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THE STABILITY OF ELECTROMAGNETIC LEVITATION SYSTEMS FOR SOLID HODIES

by
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Abstract

‘The stability of electromagnetic systems for levitating solid bodies is
examined, with the aim of clarifying the principles governing the design of
high speed tramsport electromagnetic suspension systems. Earnshaw's theorem
is discussed, and its extension by Braunbek proved using energy theorems.
Braunbek's result is that a stable system must incorporate material of less
then free space permeability, which in practice would be superconductors,
magneplanes or conducting material with A.C. eddy currents. Systems contain-
ing only material of greater permeability (e.g. iron) must be unstable. This
leads to the analysis of the stability of mixed systems containing both
types of material, particularly of those consisting of passive lumps of irom
supported stably in a magnetic field provided by superconducting (fixed flux)
surfaces. A theoretical method for assessing such systems, based.on an
extension of the VB? force experienced by iron bodies in a free magnetic
field, is complemented by looser qualitative arguments concerning the magni-
tude and direction of the forces experienced by the iron. Two dimensional
systems with slowly varying gaps are analysed and a system with constant

flux coils rather than fixed flux surfaces discussed.
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1 Introduction

With the increasing interest in high speed trains and surface transport
systems, a number of different types of suspension systems have been suggested
to replace the use of wheels and rails. Conventional railway systems using
wheels begin to suffer excessive wear at speeds above perhaps 100 m.p.h.,
though this limit can be extended to perhaps 150 m.p.h. by careful design of
the spring suspension, as in the advanced passenger train designed by British
Rail. For speeds in the region of 300 m.p.h., however,suspension systems
based on other principles have been proposed, including the use of air cushions

or electromagnetic levitation.

This paper is a discussion of the stability of electromagnetic levitation
systems, regarded mainly as an exercise in conventional electromagnetic theory,
but oriented towards the problem of designing stable suspension systems with
no essential electromagnetic losses and a predetermined stiffness. Schemes
in which the traction and the levitation are provided by the same system are
not discussed explicitly, nor are any detailed designs produced, but an
attempt is made to clarify some of the principles involved in designing a
levitation systeﬁ and to illustrate them with simple examples.

The difficulties in designing a levitation system arise not so much in
arranging an equilibrium position where the electromagnetic forces balance
the other forces in the system as in ensuring that the.system is stable to
small departures from equilibrium. A stable equilibrium, more precisely
defined below, is one in which the change in force as a body moves slightly
restores the body to its original position. Whereas the force on a body in
a given position is dependent only on the magnetic field around the body and
not dependent on the arrangements for providing the field the change in field
and the consequent change in force does depend on these arrangements. It is
not surprising therefore that the way in which the field is provided is

crucial to the stability of a levitation system.

Earnshaw's paper(B) on the stability of particles in various force
fields seems to be the first reference historically. There he showed that
particles in an inverse square law force field could not be in stable equi-
librium; some other force field was necessary, whose nature depended on
whether the forces were attractive or repulsive. This result can be applied
to distributions of charge or current which are kept constant in size and
direction as they move in a free space magnetic field (which might be provided

by similar distributions). However it does not apply to systems containing






material whose permittivity (in the electrostatic case) or permeability (in
the magnetic case) differs from that of free space. Braunbek(l) considered
the effect of the presence of such material and concluded "Static, stable
free suspension of a system I in the electric, magnetic and gravitational
field of another system II is impossible unless diamagnetic material (or its
equivalent, such as superconductors) is present in at least one of the two

systems". Systems with paramagnetic material only he found must be unstable.

It seems clear from his experimental paper(Z) that he thought in terms
of passive diamagnetic bodies suspended stably in essentially free magnetic
fields; in that paper he rules out the suspension of active systems under
gravity above passive diamagnetic material as being impractical, and does
not consider the possibility of passive systems above active diamagnetic
material. In fact such systems can be constructed - once diamagnetic material
is included in part of the system it is possible to have para (ferromagnetic)
material in other parts and still make the system stable. The most interest-
ing from the practical viewpoint is a superconducting system ("the train")
suspended above a pieceof iron ("the track"), which could in principle be the
present railway lines, though whether this would be practicable is another
‘matter. It is worth emphasising in passing that such systems have no essen-
tial electromagnetic losses: their performance depends on the magneto-static
field and the "iron", a material of high permeability and is independent of
any motion. A practical realisaticn of such a scheme might however involve
parasitic electromagnetic losses, such as eddy currents in the "iron" if
motion or alternating fields were involved and the iron was electrically
conducting, or any losses associated with cooling the superconductors. These
losses could be reduced by conventional methods like laminating or field

tapering, according to economic considerations.

The basis of the theoretical work in this paper is the standard theorem
(in a suitable form) concerning the change of mechanical energy available in
systems when material of specified pgrmeability is introduced. 1t is used not
only to prove Braunbgk's theorem, but also to provide a convenient method for
calculating the mechanical energy potential and to discuss the behaviour of
passive material (usually iron) supported in a magnetic field provided by the

other part of the system. v

Later in the paper the behaviour of such systems is examined in a more
qualitative way in terms of the forces on the iron and the use of coils run
at constant flux as the effectively diamagnetic material is considered. Finally
some computational results are mentioned briefly and some general conclusions

drawn,






2 Stability and Stiffness

Before proceeding further we define the sense in which stability and
stiffness are used to discuss electromagnetic levitation systems in this
paper. Only systems which can in principle be constructed from the following
types of electromagnetic elements will be considered: coils or magnetic
pole or dipole distributions (maintained if necessary) at constant intensity
in free space, coils maintained at coanstant flux, and inert magnetic material
of permeability different from that of free space. With these elements most
boundary conditions can be represented: for example a body with the magnetic
potential maintained constant on it as it moved around in the suspension
system can be achieved by putting a current sheet of fixed strength on a
body of infinite permgability. Again, a body with prescribed normal field
component is equivalent to a body of low permeability p surrounded by a

fixed current sheet with strength proportional to 1/p in the limit p - 0.

Let us consider a suspension system with two parts (the "track" and
the "vehicle") each consisting of some combination of these elements rigidly
fixed in each part. One part is fixed and the other movable and the position
of a specified point in the movable part of the system is designated the
point ¥ = (x,y,z) in a Cartesian system in the fixed part. In addition
the orientation of the movable part is speﬁified by three other coordinates
6 = (e, B, v) which we may take to be the angles between a set of Cartesian
axes fixed in the body and a set fixed in space. We shall only consider

systems in which there is a mechanical energy potential W(x, 6) such that

the force F 1is given by
* F=-VW

where the forces corresponding to the 6 coordinates are to be interpreted as
torques. This implies that in any motion in which the system returns to the
same configuration from which it started, no net work is done on the movable
part. Of course there might be systems for which VU\E # 0, but this would
be an embarrassment in levitation systems since they would correspond in some
sense to devices for converting mechanical into electrical energy or vice
versa, i.e, motors or generators. The equation for small displacements

(x, @ from an equilibrium position (r, §) may now be written:

I[24]] I
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where ||M” is a mass matrix (symmetric and positive definite) representing






the mass and moments of inertia. A necessary and sufficient condition for
stability is that “W ij”’ which is symmetric by definition, is positive
definite. At this staée it is useful to distinguish between purely translatory
motions (in which 6 is held constant), purely rotational motions (in which

r is held constant) and combined motions. It may be that one of the constrained
motions is unstable, but even if both are stable there is no guarantee that

a combined motion is stable - the x and o parts of ”Wij|['can both be

positive definite without the whole matrix so being.

Two comments might be made about rotational motions at a fixed position.
Firstly, since W will be a periodic function of the angular displacements 0
it will always have a minimum at some point (and a maximum somewhere else).
Thus a body constrained in translation will always find a stable angular
position somewhere, and can never be stable at all angular positions - at
best there would simple be no torque at any position, as in the case of an
iron sphere. Secondly if a system were stable in translation, but unstable in
rotation, it could be stabilised by putting another similar system far enough
away and joining them mechanically. Thus a system could not be stable
rotationally in all positions, but could always be stabilised if necessary at
any given rotation by the addition of a similar system far enough away.
Whatever the system is rotationally, a prerequisite for a completely stable
system is stability to translational motions alone. We now consider the
conditions required for stability in translation on the philosophy that if

this is possible rotational stability can probably be arranged as well.

Stability in translation without rotation is assured if the X part of

||W ijll is positive definite, i.e. W _, dridrj is positive for all dri.
3

3
Whether this is so will depend on the geometric arrangement of the system.

However a necessary, but not sufficient condition, for positive definiteness

is that wii =-V.F) >0. In most of the following discussion of stability
it turns out that it is possible to calculate the change in W as the system

1
moves from position r to r + dr in two stages as Braunbek( ? did. In the

first the energy changes from W(r) to W (r+dr) and in the second from
W'(£-+d£) to W(r+dr). The first change, which corresponds to a translation
holding all the current (or polarisation) distributions constant in the
absence of any magnetic (or dielectric material), is a situation covered by
Earnshaw's theorem for which V2W = 0. 1In the second change it is often
possible to prove W(r+dr) - W (x+dr) has a definite sign which depends
only on the permeability of the material in the system. Thus it may turn

out that the value of V2W=- V.,F, found by adding the two contributions






to the change in W, has a definite sign. It is in fact the trace of ”Win
and equal to the sum of the eigenvalues. It may then be argued that if
V.F >0, V2W <0 not all the eigenvalues can be positive; one must be
negative and the system unstable. Such systems need not then be considered
further. However even if V.F <0 and VM <0 not all the eigenvalues
need be positive so stability is not assured. We then argue that by geomet-
ric design of the system, it is plausible that all the eigenvalues might be
made positive. If this is achieved, rotational stability can then be

considered.

Although this condition is necessary, but not sufficient, it has proved
useful in eliminating certain types of system. However in many systems
containing a mixture of materials of permeability both greater and less than

that of free space V.F can be of either sign.






3 Energy Theorems

Most standard texts on electromagnetism contain a proof of the theorem
that increasing the permittivity in an electrostatic system for a fixed charge
distribution decreases the electrostatic energy stored or vice versa. In
another version of the theorem conducting bodies (of infinite permittivity)
are introduced. TFor this case there is an expression for the energy change

though the corresponding result for bodies of zero permittivity is not given.

These energy theorems can be used as the basis for proving Braunbek's
theorem and related theorems about the stability of levitation systems. In
the electrostatic case the stored electrostatic energy is the mechanical
potential energy, since no other source of energy need enter the discussion.
However versions of these theorems are needed that will apply to the analogous
case of magnetic fields and magneto static forces. It is possible to replace
fixed current distributions by equivalent polarisations (and vice versa) which
always produce the same field externally and then appeal to the electrostatic
analog. There may be some difficulties with multiply connected electromagnetic
systems, since the external fields, i.e. those in between the fixed and movable
parts of the system, do not have single valued potentials, which is implicit
in the electrostatic calculation. These difficulties can probably be overcome
by introducing extra polarisations and appealing to arbitrarily small holes in
"the two parts to allow relative motion of these extra polarisations. Although
this might be acceptable, there is also a further difficulty: there does not
seem to be any way of using the electrostatic analog to describe the behaviour
of coils held at constant flux. In practice such coils may be used in levita-

tion systems, so it is necessary to include them in the theory.

For this reason a proof of the energy theorem in a form suitable for
magnetic materials with coils is set out below. When the change in mechanical
energy available during a change in configuration is calculated, any energy
changes at the coils that might be implied by the conditions imposed there
must be included as well as the change in stored magnetic energy. The problem
has to be closed in some way by specifying what happens at the coils otherwise
the change in mechanical energy is not defined for finite changes. The natural
conditions to impose at the coils are that the current through them, or alter-
natively the flux through them, is held constant during any displacement. The
first corresponds to constant magnetisation (or highly ohmic coils driven by
a constant voltage source) and the second to no energy alteration at the coils,

or coils of zero resistance (superconducting perhaps).

Let W be the energy available for doing mechanical work. In any change






in the relative position of parts of the system the change in W is given by
6W = 6(magnetic energy) + (change in coil energy) . (3.1}

If A 1is the vector potential for the magnetic field in a material of

variable permeability p and j is the curvent distribution, the relevant

Maxwell's equations take the form

[
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V.B =0 (3.2)
or B = Va A .

The flux through a coil may then be written

2

¢>=%f jAdr (3.3)
coil

where I is the current through the coil and j the corresponding current

distribution. This formulation applies to a distributed coil and i/t is

a function only of the coil'geometry and remains unchanged during any change

of configuration.

The change in mechanical energy may now be written

aw=-;- z 6(&L) - Z I 63
coils coils
1 N
=3 L (26 - 160 (3.4)
coils

or in the corresponding form

o .
=%] (A.6] - j.6A) dT (3.5)

coils

Any ohmic dissipation that occurs in the coils does not appear since it is
balanced by the extra voltage required at the coils. The change in mechanical

energy between two states 1 and 2 in a system where the coils are held either






at constant current or constant flux becomes

G 2]
wz—wl=% Z I(@l-q‘:,_)%% Z ®(L,~1,)

constant cons tant
current flux
which may be written
.}
W,-W, =% >/ (I, &, - I, ®,) . (3.6)
all coils

The corresponding distributed result is

a

L, .
Wy-W, =35 | (jy.Ay - 3.4, dr (3.7)
i |
where the constant flux condition has been used in the form
/-_11‘(.A_1'é2) =_/j2'(§1“éz) =0 (3.8)

2 of the system, If

(3.6) and (3.7) apply to different configurations 1 and
the configurations are the same, then the 1 and 2 variables are the same.
This can be contrasted with the reciprocal theorem for different variables

in the same configuration, for which the right hand side of (3.6) and (3.7)

would be zero.

Before proceeding we record a number of relations that will be useful

later in this section. If A, B, j and A", B', j' are two sets of

variables satisfying Maxwell's equation (3.2) then

’ ¢ B.B -
./A.j'd'r =/ dr -j = (A AB').ds (3.9)
L] TS p o= A2 2
2
Again, if locally on a closed surface S 5 = Vg, at least in the surface,
then
'y r
-/ Eé’;\g. ds = j @ Vaa' - VA(gA').ds
=j ¢ B'.ds (3.10)






Thus if é’ etc. apply in the presence of a body of zero permeability
/ %;é\_’r\_ig.ds =0 (3.11)
n=o
and if the body has infinite permeability

I.
j %_é AR .dS = 0 (3.12)

either from (3.10) with ¢ =0 or because 3 AdS =0.

We now use (3.7) to obtain energy theorems about the change in mechanical
energy available when the configuration is changed, not by displacement of
different parts but by the alteration of the permeability - in particular for
small changes in permeability and for cases where finite passive bodies of
either zero or infinite permeability are introduced. For small changes &p
in p the conditions at the coil do not affect the calculation. Using (3.5),

Maxwell's equation (3.2) and the identity (3.9) we find the usual expression
. :
1 (g2
oW = - 3 |z 6p dT (3.13)
Increasing the permeability always decreases W and vice versa.

When finite bodies of zero or infinite permeability are introduced, then

from (3.7)

a

W - W = %- ./ (A.3" - A".35) ar (3.14)
after before - T -
between
bodies
1 [ 1
: _ 1 1 ’
or using (3.9) =5 / 7 (A'7\B - A ,B').dS (4.15)
bodies
1 r I 1
which may be written =z j - / E[ (A-A")A(B-B") - ApBl.dS
p=0 p=co
bodies bodies _ (3.16)

(3.16) is the same as (3.15) as shown by an inspection of the missing terms

which are J‘i A"A(B" -2B).dS for the p =0 bodies and | & (28 -A") AR’ .dS






for p== bodies. Both of these are zero from the relations (3.11) and (3.12).
If only bodies of one type or the other are present, then integrals aiways

have the same sign. Using (3.9) the [ i A AB 1is done over the bodies,

inside which j =0 so that the A.j contribution disappears. The other integral
1 (A-A") (B - gf) is done over the space between the bodies and (ﬂ-é’).(i —i')
Eontribution is zero because of the conditions of constant current or constant

flux (3.8). We are left with

£ . r 2 ' 2
W g =k (B-B)*% 40 5—} (3.17)
2 M o
outside inside
bodies bodies

where the positive sign applies to bodies of zero permeability and the negative
to bodies of infinite permeability. B is the original field in the absence of
the bodies, and Ef the field in their presence. On the bodies §f.d§ or
E'Adg =0 so that (B'- B ) satisfies the same boundary conditions as -3B
(the original field). At all other places B' satisfies the same conditions

as B so that g{ -~ B satisfies the corresponding homogeneous condition - for
example if B.dS. specified at a surface then (B’ -B).dS is zero there and

~ so0 on. Calculating W' -W using continuous distributions has somewhat lost
sight of the fact that the fields might have been prescribed on surfaces by,

say, their normal component or potential.

Expressions for W and W' -W for the special case of surfaces on which
the magnetic field potential ¢(B = Vg¢) or its normal component gf as the
surfaces are moved can be obtained from (3.1) from first principles or by
using the present results. Inside the surfaces there are current distributions
and permeable material which are so arranged to keep © or gf constant as
the case may be. Outside Rl T Then the magnetic energy change between two
states is as in (3.14) except that now the integral is over the internal
volumes of the surfaces. The identity (3.10) may be substituted in (3.15)

to give

[ ’
- _ 1 QQ - Qg
W‘W‘zuof <‘Pan ""an)ds

inside
surfaces

Taking account of the sign change by referring dS to the region external

to the bodies this can be written

« 10 =
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’ ;= L ! 20 - { 9¢  Ggh
W-u-= 2] (¢ - on ds j (p\an = an/!ds
kel ¢
on

on

el @
on
1 i [ 0

- 1 _ o9

or W= j ¢ 5 dS (3.18)

do @
on

As might be expected W is independent of the details of what actually
goes on inside the surfaces. Once ¢ or gﬁ is given on the surfaces the

external field is fixed by the geometrical arrangement of the surfaces with

respect to each other.

. By using the identity (3.10) as before an expression corresponding to
(3.16) for the change in energy on insertion of bodies with g =®© or p =0,

can be found

1 f ,f ’ rg’_rn ar-r
W'-—-W=-§-/ -JI [((p —-@)Q%E-J;)—qnﬁJdS _ (3.19)

where ¢’ obeys the same conditions as © except on the bodies, where
’

g& =0 or ¢ =0 respectively.
Although the original system has non-uniformpermeability, the change in
mechanical potential energy has been calculated only for two types of perme-
ability variation, namely small arbitrary variations (3.13) and piecewise
discrete changesto p=0 or p=wo (3,17). It may be possible to find expres-
sions for the energy change for arbitrary finite changes in permeability,
though it does not appear easy. However in much of what follows we shall only
require to know whether W' -W is positive or negative. In such cases we may
appeal to the idea that ‘'any distribution of permeability greater than free
space (even anisotropic) can be achieved by a set of bodies of infinite perme-
ability arfanged on a suitably fine scale. A similar remark would hold for
material of less than free space permeability and bodies of zero permeability.

If a knowledge of the sign was all we needed it might appear we could appeal

to (3.13) and a succession of increments Bl . In fact such arguments can be

- 11 -






misleading, just in those cases for example which represent artificial condi-
tions at the coils in systems that are designed to provide stable suspension

of iron bodies.

Finally, for use in later sections, we obtain a result concerning the
change in energy for small displacements of a system of non-uniform permea-
bility in which some of the coils are maintained at constant current and’
others at constant flux. In systems of free space permeability, where the
result is probably of most use, we could proceed by calculating V.F=-V?2y

directly following the extensions indicated by Thornton( 9) using formulae

for T like
F = = Y, I, I VL
= 2 ik ik ik
; y s : 2 -
where Li_k is the inductance between coils i and k. WV Lik 0 and Lik

is a positive definite matrix.

Alternatively we can consider ﬁhe difference between the change in energy
in two different types of displacement between two configurations of the
system. In one of these displacements all the coil currents are held constant,
and in the other coil currents or the coil fluxes are held constant. Denoting
the initial configuration variables by 1, and the final configuration variables
by 2 and 2 we use (3.6) to give W, - W, and W, -W, . We also use the

reciprocal theorem for different states of the same configuration 2 and 2" in

the form

(1,2, - 1,/%,) =0 (3.20)

all coils

Then straight addition, subtraction and rearrangement gives

Wy, - W, =

N =

z (12"' Iz)(@z’- @2) + (12“11)(¢2'_ g?z) + (12"‘12)(@1"@2’)

all coils

Now I, =1, for all the coils since 1 to 2 is a constant current displace-

ment, and from 1 to 2" either 12' =1, =1, because the current is constant,

or &, = @2' since the flux is constant. Thus only the first term remains

giving

‘\12’ _wz =% z (12"- Iz)(@z’" @2) (3-21)

all coils

= 1.2 =






Thus the change in W in a (partially) constant flux displacement is
always greater than the corresponding change in W when the coils are held
at constant current, by an amount equal to the magnetic energy of the field
caused by the difference in currents between the two states. This result is
true even if material is of non-uniform permeability, though it may be more

useful for the special case of coils in free space.

- 13 =






4. Earnshaw's theorem

2
Earnshaw( ) considered the stability of a particle in the inverse square
law (attractive) field produced by other particles. He assumed the force T

on the particle to be given by

F=Vvy
where ) V=r=
r

where m is the "size" of the other particles and r the distance to them.
Using V?V = 0 he showed that the surfaces of constant V near a point of
neutral attraction (VV=0) are hyperboloids of one or two sheets and that
for small displacements from this point the motion of the particle must be
unstable in at least one of the principal directionms, although it may be

stable in the other two. He concluded that to get stability, V2V must be

negative and went on to discuss the different force laws that would achieve

this.

In the context of electromagnetic levitation a more appropriate form of
Earnshaw's theorem is obtained by examining the force on a distributed charge
. distribution p or current distribution ; due to an (electric) field or
(magnetic) field provided by another set of charge cr current distributions

in free space. Then

'i
F(x) =j PV, V(e +2') + 9,V ()] dr’

or F(x) =/j (') Al VrV(_I.;-I-_x;') +B' (r')]ar’

Here r denotes a fixed point of the body and r’ a variable point within the
body referred to r as origin. V is the potential due to the fixed charge/
current distribution and VV’ and 13-_’ the extra induced potential or field due
to p or j. Now where the charges or currents supplying the original fields
are kept constant and- there are no other boundary conditions the fields VV’
and B’ are the free space fields generated by p(r’) and i(r’) and do not
depend on r. The contribution to F from these is zero (as explicit calcula-
tion shows, putting V2V’ = ,O',s or curl _F_i_' = l’ These are really Maxwell
stress calculations, but we could say physically that a charged body or set

of currents in free space cannot provide a net force on itself).

- 14 -






It is clear from the first equation that Va [ and V. F = 0 because
V2% =0. Since V} = V;; when operating on V, this is also true for the
second equation, but not immediately obvious. Briefly V; AF = J(3(c").

v ) VrV d7’ and from V.j=0, jn = 0 and Gauss's theorem VAF =0,

=

r=
V.F = 0 immediately.

The point thus established, perhaps at unnecessary length, is that in
constant charge or current systems in free space there is a force potential
F = - VW between the parts of the system that satisfies V.F =0 for
translations of one part with respect to the other without rotation. This
might be called Earnshaw's theorem in the context of electromagnetic levita-
tion. However as soon as rotations are permitted V.F need not be zero,
and may be of either sign. The ones that would occur naturally in a body
permitted to rotate would be those that decreased W, now interpreted as a
mechanical energy potential that depends on the angular as well as the spatial

position of the body. V.F would be >0 for such a body, i.e. stability

impossible.






B Braunbek's theorem

Braunbek(l) considered electrostatic and electromagnetic levitation
systems which contained constant polarisation or current distributions and
material whose permittivity or permeability differed from the free space
value. He concluded

"Static, stable free suspension of a system I in the electric, magﬂetic
and gravitational field of another system II is impossible unless diamagnetic
material (or its equivalent such as superconductor) is present in at least

one of the two systems".

His proof for the electrostatic case he applied to the electro-
magnetic case by the use of fixed magnetic polarisations which are equivalent
to fixed current distributions. A relative change of position between the
two barts of a system (two systems in his notation) is split up into two
changes of configuration. During the first of these the polarisations induced
in places where the permittivity differs from that of free space are frozen at
their initial values so that V.F =- V2W =0 from Earnshaw's theorem. In
the second the system in its new position is allowed to relax to its electro-
magnetic equilibrium state and a second contribution to V2W calculated.
However for reasons not yet fully understood he adopts an artificial defini-
tion of energy in the intermediate stage.. This definition is designed to
give the correct energy in an electromagnetic equilibrium. It yields an
expression for V2W in the second stage which is positive definite if the
permittivity (permeability) is everywhere greater than free space, but it is
not obviously negative definite in the cases where the permittivity is every-

where less, unless it is only very slightly less.

A proof of Braunbek's theorem is given below in which a displacement
is dividedin a similar manner into two separate changes in configuration.
An examination of the actual energy charges allows a somewhat stronger state-

ment to be obtained, which can be summarised as follows:
(a) Systems consisting only of constant current or of charge distributions -
in free space are marginally unstable, i.e. V.F =0 (Earnshaw's

theorem).

(b) In systems where the magnetic permeability p is always greater than or

equal to its free space value b, are V.F >0 and the system must be
unstable, whereas in systems where p < Ky V.F <0 and the system may

be stable.

(¢) 1In mixed systems, where p is both < and > My in different parts of the

w Jh =






system, V.F may have either sign, and can have different values for

different relative positions of the two parts of the system.

In the notation of the last part of (b) Braunbek(l) showed that V.F
may be <0 and hence the system may be stable. The proof below shows that

if p< Ky V.F must be < 0. However this still does not guarantee stability,

We consider a system with a fixed and movable part with a mutual force F
between them. Each part contains material of variable permeability and coils
whose current is held constant during any change in configuration. As an extra
case coils held at constant flux will also be considered. An important prelim-
inary step in the proof is to surround each part of the sytem by a current
distribution (perhaps a sheet) in the free space region between the parts, and
at the same time remove the currents in any of the coils inside the current
distributions. These additional distributions are constructed so that the
field inside them is reduced to zero, but the field outside tﬁem, between the
two parts of the system, is unchanged. Provided the permeable material is
present the addition of any fraction of such a current distribution and a
pro rata change in the currents in the original distributions will not change
the fields outside, and hence the force between the two parts of the system.

In particular removal of the current distribution with the permeable material
present inside will not change the external field. Coils which are held at

constant flux will have zero flux after the addition of the current distribu-

tion.

We now use the energy arguments in section 3 to calculate the change in
mechanical potential energy W for small displacements. With the extra
current distributions in place and the system in its original position, we
remove the permeable material from the system. In general this would cause
a change in W, but because the field in the permeable material has been
arranged to be zero there is no change. Then we make a set of small displace-
ments between the two parts of the system. For these displacements V.F =0
if all the coil currents are held constant, and V.,F < 0 if any of the coils
are held at constant flux (3.21). Then ineach of the new positions we re-insert
the permeable material. By the energy theorems of the previous section this
gives a positive contribution to the change in W, i.e. a negative contribu-
tion to V.F provided all the material has permeability p < Mo and a
positive contribution to V.F if p > by - If p is < K, in some places

and > Ho in others the contribution may be of either sign.

Thus for constant current coils we get the statements (a), (b) and (c)
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given above. In addition in systems with some constant flux coils and

material with p < Mo V.F < 0. This is not unexpected since constant
flux coils would be expected to behave like p < Ky material. However
with constant flux coils and material for which p 2 B, or M is unspeci-
fied the two contributions are of opposite sign and from these arguments

we cannot say what might happen. A special case is discussed in section 6.

A similar difficulty arises when the movable pért of the system is free
to rotate as it is displaced. If a constant current system is slightly displaced
from a position of stable rotational equilibrium without being allowed to
rotate, V.F = 0 for such displacements, and the additional release of
mechanical energy W as it is permitted to adopt its new slightly different
orientation will make a negative contribution to the change in W . Hence
the total V.F = - V2W >0. If only material with up > Ko is present
then V.F >0 for the displacements without rotations and permitting
rotations only increases V.F. If only material with p < Hy is present
the contribution due to V.F from the constrained displacement is negative
and from the rotation positive. The sum may then in general be of either
sign. To summérise, if the movable part of the system is not constrained
any extra rotation makes a positive contribution to V.F which may in

general be larger than the negative V.F in p < Ko systems,

However it would be surprising if passive bodies with p < uo for
which V.F <0 in a constrained displacement in a constant current
system (or free field) became unstable with V.F > 0 when allowed to
rotate. That V.F <0 even if rotations are permitted may be seen by
using the two stage argument in reverse. The inert body is surrounded by
an appropriate current distribution which reduces the field inside to zero
in the usual way. If we allowed this current sheet to be displaced without
rotation as before, then re-inserted in the p < He material, we would get
the usual zero and negative contributions to V.F but permitting the final
rotation would make the usual positive contribution. Alternatively, knowing
that the body does rotate, we could instead displace the current sheet with-
out rotation, then rotate it, and then insert the body. The first stage
makes no contribution to V.F, and the second a negative contribution if we
appeal to the physical argument that the current sheet (without the permeable
material inside) is in unstable equilibrium and work must be done to rotate
it to its new equilibrium position. This is because the dipole moment of the
p < My s and hence of the equivalent current sheet, is antiparallel to the

magnetic field. The current sheet is therefore unstable, because its dipole
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moment does not change in magnitude as it rotates, although the original
p< My material is stable because its dipole moment does so change. An
example of this is given in appendix 4. The final insertion of the
po< Ky material makes another negative contribution to V.F; so that
(the total) V.F < 0 for a passive p < H body moving in free magnetic
field, even if it rotates freely.
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6.1 Behaviour of iron or superconducting flat plates

Provided that no part of the system is allowed to rotate, either by
symmetry or by constraint, any active system opposite a passive flat plate
is stable if the plate is superconducting and unstable if it is iron. A
more general statement is that if in any system a superconducting plate can
be laid along a naturally occurring field stream surface (through which no
flux passes) it is stable and correspondingly an iron plate on a natural
constant potential surface is unstable. This may be proved using the energy

theorems of secticn 3. Moving the superconducting plate is equivalent to

removing it (when there is no energy change since this is the one position
in which it does not affect the fields) and replacing it in a slightly
different position, when the mechanical energy W goes up. In the case of
the iron plate it goes down. In general such plates could be curved, and the
parts of the system supplying the field different on both sides. If the
plate is flat, then the parts are images of each other with the same geom-
etry and the same potentials for the superconducting plate, and opposite
potentials for the iron plate. Wiﬁh a one sided system there will now be

a net force on the plates - repulsive for the superconducting plate and
attractive for the iron plate but their stability is the same as that of the

combined system.

Note that these remarks imply that all null-flux systems consisting of
a flux excluding plate between some provider of magnetic field are stable
and cannot be made unstable (i.e. arbitrarily destiffened) by putting ircn
in the system providing the field. However they can be if iron is attached
to the plate itself nor need V.F be negative in general for curved flux

excluding plates as explicit examples show (section 9).

If we anticipate some of the remarks of the next section, then these
results may be extended to the behaviour of passive material inserted into
an initially uniform field near a flat plate. The initial field may be in
any direction though the natural directions would be parallel to a super-
conducting plate or perpendicular to an iron one. As remarked in section 7
the change in sl eal energy (3.18) or (7.2) may be used as the mechanical
energy potential and provided the bodies do not rotate during any displace-
ments the system behaves exactly like an active body with the magnetisation

specified by the initial field.

Systems in which rotations of various parts may occur during translation

pose a problem. If the rotations are constrained during a translation, the
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extra energy released when the system is permitted to take up its new equilib-
rium configuration by rotations without translation will decrease the stability
(if any) of the constrained translation. While permitting rotations may not make

it unstable we cammot say that it will not.

Nevertheless one feels that a single active body opposite a flat super-
conducting plate which, because of its asymmetry, rotated when pushed nearer
the plate would still be stable. If so there may be an argument to prove this
like the one in section 5 for a rotating body of less than free space perme-
ability. However a system with more than one rotating body might conceivably
be unstable, because it seems possible that as it was pushed nearer the plate
there might be circumstances in which some of the bodies were rotated into a
position where they were unstable and flipped over. In such a case a lurch
in the translatory behaviour of the system would be expected. Further thinking

about the implications of such systems is required.
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6.2 Constant flux coils and iron bodies

In section (5) the sign of WV.F for various systems has been established.
For mixed systems containing material of any permeability, and coils held at
constant current or constant flux the sign of V.F is not determined. It is
not even determined in the case of passive iron bodies supported by constant

flux coils.

However in the special case of a passive body supported by a single coil
held at constant flux in an equilibrium position with no force (i.e. a situ-
ation where the magnetic forces are much larger than any other forces, such as
gravity) we can show that V.,F > 0 and thus that the equilibrium must be

unstable, no matter what the shape of the coil or the iron.

Let the flux through the coil be @ when the current is I . Then the

flux and current can be related by the inductance
®=LI

where L(r) is defined in the presence of the paésive iron body (and any
other static ones that might be attached to the coil) and varies as the

position r of the iron body varies.

The magnetic energy stored in the system is % LI? and the energy removed
at the coils if the flux & changes is I d®. Using (3.1) or (3.4) in

situations where L changes as the body moves the force F on the body is

given by

F=-V (-1—L12) =-V(~l g%/L)
& 2 @ 2 @

—wo(lqir2

or =V (= 1L1?)
2
I
T2
== VL in general (6.10)

(6.10) applies whatever the condition at the coil, as it should: the force
can only depend on the instantaneous current and the geometry. By direct

calculation
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Now (Y?.E)I > 0 for this is a constant current situation with iron present.
From (6.11) V2L >0. If F=0, VL =0 and from (6.12) (V.F),, > 0 as well. This
means that one constant flux coil cannot hold a piece of material of perme-
‘ability greater than free space in stable equilibrium with F =0, even if
rotations of the iron are not permitted. Any rotations would only increase
V.F. At least two coils must be necessary, and that they are sufficient is
shown by an example in appendix 5, and experimentally in the accompanying

paper.

There would be some stiffening effect from the constant flux condition
at the coil when the second term in (6.12) was non zero and the analysis
above does not show whether (V}E)é can be negative. We may speculate that
even if F # 0, due to gravity say, that thestiffening effect is never
enough and that V.F > always. A proof of this speculation, or alternatively,

-

a counter example, has yet to be found.

We may further speculate that,even if such a one coil (constant flux)
system is always unstable with iron for whiech p = =, it might be

possible to make it stable if the iron saturated.

The precise role of saturation in these situations is not at present
clear. If we say that for small changes in the field a partially saturated
piece of iron behaves like material with constant polarisation and a perme-
ability given by the local value of %% then, as Braunbek(l) pointed out,
this would not stabilise a constant current situation. But it is possible
to hold a piece of magnetic material with constant polarisation in stable
suspension in the field of a single coil held at constant flux provided the
polarisation is big enough compared to the coil current. However with a
saturated piece of iron only a limited amount of constant polarisation is

available, proportional to the exciting current in the coil, and it might

not be enough.

There are systems which depend on saturation in the iron for stability.
An example is the one discussed by Guderjahn and Wipf(q') where an A.C. excited
or travelling coil is placed below a flat eddy current repulsion sheet with
an iron sheet attached underneath the eddy current sheet. When far below
the sheet the coil is attracted by the iron, and would be unstable if the
iron_ﬁid not saturate. If the iron does saturate as the coil approaches the
sheet then some flux penetrates to the eddy current sheet and eventually the

attractive force becomes repulsive. So saturation can be beneficial in the

sense that systems may be designed that would not be stable unless it occurred.
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. Calculation of the potential W and slowly varying fields

In a particular application the best method of obtaining the force on
part of an electromagnetic system may well be to solve the field equations

and calculate the Maxwell stresses over a suitable surface.

However conceptually and for the analysis of simple systems it is useful
to consider calculating the force F as - VW where W is given by (3.18) in

the form:

N =

f
1 3o
W o= /-fcp dS += L - Z oI (7.1)
2|.lO i on ®d I
¢

58

where the integrals correspond to bodies on which gﬁ or ¢ is fixed and
the sums to coils where the flux & or current I is fixed. (7.1) actually
applies to systems with variable permeability 4 provided ¢ is |
redefined so that B = pVo and the integrals are written in the form

[ ©B.dS, though it may only be useful for bodies with free space between them.

A disadvantage of calculating W from (7.1) is that in cases where the
movable part of the system is small and possibly passive (that is containing
nc sources of current) its behaviour might be expected to depend only on the
field and system elements nearby and not on the distant field. However if
(7.1) is used the boundary conditions far away appear to be important, in
spite of the fact that the field is only distorted locally, in the sense that
if the far field was specified by constant flux coils or comstant gﬁ surfaces
the positive sums and integrals would be taken in (7.1), which gives
W = % X magnetic energy, whereas constant current coils or ¢ surfaces would

give W = - % magnetic energy. Of course VW would be the same in both

cases.

A better idea of the effect of introducing a passive body is gained by
using for W the expressions for the change in W as the body is introduced,
in the forms (3.17) or (3.19). Firstly it is now clear that W really only
depends on the local field and the local boundary conditions. Secondly, if
the initial undisturbed field is exactly uniform then the passive body
(provided its orientation is fixed or does not matter) in the original system
beha&es exactly like an equivalent system in which an active body with the
appropriate boundary conditions (p or ®, fixed on its surface) interacts
with fixed elements with a homogeneous boundary condition corresponding to

the possibly non-homogeneous one in the original system., To take a specific
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example, consider an iron sphere in an initially uniform field near a fixed
superconducting flat surface, The field may be in any direction, in particular
perpendicular or parallel to the surface. The sphere behaves in exactly the
same way as a sphere magnetized with a cos 6-like potential maintained on its
surface, i.e. uniform magnetisation oriented in the original field direction,
above an inert superconducting surface. In this situation, from section (6.1) or
from experiment, we know the sphere experiences a stable repulsive force, and
so would a superconducting sphere in the same situation., The stability depends
on the flat surface - if it was iron both sorts of sphere would be unstable.
One may speak of images in the wall: in the case of the superconducting wall
both spheres set up an image of the same sign and experience a repulsive force
which decreases with distance from the wall - hence stability, whereas with
the iron wall the images are of opposite sign and bodies experience an
attractive force which falls as the distance from the wall increases - hence
instability.
This idea can be extended to take account of non-uniformity in the

initial field. More precisely we can consider bodies placed in fields which
vary gradually, in the sense that the scale length of a typical field vari-
ation is much greater than the size of the body. Then W can be calculated
using a suitable mean value of the field. If we again consider iron or
superconducting bodies inserted into a system with (say) a superconducting
flat surface, then far away from such a surface W may be found from (3.17)
or (3.19) and will take the form

W = sij B, Bj (1.2)
where Sij is a symmetric positive definite tensor for a superconducting
body and negative for an iron body. Sij might be called the electromagnetic

shape of the body and in a free field depends only on its actual shape.

If the body has a fixed orientation Sij is fixed, but W may vary as
B wvaries. However if the body is not fixed in orientation it will rotate
at a given position until it reaches a minimum value of W, i.e. the prin-
cipal axes of Sij will rotate until the direction with the least eigenvalue
is aligned with the field. A long flat irom body, for which W (7.2) is
negative, will align itself to cause the maximum local field distortionm,
namély parallel to the field: a similar superconducting body for which W
is positive will cause the minimum field distortion and will also align

itself parallel to the field.

- 25 -






As such a body moves under gravity (say) close to a horizontal (super-
conducting) wall the Sij in (7.2) become complicated functions of h, the
distance from the wall, and the orientation of the body with respect to the
wall. 1In general the final orientation of the body will be neither parallel
to the wall nor in the same direction with respect to the field as it is
far from the wall, but at some orientation and distance from the wall that
minimises W. In the special case of spherical bodies in three dimensions
or circular cylinders in two the orientation of the body itself when near
the wall will be irrelevant by symmetry, but there should still be a distinct-
ion between the effect of fields perpendicular to the wall, Bn’ and

parallel, Bs . One would expect

R
W=y m [ks(h) Bs2 + kn(h) an] (7.3)

It turns out (appendix 1) that in the two dimensional case of a circular
cylinder near a flat wall the field orientation does not matter:

k (h) =k (h) = k(h) say. Then
s n :

or in a slightly different non dimensional form

K (2) s

W = (7.4)

2 Ho

where a is the radius of the body and V its volume. For large h/a k
assumes the value appropriate to a body in a free field (rather like the
calculation of virtual mass in fluid mechanics). For a superconducting

sphere k = 1%, for an iron sphere k =-3 : for cylinders k= + 2,

Hence we get the well known result that iron bodies tend to move to
regions of high B? to minimise W and superconducting bodies to regions of
low B?, and they finally reside (in the absence of other forces) in regions
of maximum or minimum B2. It is not difficult to construct fields with
interior points at which B? is a minimum - indeed any position where B=0
must qualify. However B? can never have a maximum internally (since

ij

Vg2 = Zc%j Q.. > 0) so an iron body would find no internal equilibrium
position (if it could it would violate Braunbek's theorem which asserts

instability for systems containing only iron and free fields).

Now consider the case of an iron body drifting in a slowly varying
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field, seeking a maximum B?, which must lie on the boundary of the region
where the field is specified. Suppose matters have been so arranged that

at the edge it encounters a locally flat wall on which gﬁ is specified.

In the equivalent system it will behave as an insulating wall and produce

a repulsive stabilising force which will predominate when the body is close
to the wall compared to a typical distance over which the field varies..

For large h k will take the value appropriate to the body when immersed

in a uniform field of infinite extent and as h decreases k will rise or
fall in such a way that k"> 0 for the stable situations like an irom body
approaching an insulating flat plate and k” < O for the unstable

(V.F =- V2W). 1In appendix 1 the calculation of k(h) for circular
cylinders in an initially uniform field in two dimensions is done analyt-
ically (giving an infinite series) for the case where the SurrOunding wall
is also circular. An odd feature of the result is that even in this case

W does not depend on the field orientation but only on the distance between
the centres of the two circles. The flat wall is then a special case. In

a general three dimensional situation we might distinguish eight cases as
representing the range of practical interest, formed by permuting the situ-
apions of an iron or an insulating body approaching an iron or insulating
wall in an initially uniform field which is either parallel or perpendicular
to the wall (appendix 3). However in the two dimensional case described
above there are only essentially two calculations to do because firstly the
field orientation does not matter and secondly by the inverse property of
flux and potential lines in two dimensions k for iron walls and insulating
bodies is -k for the same shaped insulating wall and iron body. The
curves of k versus h are sketched in figure 1, actually with four curves
just to clarify the situation, but the curves of negative k are just the
images of the curves with positive k for the reason given above. Note that
the force becomes infinite as the body touches the wall for the "like on
like" cases, in two dimensions. In the analogous situation of a spherical
ball in three dimensions the curves will have differing shapes (though with
the required monotonic curvature) and will also depend on the initial field
orientation (see appendix 3). The case of most practical interest of an
iron ball approaching an insulating wall with an initially uniform field
parallel to the wall, although in principle easy to solve, unfortunately

requires a three dimensional calculation,

Figure 1 shows explicitly that as an iron cylinder approaches an

W
insulating wall the force (F = - VW = - gﬁ ) is repulsive and falls as h
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increases, a stable situation. Now suppose we superimpose on this a slow

variation in B? so that far from the wall the iron performs the VB2 drift

described previously. Then the force potential W is now the product of
2

the variable k and B? and to ensure stability we require % >0 and

also the relevant components of V2W in the directions transverse to the

wall also > 0. The iron still performs the usual VB2 drift transverse to

the wall which only affects the drift in the perpendicular direction. If we want

to ensure stability in the transverse direction we must arrange that B?

has a maximum on an axis perpendicular to the wall when the axis is,

roughly speaking, approached transversely. If stability in the traunsverse

direction is assured, the iron cannot possibly be stable as it approaches
2

W
the wall until it interacts with the wall, so g_h? <0 (i.e. unstable)

until this point.
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Figure 2 shows the curves of W against the wall distance h for this
case. The dotted curves represent the situation without the wall present,

and for the wall stabilisation without any variation in B2. The full curve
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represents the effect of combining both according to (7.10) and the second

part of the figure the corresponding force curve. Where the stiffness
2
=—gE% < 0 the body is stable though the force may be positive or negative

For this simple case it appears that the stiffness is only small where the
force is attractive, though there may be some possibility of craftily’
arranging the original distribution of B2(h) (which must always have
42

dh?
the repulsive force region. To what extent this can be done is mot yet

B2(h) > O ) to flatten the force curve, i.e. reduce the stiffness, in

clear - it may be that it is possible to anything in principle, but difficult

to concoct the required field in practice.

—30 =






8. Qualitative arguments for assessing the stability of mixed systems

The suggestion of the previous section 7 was that stability of an iron body
near an insulating wall could be achieved by suitably balancing the stabilising
effect of the wall and the unstable V3? drift of the iron body in a free field.
The essential assumption was a gradual variation in the field and we now try to
extend this to more severe field variations. We examine in a qualitative way
the stabilising and destabilising features of a levitation system, and hope to
establish some rule of thumb principles that will help in later computer calcula-
tions. It seems likely that ultimately computation will be necessary to establish
the optimum arraﬁgements for a levitation system, and so we consider a few simple
systems in order to see how they work., The arguments offered are suggestive

rather than definitive.

We shall only consider systems made out a surface on which the flux is pre-
scribed, and another surface of inert iron on which the potential is zero.

Consider first the system shown in figure 3, a magnetic pipe with magnetic insulators

B —
N L 1.
=%

~ . 'l ]
iron i
P SR
| e ‘ 5
o]
_......__._.-}7-
. B =0
2 e ‘

4 magnetic pipe

i

Figure 3

top and bottom and a uniform magnetic flux prescribed at either end. The system
is two dimensional, though the argument would apply equally to a circular pipe.

If the pipe is long it does not matter much -what the boundary conditions at either
end are - they could be uniform flux or a fixed magnetic potential across the pipe,
as long as the magnetically insulating side walls are present. 3Before any iron

is introduced the field inside' is uniform. "Now introduce a thin strip of
iron in the middle. Then in a long pipe the total force on the iron will be in
the vertical direction since by symmetry the horizontal force is zero provided

the iron is far from the ends.






Again by symmetry there is no net vertical force on the iron when it is
midway between the top and bottom of the walls. The question is: in what
direction is the force as the iron is displaced vertically, say upwards. It
is clear by inspection that when the iron is displaced as far as it can be so
that the top face is on the magnetically insulating wall no flux can get into
the top of the iron - the flux on the sides can only produce (equal and opposite)
horizontal forces and the flux that goes in and out of the bottom must produce
vertical forces all of which are in the negative vertical direction. Thus when
it is on the wall there is an attractive force pulling it back towards the mid-
way position. There seems no reason for the force to change sign as we approach
the midway position though it will become smaller, and if we assume the force is
monotonically changing then this is a stable system with a zero net force at the
midway position. It is more difficult to say whether its stiffness increases,

i.e. what the exact shape of the graph of Fy against y is, but one might guess

that - gg was an increasing function of y since in the special case of a
infinitely thin plate %% presumably has some finite value at the midway position,
but on the wall Fy is infinite (due to the singular behaviour in the magnetic
field which is ~';% where d 1is the small distance from the ends of the plate).

The system is also probably stable to rotations by the same argument, since if the

plate was rotated till it blocked the pipe, the return couple would be stabi sing.

Another version of the same system is shown in figure 4.
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Here the field is provided by.a source and sink on the top and bottom walls,
all the rest of the walls being magnetically insulating again. The ends are far
away and the iron plate in the middle is long compared to the distance between
the top and bottom walls, so thatonce again it only experiences a vertical force
due to the flux entering its top surface and leaving its bottom. There is actually
a simple formula for the flux distribution provided by this system on the plate
surfaces, if we assume it is infinitely long, but the important point is that if
the distance from a magnetically insulating wall to the plate surface is h, then
most of the flux enters in a2 characteristic distance of order h along the plate
and falls off quickly either side. Thus B_ on the plate is given by a formula
of the form By(x) < fn (%) where the function is given by the exact calculation.

h
The factor & implies that the total flux J'Bydx is independent of h, but the

total attraZtive force fozdx @ %. Thus the attractive force is larger the
smaller h, so that as the plate is displaced towards one of the sources it
experiences a net attractive force in that direction. In the context of section 7
this might be regarded as an extreme case of VB? destabilisation overcoming the
stabilising effect of the wall. This system is probably unstable to rotations as
well. .
Clearly one could consider a system that consisted of the two systems
together, the field being the sum of that provided by specifying the flux at the
ends, and by specifying it as source and sink on the top and bottom walls, in a
variable proportion, Although the problem is mot linear one would imagaine that

as the proportion of the second field increased the system would move from stability

to instability.

.

Another way of looking at the problem qualitatively is to examine the flux

distribution around an iron body set in a magnetic field, as in figure 5.
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Flux enters on one side and leaves on the other. What constitutes one side

or the other is clear in the case of a long thin body whose ends extend beyond

- the field, but vague in the general case. However pursuing this line of thought,
the flux in and out is constant, i.e. fiﬂlds is the same on both sides, but the
force is attractive and an?dS. We imagine the flux to be prescribed on the
wall with an appropriate sink or source at a large distance in the negative
x-direction. When the body is far from the wall the net force on it is small

and we assume effectively zero. We also assume that as the body is moved towards
the wall the force increases monotonically. This assumption is probably true

for bodies with smoothly varying contours and smoothly varying flux distributions
on the wall, though one can also conceive it might be possible to construct bodies
and flux distributions for which the force did not vary montonically with distance
from the wall. With the assumption of monotcnicity it is again a question of
finding the direction of the force when the body is close to the wall. Thinking
in termsof abody with two sides, one opposite the wall and one facing the sink/
source at infinity the attractive force [ %:lds, when the flux j'BndS is
prescribed, is larger when Bn is more bunched or more non uniform. Now provided
the body effectively extends beyond the source of the flux at the wall the non-
uniformity on the negative x side is determined by the shape of the body on that
side, whereas the nonuniformity on the wall side is determined by the body shape
and by the prescribed flux distribution. If the wall flux distribution had no
effect then the body would be effectively in a free mégnetic field and iron bodies
in free fields are unstable., However when the wall flux distribution has a signifi-
cant effect and constrains the flux to be more uniform than it would otherwise be,
the attractive force on this side will be lessened and in the final situation the
net force might be repulsive. With the assumption of a montonically varying force
in the wall direction, and of a much smaller sideways force, this would imply
stability. On the other hand a flux distribution that caused a greater concentra-

tion of flux than would naturally occur would be likely to increase the instability,

The direction of the force when the body is close to the wall would have to
be found by calculation. In most cases this would probably be numerical but in
simple cases analysis is possible. As an example, we treat the case of a semi-
elliptical body shown in figure 6. The rear flat surface covers the prescribed
flux distribution completely when the body is close to the wall, and under these
conditions there will be a negligible sideways force when the body is displaced

a small distance from the wall.

On the outward-looking face the flux distribution is normal to the surface
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Figure 6

and is the same as for an elliptical body held at constant potential in free

space. It is shown in standard texts on electromagnetic fields that in this case
-%
2
p)

x? y?
Bn g < g + b4>
O AP

- where (x, y) lies on the surface of the ellipse PER
a

The flux through the surface is J/ Bn ds

x=-a
BZ
and since the only force on the surface is normal to it with magnitude Eﬁ §

the force component in the y direction is

!I
1 j B 2ds cos @
2u n

or a

f

1 2
5 j Bn dx

=

=-a

The integrals are elementary. If we prescribe the amount of flux to be 7 for

. g I . .
convenience, we find a normalising factor of b in front of the above equation

1
for Bn’ which varies from 5 at x=*xa, y=0 on the side walls to i at

x=0, y=- b in the centre. The integral for the force in the (negative)

y direction on the curved surface becomes :

F o= - A L l+e
y 2y “ea °8 1T ¢






b , : :
where e? = 1 - =5 . 1In practice we are only interested in cases where b < a.

2
a2

The attractive force on the flat rear surface of the body will depend omn

the flux distribution, but its minimum value will be when the flux is uniform
and spread over the whole of the back surface. If it is uniform and spread over

a distance L then to achieve a total flux = Bn = f and

There will be a net force away from the wall provided

L lte x? n?
L 2a °

When e=0, i.,e the ellipse is a circle, the left hand side is -s and the
equality is not satisfied. For larger b (e? < 0) the left hand side is even

smaller, It increases as b 1is decreased and is just satisfied when

~ =

1 b 1
a 6

Thus elliptical bodies thinner than % =~ % or the corresponding value for

a smaller 1L would experience a repulsive ;orce when close to the wall, and the
fatter cnes an attractive force. Ultimately for bodiés thin enough to be a flat
plate the repulsive force tends to infinity logarithmically because of the singu-
larity in the field distribution at the ends. The effect of this singularity
would technically disappear when the flat plate was a small but finite distance

from the wall, but the trend - a large repulsive force - would still be there.

The behaviour of this body to rotations is more difficult to guess, but
although this might be of practical interest, in principle we are only concerned
with establishing the behaviour of bodies undergoing small translations, for the

reasons set out in the earlier sections.






9. Analysis of mixed systems with slowly varying gaps

With the aim of providing examples or counter examples we analyse
a particular class of mixed systems, namely those consisting of surfaces
on which the magnetic potential ¢ or its normal component gf are specified.

We consider a two dimensional system in terms of ¢ and the corresponding

stream function VY, There are only two surfaces (figure 7 ), one movable

and one fixed, both infinitely long in the x direction and separated

by a small gap in the y direction - small in this context meaning small compzred
to the characteristic length of significant variations of the field in the x
direction. On one surface v is specified, on the other V. In a given position
the force F between the surfaces can be calculated by evaluating the Maxwell
stress tensor along the x axis(see appendix 1) which is taken to lie between the
surfaces. As figure 7 shows the shape of the surfaces are defined by their
positive distances hm(x) and hW(X) from the x axis. Dashes denote differ-
entiation with respect to x.

The force F is found by evaluating the field components to the second order
in quantities like h é% and calculating the Maxwell stresses. It is also possible
to produce an explicit formula for the potential function from which F is derived
according to (3.18) but the function and hence the field has to be evaluated to the

third order to give F to the second order.
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Figure 7
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The results from appendix 1 are :

;D ) ’ (h)+ h‘b)z
F_ =] dx {cp'w - (W)W - (hye') o - Y At . hip h(,,cp’\ll’} (9.1)
© =0
I ‘de rM+(h (p’)'\l"—(h \'r")’(pr -!-l[h\ll”+ (h \!’,)’]2—-];[1‘1 cp”+(h (Pf):]zl
y ] 1 2 v ¢ 2y P 2" 9 LRSI
~to (9.2)

where F is the force on the upper (V¥) surface. These formulae assume that ¢
and V¥ tend to comstant values at the ends, so that integrals of any quantities
that are total differentials (for example ¢ V" + ¢"V’) are ignored. They have
the comforting feature of being unaffected by changing h(p by ho and h\!j by
-ho where ho is constant (i.e. moving the x axis). Again if we write _htp’
- h\l' for h , h\[; and ¥ for ¢ and - ¢ for VY, then the magnetic field is
rotated through 90° and the Maxwell stresses,Fx and Fy change sign.

To calculate V.T we envisage making small displacements of the upper
surface in the x and y directions. If we designate the position of the upper

-~

c
) - g : . .
surface by (xo, e and change (xo, yo) then the operator o is equivalen

to repeating the integrals for F with V¥(x) and h\!,(}:) replaced by VY(x-¢€)

; s 9 . ' '
.and taking the limit € = 0. Thus on I ey, n\p’ @, hcp) dx = - J’(g‘[]qf 1 th: hqr)dx

or alternatively f(ecp ¢ + & h:P) dx assuming all quantities disappear at the
n

* s 9 )

integral limits. The operator ﬁ is equivalent to Kp or T s both

giving the same result since the formulae contain only (h(p + h’«l‘)’ apart from

derivatives of h(p and h\,} which do not affect the answer.

Applying these rules we find

oF
== =/ dx {¢"V - (h:P‘lf’)'\!" + (hy ¢ 9" + 0]

0
BFX r
£ L 3 1o 2
By / dx ( (h(p-l hw)q)lll + 0(h?)}
a f " ’ AN
=t =/ dx {(hy @'V + (b ¥")'¢" + 0(0®))
oF ,ﬂ ;
"é;f = j s {(‘011\1"[ (or _ q,ﬂcpf ¥ a4 L!I”[ hll,q’” & (h(plyl ).-] _ CP”[ h(pC_D” 4 (hqr(P!)’] + O(h Z)J
' (9.3)
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oF oF
Thus we can check that, to the first order in h, 5§§ = 5;1 and calculate V. F:
o)

BFX EEX
v_«:--
¥ ox_ dy
o o
oF
Under the transformation (g, ¥) - (¥, - ¢) referred to above, V.F, indeed 5;§
oF
and §§X » appear not to change sign as they should, but this is because under
o

1 2 g ;
'the change (h@, h¢) to (-hm,-h¢) the operators bx, and 5;; change sign
as well.

To zero order in h, we see that

aFX aFX 1 "
s = —_ = !
'ax_o - ayo 3 V'E /dx $ W )

so that where both surfaces are "active", i.e. ¢ #0, ¥ # 0 the system may be
stable or unstable, depending on the sign of the integral and if stable has to
order h the same stiffness in all directions. This is a result of h being

small: the principal directions are actually displaced 0(h) from the Xy and y_axes.

he cases where one of the surfaces is passive, i.e. ¢ or ¥ =0, is probably
- of more practical interest, particularly if ¢=0 since this represents the case
of the inert lump of iron opposite a "superconducting" surface on which the flux
distribution is specified,

In this case the zero order terms in the force gradients disappear, leaving

only first order terms in the h's, which may be of either sign. Explicitly

F =/- (h ¥’V + 0(h?) (9.4)
X @
F o= i’-’-z+l[h Vot (h ') 124+ 0(h?) (9.5)
y 2 25y o] ’
an
— _ Y 2
5;; /' (hwq Y'¥' 4+ 0(h?) (9.6)
oF
_ " " N [ 2
_Iayo _/ s [h‘pqr +(hq)\,'r )'] + 0(h?) . _ (9.7)

Thus there is an attractive force between the two parts of the system. If h is
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constant, i.e. the irom is flat, then FX = 0 (explicitly and also from first
principles, since the force is always normal to the iron surface) and
oF '
§§Z = "2 (h¢4-hm) >0, i.e. the system is unstable, weakly to first order in h,
o

a special case of the general result. BRending the superconducting surface, i.e.
choosing h, » makes no difference. However bending the iron surface does, since
a littl? examination of (9.6) and (9.7) g%ows it ingossible to choose h@’ W
and hW so that ¥V, F <0 and indeed 5;? and 5;5— individually < O.

These results can be regarded as showing that it is possible, in principle,
to construct a system, one part of which is an inert iron surface and the other
a f1u3 specified surface, which is either stable or unstable. Conversely, by
using the (¢, ¥) = (¥, -¢) transformation we can similarly show that systems
with a specified ¢ surface (constant current coils backed by iron) and an
insulating flux surface (a magneplane) may be either stable or unstable; that
i1f the magneplane is flat they are (only proved in the small gap approximation
here) naturally stable, but that by suitably bending the magneplane surface and
adjusting the flux distribution on the iron they can be made unstable (or with
lesé bending their stiffness decreased). The formulae show that in this approxi-

oF dF .

mation —% > E—E so that if both are negative the system will be stiffer in the
c X

o o}
x direction than in the y.
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10. Computational results and conclusions

(8)

With the use of a suite of programs available at Culham for computing

two dimensional electromagnetic fields, some simple systems have been analysed.
The results are very limited since only a very small amount of computing has
been done with the aim of justifying the rather qualitative ideas set out in

the previous sections. The most interesting system consists of a circular iron
cylinder inside a square box rather like that in figure 3, but with walls curving
inwards top and bottom with zero flux prescribed on them and flat walls at either
side with uniform flux. The diameter of the cylinder is one quarter the length
of the side of the box, and the top and bottom are curved in order to increase
the field in the centre, and attract the cylinder there.

The forces on the cylinder (no torque by symmetry) are calculated in the
following way. The standard input procedures o6f the program are used to specify
the shape of the box and its associated flux distribution, and the position
and shape of the iron cylinder. With the appropriate boundary conditions the
finite difference equations determining the magnetic field distribution are
solved on a suitably fine rectangular mesh. The forces (and couple in general)
are then found by integrating the formulae for the Maxwell stresses around a
closed rectangular contour around the ecylinder. For convenience the contour
is made up of appropriate mesh lines and the accuracy of the calculation can
be estimated by calculating the stresses around a number of different contours
for which the results should be the same. The cylinder is then moved a small
distance and the whole calculation repeated to give the forces at the new position.
By doing this at a large enough number of different positions the force gradients
and V.E_throughout the region can be determined.

The results, given in greater detail in an earlier version of this paper,
show that as the iron cylinder is moved from the centre towards the top curved
wall, the force in this direction, although it may be initially towards the
wall (unstable), eventually becomes repulsive (stable) provided the wall curvature
is not too large, while the sideways force is always stable. When the iron is '
ﬁbved towards a side wall, a repulsive force is again experienced, and the
force parallel to the side wall is now weakly unstable. This is presumably
because the field strength increases towards the corners of the box and the
side wall provides no stabilization in this direction. At the centre in the
examples tried, the cylinder was sometimes unstable in one direction, but V.F

Y
was never positive - perhaps because the iron cylinder was never sufficiently

small to be far enough away from the wall.
These results, as far as they go, support the theoretical ideas of the

previous sections. It is likely that in the design of a practical system
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mathematical analysis will only suggest fruitful lines of approach and that
in the end considerable computation will be required. For systems in which
a passive piece of iron is levitated by an active system we can make the

following progressively less definitive statements:

(a) There must be some material like superconductors or A.C. flux surfaces
which behave essentially like diamagnetic material (Braunbek).

(b) Such material in the form of a flux wall will stabilise the equilibrium
of a passive piece of iron provided the original undisturbed magnetic
field is not too non-uniform. The behaviour of the system will probably
involve judicious arrangement of the original field non-uniformity which
can be arranged to drive the iron to the wall and the stabilising
influence of the wall.

(c) Constant flux coils can be used instead of fixed flux surfaces for
stabilisation, but their effect is weaker. Careful design of the
slight non-uniformity in original field is likely to be even more

important.
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Appendix 1: Analysis of mixed systems with slowly varving gaps

To find the mutual force F in the situation described in section 9 a solution
of the field problem with the boundary conditions specified in figure 7 is required.
If & + i¥ is the solution in terms of the potential and stream-function then the
force potential W can be calculated from (3.18). In a two dimensional situation

(3.18) can be written

,l

lﬂ
w=/~j Bdy
E O+
Given the particular contours of figure 7, and assuming that the fields are such

@
p

that @ = ¥ = 0 at x=iM,'/
' -
in direction of integration along the & surface W may be rewritten in the anti-

= (@¥)dx = 0 and taking account of the change

symmetric form

'II
W =/ 3 Vdx -/ v & dx (A.1)

where a prime denotes differentiation with respect to x.

W can actually be evaluated from (A.1), but to find & + i ¥ as an expansion
in powers of hw’ h¢ and to calculate F = - VW to second order in h requires
knowledge of W to third order. It is actually simpler to calculate F directly

from the Maxwell stresses, since @ + i¥ is now only required to second order.

In a two dimensional situation the force on a body surrounded by a contour

may be written
i !
F - iF = - — [ (B_-iB )? d(x+1iy)
2uo X vy

For the particular case when the contour is the x axis the forces on the

upper half of the plane (i.e. the top half of the system) become

e8]
f
F =——1—] 3 B dx
x My X'y
=00
© (A.2)
1 i
F = — (82~ 8 %) dx
y o 2H, ¥
-0

Now @ +1i¥% may be written as some function of (x+iy) as follows, where R and

1 are real functions
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®+ i¥=R(x+iy) + iI(x+1iy) (A.3)
from which we have
!
(Bx)y=0 =R (x)
, (A.4)
e !
(By)y=0 I’ (x)
and the forces from (A,2) become
a
F =-l—j' R'T'dx ' (A.6)
X [
o
=00
w
- oL 2 ‘2
F = +— (R'?2-1"2)ax .
y o2,
-0

It remains only to evaluate R and I in terms of the functions (x), W(x),

11¢(X) and h\ﬁx). Expanding (A.3) to second order in y? we find

2
(A.7)
v o= L - )21 IH L Rf
Substituting into (A.7) the boundary conditions
&(y=~h ) = o(x)
¢ (A.8)
Y(y = h‘p) = ¥(x)
we find h2
[ — I
=R-—-R"+h I
¢ 7 @
hZ (4.9)
_ N '
4'—1—2 I +h1|rR

and these can be inverted to second order to give R and I in terms of © and

¥, as follows

h?
- - oy _
R ,— Cp-hq)(‘!l h\I’cP ) ‘+ 2
B2 (A.10)
- r AN ___‘J{ "
I =4 —hl!r((p—hq)\:J )+ 3 L/

Substituting these values of R and I from (A.10) into (A.8), and retaining only
terms up to second order in hcp’ h, then gives the formula (9.1) and (9.2) for F
and F
y
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Appendix 2: The force potential for circular cvlinders

The formula 3.18 for the force potential W may be written in two dimensions

in terms of the potential @ and the sitream function ¥ as

1 N/ f :
=<5{I")]] 0d ¥ (A.11)
: [s) \ff ? 3

with due regard to the direction of integration around different bodies (8w/&n
in (3.18) always points out of the free space region). Consider the case of

a cylindrical circular hole on which either the potential ¢ or the stream-
function V¥ is maintained at such a value that without any body inside the
magnetic field is uniform (of unit value). Another circular body of infinite
or zero permeability, i.e. on which ¢ or ¥ is held zero, is inserted into

the first circular hole. Then A.1ll can be used to calculate the force potential
W once the magnetic field functions o and ¥ have been found. The force
potential should also be given by the equivalent system in which ¢ or -\ =0
on the original surfaces and ¢ or ¥ is specified on the inserted surface.
Because of the interchangeability of ¢ and ¥ in two dimensions we need only
consider the two cases where ¢ is specified on the outer surface, and either
p or ¥ = 0 on the inner surface. The original situation and the equivalent

situation are summarised in figure Al,

fL & (ors tem €

H-’—“ wilaelt D(Qﬁ\““j Sl.hoc
oo \[w{]
N A '{

\\__7

original system equivalent system

¢ = At S

e

Circular system inside a circular hole

Figure Al
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The original uniform magnetic field has an arbitrary orientation &, which

turns out not to affect W. ¢ and ¥ could be found by conformal mapping, no

doubt, but it is also convenient to work in terms of the bi-cylinder coordinate

system given, for example, in Moon and Spencer, page 89. Variables 1 and g

are defined by

5 & a sinh 1
coshn - cos ¢
(A.12)
a sin ¢
y = 4

coshm - cos ¢

The curves of constant 1 are circles with centre (a cothn, 0) and radius

Given the radius of the two circles R and r and the distance h

a cosech 7.
describing the circles

between their centres the two values of 7 Ny and n,

and a can be found explicitly :

R2_r2_h2
L T

R2_r2+ 2
eosh 1, = =g

az = q R2hED) (4.13)

RZ2+r2_-ph2
-also cosh(n; - ny,) ~Rr -

We also have the identity:

w
X cos@ + y sino = 2a y e ™ cos(nt -a) - a coso n>0 (A.14)
n=0

Laplace's equation becomes:

92 020
ant *5gr ~

+ + nit : .
admitting solutions of the type e Mmoo nlt. Matching solutions for ¢ and

the associated stream function V{ can thus be written
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E cos(ng-ah) [An sinh n(n -n,) + Bn cosh u(n -n )]

B
I

(A.15)

I

V=12 sin(nf -« ) [A cosh n(n-n ) + B sinh n(n-n )]
n n 1 n 1

Thus, with the use of (A.14), ignoring the constant a cos @, the solution to

the potential and stream function on the original system may be written:

0 -nn
_—1 e
il = A . = 2 * - o
@ given on 7 \no ® a “ih n(no D) sinh n(n nl)cos(nb o)
n=0
(A.16)
© -.nno

e
it -
sinh n(no nl)

=0 on 1 = n, J’ V¥ = 23 cosh n(n —nl)sin(ng-a)

and
@ -
e "o
) iven on 1 = = 2 - -
¢ 8 L5 Py ¢ 4 2{3 coshtﬂno-n1) voghh Bin-ilpleaslng ~a)
" (A.17)
© -nn '
e o
=0 on 7 = n, W = 24 j;j sinh n(n-—nl)sin(ng-a)
2 cosh n(no —nl)
Then the force potential W can be calculated from (3.18) as - . ] pdv
giving for the two cases ° n=n,
ey 2
_ 4ma? ™ cothl '
W 20 zne tanhj“(nl ~H (A.18)
n=0

The force potential may also be calculated for the equivalent system from (7.8),

denoting this by W' we have

a

w == ~i— ] gpd v+ Wrz} (4.19)
n=n,

The negative sign in (A.19) agplies to the case where ¢ is specified on n=n,,
the positive sign when VY 1is,. The term 7r? (constant in this case of an

originally uniform field) comes from the integration of the term [ ¢ gf in
(3.19). Since the calculation of W is the same as the calculation of W with

the roles of the parameters ng and m, reversed W' can be written down immediately
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from (A.18), namely:

[s]

_Znn ) -

' 1 r 3 1 coth 2 |

W= :Fﬁrl_ém : :ne fanly DO ST Y e 205
o

In all cases the signs can be checked since [ ¢dV{ should be positive as it

n=0

corresponds to [ (V @)% dT7 in the general case. Using the relation (A.13)

we can also check explicitly that:

w
r -2nm -2nn
e 1 P o 1 \coth 3
W-W _2H0[4Wa Zn(e F e )tanh n('q1 - 110) Fooror ]
n=0
= 2 2
S ~-2nn -2mm
=-ﬁ[47ra2 n<e °xe 1) :FJTI‘ZJ
Q n=0

== *“*l:waz(cosechz n + cosech? nl) F Wrz}

=l e ?TR2

Thus W- W is constant, confirming that either may be used as the force potential.
However W' is more convenient since W - ® as R - @, An iﬁportant feature of

W or W is that they are independent of @, the orientation of the originally
uniform field. For a given R and r, W and W depend only on h, the distance
between the centres of the two circles, and thus the inner cylinder is in an axisym-
metric potential well (or hump) although the field configuration itself is not

axisymmetric.

In the special case R - h— o, r finite which represents a cylinder inserted

into a uniform field far from any wall the condition » 1 implies from (A.13)

. n
M, ~M, * o, je n = o so that a = r cosech n -re 1/2 . Then from (A.18) we

can check

-Znnl

(e2]
1 2n, T 1
w'-*¢-§—-[ nr? e 2Jne + 7?2 |
My |
n=0

- ?-;L- [rr? + 7r?]
2u0

which is consistent with the value of k in (7.4).
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An important special case is that of a cylinder near a flat wall. Then
setting the distance from the wall R-h-r =d and taking the limit R,h = @,

d and r being given we have:

no=0
d
=< 4
cosh n, < 1
and
wpd T nn
W= 21: L 4 sinh®n, Z COLh (nn,) + 1 J
© n=0
o TE k  say (A.21)
2ilo F ¥y . .

- d
Again, as ——*®, n;, > ® and k - F 2, -2 for the case of an iron cylinder
T P

and iron wall, and + 2 for an insulating cylinder and iron wall.

After some manipulation of standard formulae the series giving kp can be
summed explicitly in terms of elliptic functions. Using standard notation we

define the argument k of the elliptic functions K, K', E etc. by

= cosh ﬂl—(,-
%)

Then it may be shown that for the two representative cases,

k2 [(. E 1+k? 1
= =- i 2 — -
kp sinh nl[ ) 1(1 K) 3 } + 3J

. K2 2 1
and k_ = sinh?nm, [L<%—-%>— 3 _! (A.22)

coshn; =1+

H o

d
In particular, as & and nn, 2@, k-0 and kp -+ F 2 as before. As il o,

r
n, >0, k=1, and by expanding in terms of n(small) we find respectively

(A.23)

]

2
' . 2f ot d 1 m? \g d
and 76 +3<6"1Xr>+9<10'3x<r> +°<rj

The first of these expressions, for the like on like case (iron cylindey on an

=73
iron wall) implies that the force (- Vk) tends to infinity like ;) near

A2.5






the wall, whereas for the other case (actually an insulating cylinder near an
iron wall, but applying to an irom cylinder near an insulating wall with a change

of sign) the force is finite.

Expansions in small k may also be done when % is large and yield

N

- N3
1 /e
ky =F 2|1 % 5 + O\\E} . (A.24)

d
4<1+ -)

r

r . i . "
Thus the force ~ Fi for large d with the same sign, representing the force
between a dipole and its image in an iron wall. Whether the dipole is made of
. . < ; . ; a
iron with ¢ specified on its surface or of an insulator with sf does not
matter far from the wall.
These expansions. give the shape of the curve approximately for the mixed

(second) case, even at intermediate points, as explicit comparison with the exact

d
result at T = 1 shows.
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Appendix 3: Torce estimates for bodies close to walls

Consider the force on an inert magnetic body as it approaches a flat wall.
If the magnetic field was originally uniform then by considering the equivalent
situation of a magnetised body near an inert wall as described in section 7 we
see that the force is always attractive if the flat wall is iron, repulsive if
the wall is magnetically insulating and its magnitude always increases as the
body approaches the wall. The question we now examine is whether the force is
finite or infinite when the bedy touches the wall. This depends on the shape
of the body, and we restrict ourselves to a discussion of smoothly curved bodies
near a flat wall of which the archetypes might be circular cylinders in two
dimensions or spheres in three. The eight permutations of boundary conditions

and initial field orientation are sketched below in figure A2,

—’% Eb
R
0) (i pe S
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‘ /\ Xl
l ( ) f.‘:.-GT-'!:‘—?."!":j
ER - Ju¥
b NG = (il Mok
—'-"%' gq
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-‘-’“m-_——.-—-’-_‘-“—.-__ ’
i =B
W o B
1‘ g“ e > - /\}h"r- v
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S
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(vii) T

Figure A2 Inert bodies near flat walls
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For the first four cases with mixed boundary conditions the field is fixed
by the local boundary conditions on either side of the gap. 0 specifies the
field across the gap and ¢ (or its gradient) the field along it. In all these
mixed cases the fields, and hence the Maxwell stresses calculated from them, are
finiteT. Thus the force on a body with these mixed boundary cenditions when it
touches the wall is finite, and its value depends on the shape of the body and

the initial field orientation (in general).

However where the boundary conditions are of the same type, as in cases (v)
to (viii) the fields close to the point of contact become indefinitely large -
because of squeezing between the magnetically insulating surfaces as in cases
(vii) and (viii) or because of a small mismatch in potential between the body
and the wall as in cases (v) and (vi). The question is whether these infinite

fields are sufficiently extensive or large to cause infinite forces.

We give the caleculation of the force estimate for one of the cases, say
case (v). If @ is the (yet unknown) constant value of ¢ on the body (assumed
symmetrical in x ), and if the gap is given by g = h + @x? where h is the
distance of the bottom of the body from the wall and aql twice the radius of
~curvature here then the field B is perpendicular to the gap and given by:

.
g

Then the flux emitted by the bottom surface passing through the body and being

emitted into space is given by: N

%
flux ~ [ (%) = dx (A.30)
(o]

1
The force is found by integrating the Maxwell stresses EE [ B? over the bottom
surface, on the assumption that the integral over the rest of the body will only
have a finite contribution, so that

R
2

p 0,
forcerv/ (%) j;idx (A.31)
o

where the extra x "in the integrals applies to the three dimensional case and the

integration is taken up to a typical distance R, representing the size of the body.

’a
I1f we make the substitut%pns t =x N in these integrals then the upper

T If the body is flat and has sharp edges it may be that field is locally infinite
and sufficiently lop-sided to give rise to an infinite force when the body touches
the wall; for example a flat iron disc on an insulating wall with an initially

transverse field.

A3.2






Zw |2 , which is large. The flux
h | h

limit of integration becomes T =R
N

integrals become:

since the flux integral in three dimensions diverges for large T.

The force integrals become :

T
.. 2
% dt %
force2D ~ o — j —_— ~ —
wm3o (1+t2) Naoh3
, T
2
force.  ~ 0 f'__tit__._ L %
2 .
3D~ ch J ey ah

Now the argument is that as the body touches the wall the flux approaches
a constant value determined by the flux emitted from the top of the body into
. the free space. The flux integrals then determine Py and the force integrals

become :

1
force & ==
2D q;
1
force ~

3D ’
h 1og2(:§ )

Similar arguments may be applied to the other cases, (vi), (vii) and (viii),

(A.32)

though there are some differences in cases (vi) and (viii) since these are not
axisymmetric in the three dimensional case, The conclusion is that all the two
dimensional cases behave the same way as given by (A.32), as might have been
expected given the interchangeability of potential and stream function in two
dimensions and the general result that the force potential for circular cylinders
is independent of the initial field orientation. In three dimensions cases (vi)

and (vii) turn out to have the same behaviour, namely

R
~ - 2113)
forceBD 108(}‘) (A.33)

A3.3






and in case (viii) the force is finite, although the field does become infinite
at the point of contact. TFor case (viii) it is strictly necessary to solve the
two dimensional problem of magnetic field flow between fhe insulating surfaces
with a "small" gap g given by g = h + @r? as above and a potential

ol Bol: cos 0 at large r. The analysis is simplified when h=0 (i.e. the

body touches the wall), giving

n
¢ ~ r cos@

for small r where n =+/2 - % = 0.92. The corresponding force integral [ B2dS
over the bottem surface of the sphere converges for small r and thus even when

the body touches the wail the (repulsive) force is finite.

Thus we conclude that for smoothly curved bodies approaching flat walls the
force between the wall and body approaches a value which, in terms of distanceh
from the wall, is

1) finite in all the mixed cases.

2) - & in all the two dimensional like on like cases.

~'h
3) is rather strongly infinite (A.32) for the case of an iron body on an

iron wall with the field originally normal to the wall, in three dimensions.

/.

4)  is rather weakly infinite (A.33) for the cases of iron on iron with an
originally parallel field, and insulator on insulator with an originally

normal field, in three dimensions.

5) is finite for the case of insulators with an originally transverse field,

in three dimensions.
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Appendix 4 Behaviour of bodies in slowly varyving fields

The table below sets out the behaviour of two types of bodies in magnetic
fields which vary slowly in the sense of section (7). The bodies consist
either of material with a fixed polarisation, or with permeability
b o<or > (0 and © say), and may either have a fixed orientation or be free
to rotate so that the couple on them is zero. The effective dipole moment
M is consistent with the formula for the force F and couple G on the body

given by

F=-VN = (M.V)B

G =MpB

where B is a free space magnetic field (V,B=0). S _ is the energy
= i

J
tensor (7.2) with eigenvalues A; and is positive definite for a body of

material p < Hy and negative when u:>uo.

Type of body Potential W Dipole moment M V.F=- V2y
Polarisation fixed in
strength and direction -M.B M 0
Polarisation fixed in B M
strength but free to - MB M=M= =4 [B*B, B, -
rotate B B ;’kP 1,kB
BBy Bk By

Magnetised body with 1
fixed orientation = 5,.B.B, M =8 .8, - S,, B, B,

2 7ij i i ij ] ij i,k j,k
Magnetised body free 1
to rotate = A B2 M=- X B - A B, B.

2 m m m i,k i,k

A uniformly polarised body free to rotate might have M of either sign,
but would be wunstable in rotation if M was negative (since for a given IMI,
W is a minimum when M > 0 and the body would flip round). V.F is
positive when M > 0 as the expression in brackets is positive definite so

that a freely rotating polarised body is not stable in translation.

A magnetised body when permitted to rotate also adopts a position in
which W is a minimum, i.e. it aligns itself with the principal direction of
S.. in which the eigenvalue hm is least. This implies that V.F in
translation of a freely rotating body is always as large as it can be, but
still negative for body with u < K - When the two types of bodies are free
to rotate and have the same instantaneous dipole moment M = - AR, V.F ,

has the same sign but is numerically bigger for the magnetised body.
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Appendix 5 A constant flux two coil system

A brief analysis of a two coil system designed to suspend a piece of
iron is given below. The arrangement is like a Helmholz pair, with the flux
through the coils kept constant and the iron suspended in between them. The
iron is treated as a small spherical or circular (2-D) body in the manner of

section 7.

Cols T~ @
Y\ Sagrasy
A\

R 4

figure A3

First we consider the behaviour of the system when the coils are run at
constant current. Suppose the magnetic field on the axis is B = B(x) .
This, in the symmetric Cartesian (x, y) or axisymmetric (r, x) cases, speci-
fies the field everywhere (apart from singularities). To calculate the
equivalent mechanical energy potential W = EE;-EZV (section 7) a knowledge

of B? is required, where B is the free space magnetic field generated by
the coils.
By expanding about the axis for small y or r we can get the following

formulae for Bx, B and related quantities, all in terms of the axial
E i

field B(x) and its derivatives in the axial (x) direction, which are denoted

by dashes :
By = -y B +0(y?
roe. 2
B2 = B2 - y2(B"B - B'2) + 0(y%)
2 73 >>
= B2 %? {88 - %? )+ 0(x4) ; (A 50)
VB2 = [2BB’, - 2y(B"B - B'2)]
" B2
= (288", - x(8"B - 5 )] J

V2B? = 4B'? or 3B'?2 respectively

A5.1






Thus V.F ~ V?2B? 1is always >0 since k <0 for an iron body, except
where B' = 0 (B’ = 0 at the equilibrium position at the centre. This is a
consequence of the small body theory being in error by higher order terms
in the body size to magnetic field scale length ratio. V.F would be
.strictly positive to higher order.) By symmetry (x, y) or (r, x) are the

principal directions and the stiffnesses are given by

F ~ VB2 = 2v(BR” + B'2)
X,X XX
F ~ VB2 = - 2v(B"B - B'2) (A 51)
Y,y yy
ra
. T = " e .
or e v (8" = )

Thus where B’ = 0 the stiffnesses in the axial and transverse directions

~ BB” and are of opposite sign. At the Helmholz spacing B” = 0 and all
the forces disappear to this order; at separatioms rather greater 3" >0

and the system is transversely stable but axially unstable. At lesser

spacings the situation is reversed.

It would be possible to treat the constant flux case by considering the
equivalent system of a variably magnetised body between two coils with no
flux through them. In fact we adopt a different approach and analyse the
behaviour of the system, assigning self-inductances L;, L, to the coils,
and mutual inductance M, where all are defined in the presence of the iron.

Then the force on the body F can be written

F = - V (magnetic energy)constant st
= + V (magnetic energy)constant current
and in general
1
F = 2 (T VB, + Izz_sz + 21, 1,VM ) - (4 53)

Using the following symmetry relations at the equilibrium point

oL, oL, 8., 9%y oL, ) oL, o 8Ly 0y
Ly=Le=Ls 5" "% &I mZ°® o oy 3% - Byf °
oM oM : _ _ ;
B o, 5; = 0 and putting I, =1, =1 we find for a constant current

situation
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(V.B), = I*V2i(L +M) (A 54)

If the fluxes in the coils are held constant, then I, and I, will

vary, and extra terms involving VI, and VI, will appear in V.F.

Using the above symmetry relations and the conditions V&, = V@, =0
where
(1)1 = L].Il + MIZ
(A 55)
@, =ML +L,I,
we find
_ 21%(VL)?
(V. = (V.D), -~ Ty (A 56)
(A 54) and (A 56) apply to the individual stiffness F and F or
F XX ¥,y
¥ +—= ~ 2F . It can be seen that the extra term in (A 56) stabilises
2 o T r,r -

the system in the axial directions only since Ly = Lr =40 .

We now identify the constant current formula (A 54) with the previous
calculation. Using the fact that in a single coil calculation the force F

on the iron body can either be written

1

= = T
F ) 12 VL
or F - v._lf.y_ B2
= 2“-0
we find
_ kv b2
LnLo-zuo 12 (A 57)

where Lo is the inductance in the absence of the iron and B2 tge field
caused by a current I in the coil at the position of the ironm. %3 is a
function of the coil goemetry, and is not sensitive to the coil spacing in
the present arrangement (unlike B”) . For the stiffness in the constant

flux system we now find from (A 56), (A 51) and (VL)? from (A 57) that

F

X,X "o cV?
i #¥ER L -M
O (o]
(A 58)
F F
e m VIR, =pR o = VAR

where the values of B have been normalised to unit current in the coils, and
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2
c is a constant from (A 57) incorporating the value of V7(§3-) for the

single coil. Since the body has been assumed small L - M = LO-MO.

Equation (A 58) suggests that to achieve stable suspension B” must
be positive, i.e. the separation must be slightly greater than for Helmholz
coils, and so arranged that, say, the stiffnesses in the two directions are
the same. The bigger V and the smaller L0 the greater the range of coil
spacings for which stabilisation can be achieved. Actually calculations for
a large circular iron cyclinder indicate that there is an optimum V, since
a large piece of iron makes the positive contribution of the higher order
terms to (V.E)I mentioned above significant. The destabilising effect of
the iron and the distribution of the stiffness depends on the uniformity of
the original field, whereas the stabilising effect of the coils depends more
on their global arrangement. The stiffness distribution effect is represented
in (A 58) by the way B” changes sign at the Helmholz coil spacing; the
positive value of the sum of the stiffnesses (V.F > 0) has been lost in
higher order terms, and the stabilising effect of the coils is represented
by the second term in (A 58) which, although small, only varies slowly as
the coil spacing is changed. The accompanying paper 3) describes an experi-
ment which appears to confirm these ideas, but it must be admitted that it

. P . . _ : ¢
works in regime where the iron body can no longer be regarded as small.

A5.4






