability growth-rate for perturbations of the interface.

In order of magnitude, Woax is estimated using the plane-wave dispersion



o
formula w? = - ak + ° k?® , where a is the normal acceleration of the inter-
face, positive when directed towards the liquid. The highest wave-number

that may be represented at the mth node is kmax-2w (Asm + Asm__l) s SO
wmaxz = %aé’('l,M—l- 1) I- = kmax+ % max3 | where a_ is the normal acceleration
at the mth node on the interface. This neglects the effects of curvature,

but has been found quite satisfactory. By experimenting with small amplitude
oscillations of a gas-bubble with surface tension on the interface, the value
@ = 0.6 was found to give a 'safe' margin of stability, and this has proved
generally satisfactory. When the cavity contains non-condensible gas, there
is an additional frequency to be considered, characteristic of the compressional
oscillation. But this is neglected since it is always much lower than the
maximum surface-wave frequency, for cases of interest. It will be noted that
the difference schemes (7) are non-dissipative, in the sense of Kreissgll)
This is of no consequence for small amplitude motions, but gives rise to
numerical difficulties in cavity collapse calculations, which manifest
themselves in the form of growing perturbations of the interface, strongly
localised in the region of high acceleration where a jet forms, with a local
wavelength ~ As . Once they have reached large amplitude, these perturbations
give rise to extremely large oscillatory accelerations, which effectively

stop the calculation by reducing the timestep‘by orders of magnitude. The
growth of these perturbations can be traced to the curvature-dependent

terms which were neglected in estimating the wave-frequency. It is well known
that a collapsing spherical cavity is unstable to surface perturbations, the
amplitude of perturbation growing asymptotically like R-% , where R is the

(12)

unperturbed cavity radius.

Plesset and Mitche11(13) have solved numerically for the linear perturb-
ation amplitudes of spherical, collapsing cavities with and without surface
tension and showed that the amplitude growth cannot be limited by surface tension.

It is clear that perturbations of the geometry are inevitable in the numerical



solutions due to errors of second-order in the segment-lengths which accom-
pany the evaluation of the interface velocity. Since the growth of such
perturbations will be non-exponential, in the case of spherical and -
presumably - also for non-spherical collapse, we expect the mild damping of

short wavelengths will cause them to be stabilised. The numerical scheme

must therefore be modified to make it dissipative (in the sense of Kreiss).
This is easily arranged by adding to each of the difference equations (7) a
diffusive term, so that the "smoothed" variables, x , for example, are given
in terms of the unsmoothed, x , by relations of the form

- Y o= i . A 82 J:(t) - 3 o 12 25 s
x(t+ At) = x {t + At) + ¢ At ——5—~ , for some o« . For this modification
m ™ m ds* m

to be consistent with the desired level of solution accuracy, @ must be

of second order in As_ when the flow is perturbation-free. In the presence
m

of a perturbing velocity of magnitude 6vm in the Laplace solver, and
ot s -1

characteristic wave number Asm , the saturation amplitude € , of the

perturbation in x is estimated by equating the error per timestep in

T 5 5‘H1At , and the last term in the diffusion equation. This gives
6v At ~ o eAt/AsZ.
m m m

Since it is desirable that ¢ should saturate at some small fraction

of K A%; to avoid significant deviations in the local curvature K ,
m m

we see that
a ~6&v / |K |
m m m

where the constant of proportionality should be small compared with unity.
Recalling the form of the local velocity-error estimate, we are thus

naturally led to the form

9s? 1
o.fm={c1 <:> ‘ IK_I + s IKml} |vm| Asm?-



where c¢; and c¢, are small constants. In order to avoid difficulties
when IKml is small, the factor |Kﬁ|'1 is replaced by S , the arc length
of L , and in order to make o ~more sensitive to pointwise fluctuations in

K , the second term is empirically modified to give the final form used:

9%q
Cl 352 2
am=ﬂf____m+cng1§ s]? v | s (as_ + 2s A (9)
L < q> m J = o =

Typically, c, = 0.005 , ¢, ~ c,/10 when surface tension is small,
larger values being used when the surface tension term is comparable in magni-
tude to the driving-pressure term. The addition of these terms in the manner
described can give rise to numerical instability when large amounts of diffusion
appear, the resulting perturbations then giving rise to even larger values of

diffusion coefficient. An additiomal constraint on the timestep must then be

imposed, of the form

1
a At/ As 2< =,
m m 2

Since it is undesirable that the rate at which the calculation proceeds should
be controlled by the numerical damping, it was decided to apply the 'smoothing'
as a separate stage of each timestep. The unsmoothed values at tn+—1

obtained from (7), are then used as initial values for equations of the form
dr _ 8z
o a(s) s (10)

where sm is the parametric coordinate of the mth node at time tn , the
value of @ being determined from values at this time. By choosing a sub-
sidiary timestep At’ = At/K , where K is an integer, such that stability
in(10) is ensured, the smoothed variables are obtained in. K explicit steps of

(10). This allows At to be determined solely by the hydrodynamics.



V. GROWTH OF NON-UNIFORMITIES - JET FORMATION

It is common for the distortion of cavity-shape, as a result of jet
formation say, to result in an initially uniform node-distribution becoming
highly non-uniform. ‘In some cases, this is a desirable feature, since it
can concentrate nodes in regions of rapid variation. This is by no means
universally true,'however; and over-concentration of nodes around a jet has
the effect of reducing the timestep excessively. 1In order to deal with this
difficulty and in order also to maintain solution accuracy where the node
distribution is too sparse, the contour is periodically "adjusted", by
applying five criteria at each node, in a semi-iterative manner. These will
cause the mth node to be removed if
(1) the tangent to the interface turns through a total angle less than some

given minimum between the (m - l)th and (m + l)th nodes, and

(2) the source-density second order variation, defined by

9%q
os?

(as + As. )2/ <q> , is less than some given minimum
. | q g

or, if this first case does not arise, the mth node may still be removed if
the stability restriction (8) gives rise to a timestep less than some given
minimum, due to the smallness of (Asm + Asm_ 1) . This results in some

sacrifice of aceuracy in favour of speed. Equally, a node will be added in

the centre of the mth segment if either

(1) the tangent turns through more than a given maximum angle between the mth

and (m + l)th nodes or,

(2) the source-density second order variation, given by

1-As Z/L q >
{ m+ 1 J m

is larger than a given maximum.

92%q
ds?

2
+ |24

o0s

m

th"

n
The new mnode then becomes the (m + 1) , more nodes being added as

required.

Finally, in order to avoid wide variations in the sizes of neighbouring
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th
segments, the mth node will be relocated halfway between the (m- 1) and
(m-l-l)th nodes if the segment length-ratio deviates from unity by more than

a given fixed amount.

VI. LEAP-FROG AND EULERIAN SCHEMES COMPARED

Wherever anew node is introduced, or an existing one is relocated, the
necessary coordinates and the associated value of potential are obtained from
the parametric spline interpolants for the coordinates x,r, and for ¢ .

When using the Eulerian time-difference scheme, adjustment is easily performed
at any point in time, as a single operation. However the leap-frog scheme uses
information from two time levels, so that it is necessary to ensure that after
adjustment both have the same node distribution. This is most conveniently
done by "matching" the two time levels, that is by taking the time-centred

average, at (tn__1 - tn)/2 , and adjusting the node distribution on the
average interface. Since periodic "matching" is necessary to quench the
so-called leap-frog instability(14) which can arise in some problems, this
procedure fits naturally into the sequence of operations, although it has
been found genmerally true that the interface must be adjusted much more
frequently than it requires to be "matched" to avoid leap-frog instability.
Indeed for the problems which have been studied, no evidence of this
instability has been found. After adjustments have been made the calculation
is restarte@ by first regenerating the solution at t o1 and then at tn 5
by means of the usual "resetting" procedure(14) used in applications of the
leaP-frog scheme to incompressible hydrodynamics.

It is clear that the Eulerian scheme is simpler to implement. It is
also faster, since resetting the leap-frog calculation is equivalent to at
least two time-steps.

In comparing results obtained using the two schemes, a useful diagnostic
is the total energy integral for the system, given for zero gravity and surface
tension, for example, by

S
99
p/tpa ds ,

E = —lﬂLT +p V+
o] n

’Y-

N =

o
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where V 1is the cavity volume, v is the adiabatic gas constant, and Jn
is the inward normal component of fluid velocity at the cavity surface. It
is found that for some problems the Eulerian scheme is inadequate if accurate
energy conservation is required, although this is not always the case.

Generally, however, it is to be expected that accuracy will be significantly

higher when the leap-frog scheme is employed.

VII. EXAMPLES OF CAVITY COLLAPSE

Empty Cavities

In the first case we consider, a cavity with zero internal pressure,
initially spherical of radius 0.75 and at rest, collapses under unit driving
pressure at infinity, the motion becoming aspherical due to gravity, acting
in the negative X-direction with strength 0.5. The surface tension coefficient
is 0.002, Figure 2 shows a succession of cavity shapes as the collapse pro-
ceeds and in figure 3, the jet velocity is shown as a function of time. Since
accuracy in the evaluation of velocities rapidly deteriorates when the distance
separating the jet tip and the top of the cavity is comparable with the largest
neighbouring segment-length, the calculation is effectively stopped as soon as
this situation is reached, the final cavity shape together with the time of
impact being determined by extrapolation with constant velocity. The dimen-
sionless parameters happen to correspond to a cavity of radius 3.27 cm,
collapsing under a driving pressure of 0.009 atm., in water under normal
gravity, the units of velocity and time being then 0.93 metres/sec, and
0.047 secs respectively. The impulsive pressure generated by the water-
hammer effect of the jet as it strikes the liquid at the upper surface of
the cavity may be estimated to be %-pcv where ¢, ¢ are the density and
sound speed for water and v is the velocity of impact. Motion of the upper
surface being in this case negligible, v is given for the jet velocity, so
that an impulsive pressure of the order of 45 atmospheres will be generated.

More violent accelerations and higher jet velocities arise when a vapour

= 12 -



cavity collapses near a wall under the same driving pressure, and as a
typical example, solutions have been obtained for one of the problems
discussed by Plesset and Chapman(Z), in which an empty cavity, initially
spherical, of unit radius, collapses against a solid wall under unit
driving pressure. Comparison of two solutions, obtained using the Eulerian
and leap-frog schemes indicates that energy conservation is maintained at
about the same level - around 1% - in both calculations, and that while the
jet velocity predicted is the same in both cases, the total collapse time is
longer by about 5% using the Eulerian scheme. A further comparison between
the figures for jet velocity as a function of time and those quoted in(Z)
shows reasonable agreement as seen from figure 4. In figure 5, the cavity
shape is shown at successive stages of the leap-frog calculation. Oscil-
lations are seen close to the time of collapse, especially in the leap-frog
solution, which are difficult to eliminate without applying excessive
numerical damping. They appear due to increasing inaccuracy in the velo-
cities towards the end of the collapse, associated with a need for more nodes
than is acceptable for rapid completion of the calculation. The difficulty
is particularly severe in this case due to the highly involuted final form
of the cavity. Consequently, in figure 5, the final extrapolation for the
cavity shape at the time of impact has been suppressed, due to the low
accuracy of this procedure here.

Nonetheless, by averaging across the fluctuatioms, it is possible to
obtain a satisfactory estimate of final jet velocity, both calculations
yielding 13. + 0.5. As noted in (2), if the initial cavity radius is 1 cm,
and the driving pressure is 1 atmosphere, this corresponds to a jet velocity

of 130 m/sec, which gives rise to a water-hammer pressure pcv , of 2,000

atmospheres.
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VII. EFFECT OF NON-CONDENSIBLE GAS

The final example illustrates the effect of non-condensible gas within a
collapsing cavity. The investigation of cavity motion is complicated in
such cases by the poséibility of Rayleigh-Taylor instability during deceler-
ation at the interface, leading to its break-up. When gas obeying an adiabatic
law with v = 3, is included in the cavity collapse adjacent to the wall,
considered above, such instability occurs for example, with an initial gas
pressure 0.1, the interface becoming unstable soon after the jet forms. If
the initial gas pressure is set at a sufficiently low value, however, jet
formation will occur without deceleration, and in figure 6 1is shown the
motion of a unit-radius cavity placed with its centre 1.5 units distant from
a solid wall and containing adiabatic gas (v = %,;) at initial pressure 0.005,
Surface tension is zero. The final cavity shape has been omitted, since the
extrapolation which produces it is inaccurate. Figure 7 gives the variation
with time of the gas pressure. At the point of jet impact, this pressure
reaches 72 units; however, for most of the time it is less than the external
driving pressure, and is unable to decelerate the jet, which reaches a final
velocity of 16.5 + 0.5. This cavity, with a higher unitial gas pressure 0.05,
formed a jet which reached a velocity of 10 before starting to decelerate and
to become unstable. (At still higher values of initial gas pressure, jets did
not form during the first compression of the cavity, though there was some
evidence that they may do so in the later stages after the cavity rebounds).

We surmise, in this and other cases where a jet becomes unstable, that its
break-up into small droplets of liquid may occur, leading to a significant
weakening of water-hammer effects. If so, then even at initial pressures of
the order of a few percent of the external driving pressure, non-condensible

gas may be capable of suppressing the effects of water-hammering by jets.

Conclusion
The essential numerical features of a computational code describing the

collapse of cavities in a liquid have been outlined. The initial shape of the

5 T =



cavity is prescribed and the fluid motion, assumed incompressible, is caused
by a distant pressure field or gravity. The effects of a nearby wall, of
surface tension or gas within the bubble are included, but the effects of
viscosity and heat conduction in the liquid are not.

A number of examples of cavity collapse and jet formation are presented
to illustrate the operation of the code. Empty cavities driven by gravity
or collapsing under a pressure field near a wall certainly form jets. However
it appears that small quantities of non-condensible gas in the cavity which
might be expected to retard jet formation by a simple cushioning effect, also
tend to make the jets unstable. It may be that there are lower limits for the
initial quantity of non-condensible gas necessary to prevent jet formation,

and these may be found by further computation.
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Fig.5 Succession of cavity shapes depicting collapse under the conditions of Fig.4. The wall is in contact with
the cavity on the right-hand side of the figure. There are ripples near the jet tip in the later stages of collapse.
Removal of these would require a somewhat higher node density on the outer flanks of the cavity than was in
fact permitted.
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Fig.6 Collapse of a cavity containing gas which obeys the adiabatic law with y = */;, adjacent to a solid wall.
The cavity is initially spherical, of unit radius and is located 1.5 units distant from the wall, which lies on
the right, out of view in the figure. Initial gas pressure is 0.005, the interface is surface-tension-free, and
collapse is driven by unit pressure at infinity.
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