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1s Introduction

This paper considers the design of magnetic field configurations
consisting of N minimum-B mirrors of the quadrupole type, linked toroidaliy
to form a closed-line system. The reactor prospects of such 'toroidally
linked mirror' (TLM) systems have been discussed in general terms in (l),
where some preliminary designs were described. The present paper describes
more recent developments in the design of such configurations. The most
obvious design requirement is that the configuration should contain individ-
ual charged particles. In sections 2-4, we discuss analytic aspects of this
question. In section 2, we neglect the effects of toroidal bending, and
examine effects due to linking in an infinite straight chain of quadrupole
mirrors. In section 3, we incorporate toroidal effects. In both sections,
the analysis is restricted to the neighbourhood of the magnetic axis : how-
ever, as we show in section 4, such studies permit some general conclusions
to be drawn about the constraints imposed by toroidal linking, and they
indicate the region in parameter space where optimum configurations are
likely to be found. In section 5 we apply these insights to the problem of
-designing an optimum layout of filamentary conductors of the yin-yang type,
since the analytic studies show these to be superior to 'tennis ball seam’
configurations. Although it is probable that yin-yang coils would be
employed in a reactor, it can be argued that they are somewhat inconvenient
for a preliminary experiment, and in section 6 we consider the design of
coil layouts made up out of flat coils which, although sub-optimal, never-
theless generate usable TIM fields. Finally in section 7 we examine the

factors which seta lower limit to the number of mirrors N in a TLM system,

at the experimental and reactor level.

2. Analytic theory of particle orbits in straight-chain systems

In this section we consider an infinite chain of linked quadrupole
minimum-B mirrors, and we restrict attention to the neighbourhood of the
magnetic axis. Configurations of this type were first considered by Furth

(2)

and Rosenbluth , who examined the stability of a low-f3 isotropic plasma
in such a system. As they pointed out, the general expression for the
magnetic scalar potential in the neighbourhood of a straight axis (in the

z-direction) is :

x = B [£(2) - (x2+y2)£"/4 + (x2-y2)g(z)/2 + 0(x4, y4)] (2.1)
| _df

where f and g are arbitrary functions of z only and £’ = 1, ete






The magnetic field on axis %(r =0) = Bof'(z) = BO b(z), and we choose BO

to be the minimum value of B on axis so that b=1 at each minimum. The

function b is assumed to be periodic, with period L, and to be symmetric
~about the plane z=0(b=1). The quadrupole term g is likewise assumed

to be periodic, but with period 2L, and is also symmetric about z=0, It is
z

2
normally more convenient to work with the antisymmetric function c(z)=%f ngz

in place of g. In terms of b and ¢, the expression for ]B[ is

I'- i F M

2 and y? in the expressions for the field

If one neglects terms of order x
components, the equations defining the field lines can be integrated exactly,
and give

% ~%
Ye

x =X y = X& (2.3)

Vb b

where X and Y are constants, equal to the values of x and y at the plane
x=0.
The accuracy of eqns. (2.3) is nearly, but not quite, sufficient for X

and Y to be Clebsch variables for.the field (derived from (2.1), i.e.

functions @, B such that

-
B

It

Vx = Va x VB (2.4)

In fact VX X VY differ from B by terms of order x?, y?. With equal

precision, one can take

R
I

T BO(X2 + Y2)
(2.5)

B =tan Y/X

as Clebsch variables, and we shall see that this represents a more convenient
choice. It is straightforward to increase the accuracy of the expressions
(2.5) “so that they represent the field apart from terms of order x4, w4 .

One particular choice which satisfies this requirement is

1 2 4y2 L e "yx2 t £ 2
5 BO(X +Y?) (1 - 35 [(b" +2g" )x2 +(b" -2g") y?]

o
(2.6)

B = tan  ¥/X
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Although in most of the following the .distinction between (2.5) and (2.6)
is not sipnificant, to avoid confusion we shall denote by ¥ the lower-
order approximation to o, omitting for simplicity the constant factor

% Bo - i.e. we define

Vo= X2 4 Y2, (2.7

It follows from (2.4) and (2.6) that the a, fB variables-represent-a non-
orthogenal coordinate system labelling field lines : to specify a point in
.space, a third variable can be chosen variously as z (distance along the
Cartesian axis), { (distance along a field line) or y (the scalar potential

(2.1) ). The advantage of choosing y is that it alone is orthogonal to @

and .

Because of the symmetry of TLM configurations, they do not possess
magnetic surfaces, except in the trivial sense in which any surface formed
out of field lines passing through a prescribed closed curve in the midplane
(z=0) is a magnetic surface, Thus the merits of a given TLM field design
depend upon the geometry of its guiding centre drift surfaces. These are

the surfaces of constant J, the adiabatic invariant
J(e, py a, B) = ¢ (e - pBla, B, £) );é'dﬂ (2.8)

where € is the particle energy, p is its magnetic moment and the integral
is taken between bounce points for trapped particles or around a closed line
(or over one field period in the straight-chain limit) for passing particles.
A necessary condition for adequate containment is that for most € and (VA
the J surfaces should be closed and nested about the axis. To evaluate J
correct to order ¥, it is necessary to exercise some care because of the
_inequivalence (in this order) of df and dz. The simplest (and most

illuminating) procedure is to expand

J=3 4 —g% + 0(¥2) (2.9)
%
where | Jo= 95(€-uBO b)~? dz : (2.10)
AR ; % -9 % dy
and a\!’_a\llgg(e—pB(\!JBJ f)) dt q!=o_aq!¢(e-u-B) B
= e% ¢ W(b) -k B8 an (2.11)
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be at constant J and ¥, and is calculated as follows. Inmserting (2.3)

where W(b) = b } and the derivative OB is understood to

v

in (2.2) we have

IP n & XZ—YZ '] ,- " .
B(X, ¥,2) = Bo b -+ 3 [Acoshe + 2¢” sinhe] + E— [Asinhc+2¢” cosh C]J
€2:12)
bl 2 Zb”
where A = ¢'?2 + 5 -5 We note that A is symmetric in =z , whereas

" . . . .
¢ and c are antisymmetric, and hence the first two terms in B are

.symmetric and the third antisymmetric. Since the range of integration of

Ia}

(2.11) is symmetric, we only require the symmetric part of %5, which is

given by

08 _ 9B =[@ L2822 J =EQ-[A+2<E’>2 h +2< 4 Q’>sinhc

o~ ov] av|, " oal,, OV 8 b/ COPRETA® T
’X’symm. ® symm.

(2.13)

We note that this is a function of z only: thus %%; and hence J itself

(in the order to which we are working) is a function of V¥ only - i.e. the

drift surfaces are V¥ surfaces, and intersect the midplane in a set of nested

concentric circles.

This result suggests that TLM systems are 'Omﬁigenic', in the sense of
Hall and McNamara(B) - that the drift surfaces are independent of pitch angle.
In fact, it is somewhat misleading in this respect; if one considers any
system in shieh thie high degree of symmetry implicit in (2.1) is broken in
some manner - e;g. by introducing weak toroidicity or some small perturbation

- one can show(A) that the drift surfaces have the form

a3

oV

¥ + j(¥, B) = constant (2.14)

where j is of the order of the inverse aspect ratio, or the magnitude of

the perturbation, and is therefore relatively small, except in a small range

(4)

of pitch angles, described in as the 'loss disc', in the neighbourhood

of the point where g% goes to zero. TFrom the Hamiltonian theory of

(5)

bounce averaged guiding centre drift , one can identify this as the point






where the average azimuthal drift frequency goes to zero. In the neighbour-
hood of this point, the drift surfaces show large deviations from surfaces

of constant V¥ - thus any practical TLM system is only approximately omnigenic
and great significance attaches to the loss disc, within which the drift
surfaces become anomalous. However, because most particles drift on ¥ sur-
faces, these do play a very important part in TILM theory,land for many
purposes they can be regarded as analogous to the magnetic surfaces of

toroidal configurations which lack the closed-line property.

It is convenient to introduce at this point some parameters associated
with a given field configuration specified by b(z) and c(z). The overall mirror
ratio on axis R is 'the maximum value of b: the mirror ratio along any field

line other than the axis differs from R by at most a quantity of order Y,
0B

If the configuration has a region of minimum-B, oV >0 at z=0; on the other
&3 :
hand Y cannot be positive for all 2z, since this would violate Jukes'-
6) . B
theorem( ). ¢ thus 98 must change sign at some point, which we shall loosly

oy
term 'the edge of the magnetic well', and we shall define RW as the value of

b at this point. Because g% is computed at constant ¥ and the 7y surfaces are
.concave, the gradient of B perpendicular to the axis in fact changes sign at a
slightly larger value of.l), which we shall designate Rx .  Specifically,

since

B = b—#l b [A cosh ¢ + 2¢” sinh c¢] X? + %l)[A cosh ¢ - 2¢” sinh ¢] Y2 (2.15)

8

the perpendicular field gradient changes sign at B = Rx for positive z in
the Y direction, and for negative z in the X directionm. A fourth mirror
ratio, which is important in relation to the plasma distribution function, is

the mirror ratio R. at which particles with zero drift frequency reflect.
J
From the above discussion, this occurs when g@ given by (2.11) goes to zero.
OB ;
This expression is a weighted average of E and changes sign at a value of

E%— = RJ which is somewhat larger than RW , and is often in practice quite
o

close to Rx'

Finally, a parameter which plays an important role in the costing of a
linkéd mirror system is the fanning ratio F, defined as the maximum displace-
ment of a field line from the axis divided by its midplane displacement.

From (2.3), we have






m/,

F = (2.16)

&
Jr

where Cm = C(z = L/z). The shape of the surfaces of constant V¥ at the mirror

throat is given by

-C c
<x2e 4oy m>R =y = ro2 (2.17)

T

i.e. an ellipse with major radius of Fro and minor radius 'I-{% i

3. Analytic theory of orbits in toroidally linked systems

. So far we have treated the magnetic axis as if it were essentially straight:
we now consider the effect of introducing sufficient toroidal curvature for a
system of N mirrors to close, For simplicity we shall restrict attention to
the case of a flat magnetic axis (i.e. lying in a plane, which we shall denote
by z=0) and we shall introduce a locally orthogonal curvilinear coordinate
system x, 2z, s, where s measures distance along the magnetic axis and x lies
in the plane of the magnetic axis and is directed outwards. Let the local
radius of curvature of the magnetic axis be a(s). We now consider two ordering
schemes : in the 'weak' ordering scheme we suppose that %f*% ~ € « 1 everywhere,
where L is the length between mirrors, whereas in the 'strong' ordering scheme we
allow % ~ 1. The weak ordering is appropriate if the number of mirrors N is
large and we bend the magnetic axis more or less Pniformly, since then % ~-%§
and becomes small. In this ordering, the toroidal correctioms to the field,
which are of order E, become of order ¢? and result exclusively from the
metric coefficients occurring in the expression for the gradient operator - the
corrections to the scalar potential x are of order €°. The metric tensor is

(cf. Solovyev and Shafranov(7) Be 27)

81 = Gik unless i=k=3
, 2
= - :(1 .|-3E> §=k=3 (3,1)
a
ik .
g =20 i#k
. 1=k . (3.2)
Bik






Thus the field line equations are of ‘the form

x
.‘E‘.’E:.‘iﬁ:ds ta) (3.3)
Bx BS 9x B .
ds
and hence
% 5 x Y . /9x
3 =6 (- pB)aL = § (e-pup)?( 143 B/as ds . (3.4)

To evaluate (3.4) correct to order €2, it is sufficient to take the lowest

order solution of (3.3)

G =CA
z = — (3.5)

=1k
&1

and to write B in the approximate form

. _
- x 3
B = Bm/<1 + a> + 0(x3?) (3.6)
(where B_ is in the form correct to x2, z? in the limit a - ®). One
[e 0]
then obtains
I
y "€ -%uB %
J=$(€—|.1Bgo)2df-|- i Edf
(€ -uB) ,
e-%uB b %
=J0+\"%+§j{.—-——-—o";-§— ds £3. 7}
(e—pBo b)* Wb
. ar : . )
where Vv = X2 + Z? and oy s the expression given by (2.11), with 5

given by (2.13). The result, which is of the form (2.14), shows that in
the weak ordering scheme, the drift surfaces remain concentric circles;

the effect of toroidicity is to displace these centres outward by an amount

(3.8)

¢/
€ - %uB b 2
A\:}‘__.___.o— _al

== s
L 51
(e - uB_ p)? Jb oW

el
which is small except within the loss disc, where a—\J,J - 0.

o7






We now consider thée strong ordering scheme. In this case we can still

2
J =9[(e-u13)2 (——L‘a (3.9)
J

(2]

s

write

I

but now the terms proportional to x/a in this expression are generally of
order ¢ and dominate over the terms proportional to V¥, which are of order
- €%, This leads to open drift surfaces, showing that toroidal curvature

of this order is generally unacceptable. This conclusion can be avoided if
a(s) is chosen in such a way that this leading term is reduced in order.
This can be achieved in two ways - either the sign of a is kept positive
but its magnitude is made large except in regions where %/gﬁ is except-
ionally small, or the sign of a 1is made to alternate. The former option
is édopted in the work described below, and amounts to bending the field
sharply in the vertical fishtails of the quadrupole: the latter option has

not been examined in detail, but looks less promising.

Within the strong ordering scheme, it is not immediately evident what

is the appropriate form for the magnetic scalar potential x. The difficulty
lies in the fact that toroidal effects show themselves in terms of order

x? and xz?, and terms such as these also arise in the expansion of a field

produced by hexapole windings in the neighbourhood of the axis. Since hexa-

pole windings are qualitatively different from quadrupole windings (and lesé

attractive from a reactor design viewpoint), we need some means of excluding

hexapole terms from y, while allowing strong toroidicity. This can be done

as follows.,

For clarity of exposition, it is convenient to consider first the case in
which the radius of curvature of the magnetic axis is constant, even though (as
we have just seen) this can only give rise to unacceptable toroidal effects. In
this case we can immediately write down the exact general solution of Laplace's

equation in terms of toroidal harmonics :

- % m
= - A i
X = Bap + (coshm- cos T) mE’n o Qn_%(cosh n) cos nT sinmgp (3.10)

= )
where the Amn and B are arbitrary constants. As noted in (1 ; if the limit

circle of the coordinate system (a circle of radius a) is to be the magnetic






axis, the coefficients Aml must be multiples of Amo , chosen so that the
coefficient of cosT in (3.10) vanishes in the limit n = ®., Otherwise the
coefficients Amn are fgee, and in particular the coefficients AmD are the
Fourier components of [ b(s)ds (where b(s) is the field strength on the
magnetic axis), the coefficients Am2 are the Fourier components of the quadru-
pole term g, and coefficients Amn for n > 2 give the magnitude of hexapole
and higher order multipole components. This identification is unambiguous in the
weak ordering scheme, where we can identify coshm = % and T = 0, where

r; 0, s is a local cylindrical polar system: however even in the strong ordering
scheme, the number of azimuthal nodes in the terms proportional to cosnT is
equal to 2n showing that a conductor configuration with n pairs of opposing
current elements (e.g. Joffe bars) is required to produce such terms. In this
paper we have restricted ourselves (on the basis of engineering considerations)

to quadrupole-type conductor configurations, and accordingly terms with n > 2
must be small or zero even when strong toroidal effects are present. To explore
the implications of this restriction upon the expansion of ¥ near the magnetic
axis, we note that apart from normalisation constants which can be absorbed

into the A, we have (Erdelyi(S) p.122)

cosh?n

' m
( 1 > p) |
1.-c%h%1 F<m+n+% m+n+J4; a+l; 1 >

- m?+ D+ (1 ) )
n+% <l+ 4(n+1) cosh?n © cosh4n (3.11

and froﬁ the relationship between cylindrical polar coordinates pez and
9)
toroidal coordinates (Hobson,( p.434)
- i it a sinT p = a sinhnm (3.12)
coshn - cosT coshm - cosT

one can obtain






x . 1r1r?
+ =4 = =
1 _ x* 1 a hazg
2 =2 2
cosh<“q a 1+§+lr_z>
a 2 a
2
x_ 1r?
cosT = a 2 a?
" 2
coshm l+§+__1_r_2
a 2a

where x = p-a and r?2 = x2+43z2
= :15 A
mo

vanish), we obtain on expansion

and setting Aml

- m2 4= ...].'.E_‘__l..l'._z.
=B 4 ZL& {4 & or2f x\2a*%ar [ |
i x 12\ Lilmo % 4t a 14X, L

( Z ?2.....2..> m a 2 a?

)
m2 L X 1 r? 12 48/ a
!_a 2 a?
N\ 32 ~g®) mP el  5xF 2% § n e ]
“MJ mo 16 a? 4 a 8 al ~ 64 a3’ " 16 a’ |
m _ -
x2-2z2 3x3 7 xz? |
+ i e e
AmZ[ 22 > 3 +2 27 J' sin mo

]
= ( [bds + Ax? + Bz? + Dx3 + Fxz?)

8 s
where A=-—Té?./l";ds-£-f+-§ B—162./ngs--zl:-’—%-
:3 s
D 6113 /gds"gg*'%gl Fz‘si;/gd“'%%*i%g

o
]

b - §bds/fds = b-b.

(3.13)

Inserting (3.11) and (3.12) in (3.13),

(so that the terms in x which are linear in x/a

(3.14)

We may note in passing that these coefficients satisfy identically the relations

- 10 -~






2 + 2B+ b’ =0

24 2b’ ba' _ :
g TODH2F-E-5=0 B (3.15)

: (10 .
obtained by McNamara by expanding Laplace's equation in the neighbourhood of a
curved magnetic axis (and the equivalent set derived by Solovyev and Shafranov(T) .
However our expressions contain only two free functions b and g , whereas in

" the analysis of McNamara D and F were also free functions.

The extension of the above analysis to allow for a magnetic axis of variable
curvature (but still lying in a plane) is trivial. As (3.15) shows, the potential

given by (3.14) now fails to satisfy Laplace's equation to the order in which we

!
are working by a term __b:zx . To cancel this term we need to add a suitable
term to either A, B, D or F. There is some freedom at this point, and for
< _ 1 ba’
simplicity we choose to add G a: Lo D.

Using equation (3.14) one can obtain solutions of the field line equations
_in the appropriate approximation and insert them into (3.9) to determine the

drift surfaces. We do not carry out this analysis here, since we only require
qualitative features of the result, which are already evident. The drift axis
is displaced outwards by an amount which is still given in adequate approxi-

mation by (3.8). However, the shapes of the drift surfaces now show a
significant ellipticity and triangularity, since the terms of order %2 and

2
Xz : .
=, in x are now of the same order in € as the terms of order x? and

o0J ; B
? which generate the term V¥ —r Conversely, in order to minimise both

ey’

the toroidal displacement A and the deviation from omnigenicity, the field

z
designer should arrange for the magnetic axis to approach a polygon as closely
as possible - i.e. to make it piecewise straight (a — ®) with localised

e
regions of sharp bending, located where e AJB is as small as possible. 1In

the following section we assume that this has been done.

4. .Optimisation of field profiles

We have seen that inboth straight-chain and toroidally linked quadrupole mirror

systems with a suitably specified magnetic axis, the magnetic field configurationis

determined by two periodic scalar functions b and g. We now consider the optimisation
of the profiles b(s) and g(s). A tempting starting point is the line of reasoning

given inan earlier paper onordinary mirror reactor design 'inwhichit was supposed

w 1T =

r






that the magnetic field windings are distributed smoothly over a suitable
magnetic surface, and it was concluded that from an economic standpoint

28|

the optimum configuration was one in which p_\lf| was arranged to be very
7]

- _
slightly greater than zero for all z up to R, a condition which deter-

mined both the profile of b(z) and the fanning. We have some reservations.

about the validity of that analysis, since in view of the distinction made

0B

; . 2B s B ; ;

in section 2 between e and Ul @ the condition %ﬁ? > @ is, strictly
VA ' X ' Z

speaking, neither necessary nor sufficient for stability of a mirror-confined

plasma (though it not likely to be seriously in error). However it led us

to examine the analogous problem generated by the analysis of the present

paper, the determination of the profiles of. b and g which satisfy the

condition B = B(V¥, z), g—i =0 for all =z wup to some Rw .  These two
X

conditions can be expressed in the form:

EEE
4.1

- 2
b’ 2b” 2b" /b’
tg (B _ " ., 2b /b ' = JdB _
[ c © <b ) b cosh ¢+ 2¢ sinh ¢+ 5\ B cosh ¢- ¢’ sinhc))=0 5 =0 ).
X

We can simplify these equations by taking c¢ as the independent variable; writing

% db " = Il L]
b ="5ble), b =a—(—:-, b” =be’'?2 + be” etc., we find that ¢’ and ¢” ecan

be eliminated altogether, and we obtain a non-linear differential equation of

\ 2

)
p

!

o' lo

bH . ;
Sy ]s:.nh c+ 2¢” coshe =0 (antisymmetric part of B =0)

the Abel type for b:

* 2 . . . 5
b b b/b ., b
1 -!-<-];) -2 T " 2 E(E sinh ¢ - cosh c><-1; cosh ¢ - sinh c) (4.2)

Transforming to x = cosh ¢ as independent variable, and p = %/ b as

dependent variable we obtain

P oo ez o1pd o BEE-3) x? 1
ax © T x=F-De "( 2 /P T x2o1P TaGEoD it

We have solved (4.3) numerically with boundary conditions b(o) = 1,
b(o) = 0, and find that as ¢ becomes large, b saturates in such a way

that xp becomes small. In this limit we can expand (4.3):

o5 19 =






1y

1
= 52F - %P (4.4)

" which has the solution

x? -x? x2? X %
_ 2,1 2 e
P =PpP; € 2(2 f XZ dx
x? 4
1 1 2
= AT 0(;:. s B ) e}
Thus asymptotically
" dnb 1
dx I ®
and hence - 1
4x?
L bmaxe (4.6)

where bmax is a constant not given by this asymptotic analysis, but which is
computationally equal to 1.766. Equation (4.6) accurately representé the
form of b(c) for large c obtained from computatioms with (4.2). 1t shows that

for RW S 1.766 it is impossible to achieve a magnetic well by marginally

. . ; 2B
satisfying the condition EE{ = 0 everywhere. (By contrast, the weaker

e 0B _ o . . .
condition oV =0 led to a trivial solution to the equations corresponding

to (4.1) for ail values of Rw.)

This result does not exclude the possibility of configurations with
RW > 1.766 : indeed we shaléBshortly obtain examples of such configurations
(in which the profiles of 5¥ attained quite large positive ;;lues, and
hence are not even approximately described by the condition o =0). How-
ever it excludes the use of the strategy of the earlier paper to determine
the profiles of b and g. Instead, we have made a fairly extensive explor-
atory study, using Fourier series to represent b and g, the series being

truncated before the point at which the number of independent parameters

Becqmes unmanageably large :

b=—R——-§-—1--R£1c052t (4.7)
g = 23: (G, cos t - 9C,cos 3t) (4.8)

w13 =






where t = nz/L . (The normalisation of the coefficients C, and C, is
. 1 . ;
chosen to facilitate comparison with the results of ( )). This choice of

b and g gives

18 Ca sin t

= .+% (€;-9C;-36C,/(R~1))tan” "&WR-1Lsint)NR-1. (4.9)

c:‘.

Of the three parameters specifying this configuration, R has an obvious
physical meaning, but C, and C, do nmot. To give some insight into their
-significance, it may be remarked that provided that €, and C, are chosen
so that the configuration has an absolute minimum in B at z=0 (a condition

which may be written in the form

1
C, - 9,C, 24@R-1)* (4.10))

the fanning ratio F is almost independent of C,, so that for given R', the

parameter C, determines F. The parameter C, can then be used to shape the
profile of g away from the plane z=0, and hence to vary the mirror ratio

Rw at which BB 0. Thus equivalently the configuration may be considered

!
to be determigid by the values of R, F and Rw , although for a given R,
the range of attainable values of F and Rw are somewhat restricted since
there is a minimum value of F and a maximum value of Rw . (We could equally
well use RJ in place ?f PWJ as the third parameter : however this would
slightly complicate the discussion below without altering the conclusions since,

as we shall see, RJ and Rw are closely related).

The determination of F and Rw for given C, and C, is a straightforward
computational matter and we present the results in figs. 1 and 2 for R=2 and
R =3 respectively. 1In each case the upper solid curve indicates the limit
defined by (4,10): above this line g—i <0 at the midplane, so % does not
exist. It is seen that the value of Rw on this limiting curve increases mono-
tonically with C, (i.e. with the fanning ratio F) and saturates at %/R ~ 00K
However there is a minimum value of the fanning given in good approximation by

(cf. (4.9) and (4.10)) g a—
tan 1-\‘R—l

F = (4.11)

e
e : min JE

below which no magnetic well is obtainable at all. To obtain a reasonable
magnetic well, a slightly greater fanning is required, and we have given some

attention to the question whether an optimum degree of fanning exists.

o Yo







It appears that this question can most readily be answered by considering
the manner in which any given profile of %% might be produced. In fig. 3
we illustrate the required profiles for various values of C,; at constant R
" and Cc, (and hence constant fanning F=3 ). It is seen that if the task
were simply to maximise RW/R , regardless of magnet cost, one would set
gﬁ = 0.482, giving v = 0 at the midplane and a large positive value of
F near b = RW . However the need for a large quadrupole component near

b = Rw would certainly lead to large forces on the windings, and hence to a

relatively expensive magnet structure. By contrast, the value C, = 0.3 gives

such a low value of RW/R that the same value of Rw could surely be obtaingd
more economically in a system with a smaller value of ‘R. The intermediate case
C, = 0.4 gives a rather low flat profile of g% , but a value of RW somewhat
less than the maximum obtainable at that fanning. Thus the economically optimum
profile lies somewhere between the flat profile given by C, = 0.4 and the peaked

profile given by C, = 0.482, the optimum being determined by the manner in which

the magnet cost scales with F and R for given Rw . For orientation, the lower
solid curve in figs. 1 and 2 gives the value of RI produced by 'flat' Q% pro-
files (in the sense that 322 v ~ (0 and Y is monotonically decreasing away

from the mid plane).

A rather crude estimate of the manner in which the magnet cost scales with
F and R for given RW can be obtained as follows. It is qualitatively clear
that Q% profiles of the 1equ1red shape can be obtained using tennis ball seam
or yinyang coils. The former tend to produce rather flat ;3 profiles, aéd
the latter give relatively peaked profiles. 1In both cases, coils of given
overall size, producing the same central magnetic field Bo’ contain a roughly
constant amount of superconductor, so that the cost variations are due primarily
to variations in the structure required to withstand the forces on tﬁe windings.
The most serious forces are the repulsive forces between those parts of the
windings which generate the field in the mirror throats. The restraining
structure for these forces can be approximated by a pair of straight beams
subjected to a uniform pressure loading of (RBO)2/8n along the whole of their
unsupported length of Fr0 , where r is the radius of the outermost flux
surface at the midplane (which we take as constant), If these beams were
rectangular section beams of length £ and depth d, the maximum stress:Fwould
scale as (£/d)2 and hence the deflection € as {£4/d%. It is natural to

€ ! .
restrict € to a constant fraction of £, so that 7 ﬂ'('a) is constant and

1=We are indebted to Mr A.P. Pratt and Mr J.D. Mitchell for the argument at
this point.
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hence d scales as f. Hence the volume (and cost) of the structural material
scales as fd = £? for fixed R and hence scales as (FR)? where F and R
are varied at fixed BO and ro- It is clear from dimensional considerations
that the same scaling law would apply to restraining structures other than

rectangular bars provided that their geometry is held constant,

Using (FR)? as the optimisation function, we have calculated its variation
with R ggr given Rw for a range of RW values, taking for definiteness the
peaked_ o profile. The results are shown in fig. 4. It is seen that, for
‘given R, , the function (FR)? has a rather flat minimum as a function of R.
However this minimum value of (FR)? increases rather rapidly with Rw (almost
as %; ) so it is likely that in an optimised reactor design (in which the scaling
of the plasma containment with RW is taken into account) the Rw value is
likely to be quite low. (It has to be borne in mind that the above discussion
relates to the vécuum magnetic field, which is of primary importance in stability
discussions, whereas the containment time scales with the self-consistent mirror

ratio, taking the plasma into account). The optimum fanning is rather constant

in the range of RW values considered here, and lies between 2.6 and 3.2 .,

Throughout the above discussion we have used RW rather than R.J as a
measure of the magnetic well depth. For most purposes they are essentially
equivalent, since, as figs. 1 and 2 show, they depend in a similar manner on the

constants C, and C,, and RJ exceeds RW by a nearly constant amount.

These analytic studies are restricted to the neighbourhood of the magnetic
axis, and consequently do not give a complete picture of the properties of a
magnetic configuration produced by a finite conductor layout. Nevertheless,
they indicate constraints which any real field must satisfy - e.g. the relation-
ship between Rw and F, the approximate scaling of the cost of an optimised

magnet with Rw , and the desirability of a peaked L profile. Consequently

oV
in the work described in the following section, we set ourselves the objective
of finding simple conductor configurations of the yin yang type which give
fanning ratios in the range 3 to &4, for overall mirrorratios in the range 2 to

3, aiming at a well mirror ratio RW ~ 1.5 for R=2, or Rw ~ 1.9 for R=3.

5. Toroidally linked vin yang configurations

A yin yang coil represents a reasonable approximation to the distributed
current sheet which would generate an ideal magnetic well with a peaked

2B profile. The quadrupole component of the field is somewhat localised in

oV

the mirror throats, because that is where the windings are located, so the
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g profile automatically possesses the favourable shape mentioned in the preced-
ing section. For these reasons, we concentrate in the first instance on

the design of a system of linked yin yang mirrors.

The basic problem in the optimisation of such systems is the veryllarge
parameter space involved. To reduce this to a minumum without a significant
loss of generality, we first defined a geometrically idealised yin yang
'winding, with all curvature eliminated. This rectangular yin yang config-
uration is illustrated in fig. 5 which shows both a plane and conical
projection. The yiﬁ and yang windings are identical : each is defined by
a height H, width W, length L and angle A as indicated and they are
separated by a distance S . Naturally, in a final engineering design it
would be necessary to restore the curvature ; however we do not believe
that the resulting fields would be significantly different except in the
_immediate neighbourhood of the windings. For fixed S, the range of values
of HWLA which produce a minimum-B field of given mirror ratio is surpris-
ingly limited. These values are not reported here, since they are irrelevant

to TLM design because of the strong interaction between adjacent mirrors.

In the first instance, we examined the design of a configuration consist-
ing of 8 mirrors. This choice was influenced by the fact that in an earlier
study(l), it had been found possible to achieve a nearly square magnetic axis
in an 8-mirror system, with all the curvature localised in the vertical mirror

throats, and with reasonably small residual toroidal effects. The question

of the feasibility of reducing this number is examined in section 7.

To form an 8 mirror system, the yin yangs are laid out in four pairs,
each ,pair having their magnetic axis coincident and the two adjacent fish-
tails horizontal. The separation D of two adjacent windings is a further
parameter. The four pairs are then arranged sc that their axes form a square
and a "bending coil" (an elliptical, or in the present idealised scheme, a

rectangular coil of width w and height h) is added at each corner to guide
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the magnetic flux round. A typical coil layout is shown in fig. 6. The need
for bending coils is not proven at this stage in TLM theory: however in their
absence there are four additional non-minimum-B mirrors at the four corners,

and these may have unfavourable effects on the stability of the configuration.

We first examined the interaction of the fields of one pair of yin yangs.
As would be expected;if HW L and A are held constant and D 1is decreased,
the interaction becomes significant when D becomes of order W . The effect
is unfavourable: the interactian reduces the depth and axial extent of the
magnetic well produced by each yin yang. It also increases the mirror ratio.
On the other hand, if D is much larger than W , there is a substantial
dip in B between the mirrors, and for the stability reasons mentioned above
we have judged this undesirable. In view of the uncertainty about its effe;t
on stability, we have adopted a rather arbitrary compromise on this point,
taking D = 0.32 S . This gives a dip of iéss than 15% in the value of B
on axis between the mirrors, and has a relétively weak effect on the magnetic
wells,

In the layout of the four pairs of yin yangs we have also made a somewhat
arbitrary compromise, for similar reasons. We have found that if the mean
separation of the adjacent vertical yin yang coils is also about 0.32 § ,
this is in practice just sufficient to avoid overlap of the coils at their
points of closest approach, at least in the optimised designs described below,
and it again gives an acceptably small interaction between adjacent magnetic
wells., These conventions are incorporated in the layout shown in fig. 6.

In this figure, the scale can be interpreted as metres for a possible TLM
reactor configuration. In this case, and indeed in all our yin yang
COmputgtions, we have taken S = 7.5 m and fixed the centre of the first yin
yang at the point (4.0, -11.0, 0.0) metres, which gives a magnetic axis in

the form of a square of side 21 m, The width of the bending coils w was

then chosen as 2 m to give a field having the range of the dip found
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computationally to occur without it, and the first such coil was positioned
so that the inmer vertical was slightly inside the point (0, -15, 0) at which
the corner of a perfectly square magnetic axis would be situated. Thus this
.bendiug coil intersects the mid plane at the points (0, -14.5) and (0, —16.5).
Their height was arBi;rarily chosen to be h = 10 m so that end effects were
unimportant: this could be reduced in a fully realistic design. The current
was fixed at % of the yin yang current.

With this layout fixed, we then varied HWL and A systematically in order
to détermine optimum values, adjusting the yin yang current I to the level
required to give a field of 1 Tesla at the minimum. In each run we computed
B on the magnetic axis and on lines displaced ﬁy a pérpendicular distance of
0.5m in the vertical and horizontal directions, and we followed two field
lines from the points (4.25, -10.25) and (4.75, -10.75) , chosen because
in typical cases they lay in or close to the plane in which the minimum is
found to occur. From the printout we could obtéin the overall mirror ratio
R (taken for definiteness as that at the horizontal fishtail, since the
other can be adjusted with the help of the bending coil), the radial well
depth A (defined as the minimum value of the perpendicular difference
AB between the field on the displaced lines and the field on the axis in the
neighbourhood of the minimum-B), the fanning ratio F , and an approximate
value (£ 20%) of the mirror ratio Rm at which V B chénges sign (where Yﬂ
is taken in the most unfavourable direction perpendicular to the magnetic axis).
Some preliminary runs showed that for fixed H s W had a large effect on R
and only a weak effect on F and A, whereas L and A had a large effect
on T and A and only a wéak effect on R . Thus our procedure became as
followgr fix H arbitrarily, vary A systematically, choose L so that
A =~ 0,02 and then find values of W such that R =2 and R =3 ., The
results are shown in table 1.

The most significant results are as follows.
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(i) For H €6 it is impossible to produce configurations with reasonable

-~

fanning ratios. This is because it is necessary to have a large radial well

near the mirror throat in order to have any well (A = 0.02) near the minimum,

and any unnecessarily large radial well depth enhances the fanning.

(ii) Conver;ely, for H =8 one already achieves almost the minimum fanning
consistent with given R, (cf section (4) ). |

‘(iii) ‘For fixed H , TF increases with Rm in roughly the manner expected
from analytic studies,

(iv) In order to achieve the design targets set in the introduction, the

relevant region of parameter space is quite small: 7 <H<8 , 5.0<L <5.5 y

100° <A < 110° ,

As an illustration of the magnetic field profile obtained from these
configurations, we give in fig. 7 contour plots of B in the plane z =0
and superposed plots of field lines which lie in that plane, for two of the
éonfigurations (labelled 8Y2 and 8Y3 in the table). These plots show some
features of interest. (a) Although the mirror ratio Rw (or Rx) is rather
independent of the field line, the overall mirror ratio varies rather more,
and the depth of the dip in B between mirrors varies enormously. It is not
possible to avoid this dip: it is necessary in order that this toroidal con-
figuration should satisfy Jukes' theorem(ﬁ). (b) The fanning ratio increases
with distance away from the axis, and eventually goes to infinity (i.e. the
configuration has a separatrix.) We have not attempted to locate the separatrix
in detail in these studies, since in any realistic system it would be necessary
to add small trimming coils to control its location and divert escaping plasma.
However in order of magnitude, the separatrix radius at the minimum-B plane
(hereafter called the 'midplane')is 70 cm, so a reactor might possibly need
to have dimensions somewhat scaled up from those indicated here, though it

may be possible to increase the separatrix radius, without changing the coil

dimensions, with the help of trimming coils at the edges of the fishtails to
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compress the flux fhere. (e¢) It is seen that there is room to insert an
adequate thickness of neutron blanket inside coils even without further scaling
up, though in the fishtails (where the neutron flux wopld in any case be
relatively small) its thickness would need to bé the minimum required fof
magnet protection, ‘(d) The overall coil dimensions do not give an accurate
estimate of the lengths of the unsupported spans of cdnduétor subject to
forces. There is room for supporting structure in places. However the
ﬁagnetic flux surfaces do define a volume within which no structure is
permissible. 1In this respect, TLM systems (in which good containment of
passing particles is essential) are perhaps different from individual mirror

(129

systems, where it has been argued that one might allow magnetically protected
structural pillars to perforate the fishtails and accept the residual level

of plasma bombardment. Because the overall fanning ratio does not determine
the span of structural material, the estimate of the scaling of the cost of the
magnet given insection (4) is not very precise, though it is probably quali-
tatively correct. Some indication of the support structure which would be
required can be obtained from the FERF design for a single yin yang coil(l3%
the linear dimensions shown in fig. 6 are all approximately 50% larger than

FERF. (e) It is clear that there is no linking of coils in this TLM design:

each coil could be withdrawn independently for maintenance or replacement.

6. Toroidally linked tennis-ball seam configuratibns

For the reasons already given it seems probable that a reactor system
would use yin yang coils. However these are undoubtedly difficult to fabri-
cate to the required tolerances, and present serious geometric problems in
the design of support structures. There is thus an incentive to look for
something simpler which is capable of producing a comparable magnetic well,
Such a configuration might well have a role in earlier experiments, or in a
prototype reactor. 1In the search for such a configuration, we observed that

if one attempts to 'rectangularise' a tennis-ball seam winding in the same
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manner as was used above to rectangularise a yin yang, the resulting structure
can be broken up into three flat coils if one is prepared to accept a moderate
amount of current cancellation. (See fig. 8). We have therefore examined

the design of TLM systems based upon this configuration.

As before, an individual tennis-ball seam coil is defined by the minimum
number of parameters by making suitable symmetry assumptions - the minimal
Qet are the height H , the length L and the gap G through which the
fishtails emerge, and are indicated in fig. 8. To facilitate comparisons
with the yin yang configuration, we chose that the magnetic axis should be
identical (i.e. the square formed by joining thepoints (0 * 15) and (% 15,0))
and that the geometric centres of the tennis-ball seam coils should again be
situated at the same points (4,-11) etc. We then carried out some preliminary
computer studies to determine a suitable value of L , having rega;d to the
dip in B between adjacent mirrors, and fixed on L = 6 m as giving a
reasonable compromise. On exploration, it then turned out that in reasonable
approximation, the gap G determined the mirror ratio R and the height H
determined both the depth of the magnetic well A and the fanning ratio F .
We therefore chose values of G which gave R =2 , 2.5 and 3 , and varied
H systematically. The results are shown in table 2. (In this case, TF is
defined by field lines starting at the points (3.95, - 10.95) and (4.45, - 11.45):
these are not symmetrically distributed about the geometric axis of the coils,
‘reflecting the fact that the magnetic axis in this configuration is somewhat
displaced with respect to the geometric axis.j The B contours and field
lines for representative configurations (labelled 8T2 and 8T3 in téble 2)
are shown in fig. 9.

Some features of these results may be noted:

(a) The fanning ratio varies with A (and H ) in the manner that one would

expect, The principal effect of varying H 1is to move the 'Joffe bar'

- 22 -






component of the winding with respect to the magnetic axis: in order to keep
A to a minimum, it is necessary to make H quite large. At this minimum,
the fanning ratio F 1is very comparable with the fanning in the equivalent.

yin yang configuration.

(b) By contrast, the value of Rm is markedly inferior. This reflects the
fact that the quadrupole profile g(s) produced by a‘tennis—ball seam
configuration is rather flat, instead of being peaked near the mirror throat,
and as shown above this leads to an inferior magnetic well. However it is
not overwhelmingly inferior, and the greater simplicity of this design might
lead to its being preferred.

(e) _As in the yin yang configuration, the overall dimensions of the coils
give a misleading impression of the required span of unsupported conductor.
The overall dimensions are rather larger than the corresponding yin yang
configuration: however if this were siénificant, the dimensions could probably
Be reduced by increasing the number of coils from three to four and varying
the ratios of the currents in them.

7. Four-mirror TLM configurations

Although it has been argued(1) that eight is an acceptable number of
mirrors in a TLM reactor, there may be economic advantages at the reactor
level, and there are certainly practical advantages at the level of pre-
liminary experiments, in reducing the number of mifrors below eight, if this
is possible without a significant loss of performance. fhe minimum number
of quadrupole mirrors which can be linked in a manner which has sufficient
symmetry to give a closed field-line configuration is four, and we have
examined the design problems raised by reducing the number of mirrors to this
limits

We first considered a system of 4 yin yang mirrors. It was necessary
at the outset to determine whether any significant degree of bending at the

horizontal fishtails was permissible. We therefore started with the 8Y2
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yin yang configuration described in sectién 2 and arranged two pairs with

their axes tilted 45° away from coincidence, in the manner indicated in fig.10,
.Two bending coils, intersecting the symmetry plane at the points (& 9.0)

and (+ 12.0) were also added. The resulting B contours and field line

are shown in fig.1ll. It is seen that even this modest degree of tilting of

the axes, which is by no means sufficient to make the bending coils superfluous,
is sufficient to produce a substantial toroidal distortion of the field lines.
The shortest field line, (which defines the centre of the drift surfaces for
passing particles) instead of being the central one, is now almost at the

edge Qf the configuration. We concluded that no significant amount of tilting
was acceptable.

We then examined the consequences of laying two coaxial pairs side by
side, placing them with their centres at (& 4.75, + 4) - i.e. as close to each
other as possible without coil overlap, and adding a single bending coil to
guide the flux around each of the two vertical fishtails. The parameters for
each yin yang were the same as in the 8Y3 system - HWLA =8, 2.2, 5, 110.
The location and dimensions of the bending coils were chosen empirically to
give a good compromise between minimum toroidal effects in the minimum-B
regions and minimum fall-off in the field strength within the linking sectioms.
The chosen parameters were h=10m, w=5m, with intersections at (7,0) and
(12,0). This configuration is shown in fig. 12, and it gives the B contours

and field lines plot shown in fig. 13.

Comparing this with fig. 7 for the 8Y3 configuration, it is seen that the
B contours are qualitatively similar. However closer inspection of fig. 13
reveals toroidal effects which are not present in fig. 7 : the B contours are
displaced away from the axis and break open rather sooner, and the central
field line is appreciably curved even within the closed B contours. This is

due partly to the interaction between adjacent yin yang fields, and partly to
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the effect of the bending coils, It is not obvious from fig. 13 whether

these effects are acceptable: however a study of the J contours defining

the drift orbits in this system (which will be reported in more detail
elsewhere(la)) has shown that they are unacceptable. Even particles reflect-
ing at the surface with R=1.3 are grossly shifted away from the magnetic
axis, and those reflectingat R=1.4 have uncontained‘drift orbits. This result
can be understood with the help of eqn. (3.7) as due to the sensitivity of the
drifts of particles close to the loss disc to small toroidal effects, since

aJ

30 is small for these particles.

To eliminate the effect of interaction of adjacent yin yangs, the separa-
tion between the two axes was increased from 8 to 14 metres (this increase
was found to decouple the two pairs of yin yangs almost completely: it is
possible that in an optimised design a somewhat.smaller increase would be
_found\sufficient). To guide the flux around the linking section without
introducing either unacceptable toroidal effects within the mirrors, or a
large drop in field strength within the links, it then proved necessary to
introduce four bending coils in each link : after some experimentation
suitable parameters were found to be h=10m, w=3m, with their centres
at (£ 11.5, £ 1.5) and (£ 11.5, + 4.5). This coil layout is shown in fig. 14.
The choice of the optimum parameters for one yin yang coil proved to be a
matter of some delicacy. The parameters chosen for the configuration 8Y 3 -
HWLA =8, 2.2, 5, 110 - turned out to give a rather large fanning ratio
for the outermost flux surfaces (F 2 5.5) and correspondingly a rather poor
drift separatrix radius in the midplane for passing particles (~ 55cm) ,
although it was very satisfactory from the point of view of trapped particles.
As table 1 shows, one can improve the fanning ratio at the expense of RW by
decreasing the angle A: however because of the importance of minor toroidal
effects, the 4-mirror configuration is more sensitive to A than the 8-mirror

configuration, and we found that although reducing A from 110 to 105° reduced
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the fanning from 5.5 to 3.8, it already had an excessive effect on R,

it gave butterfly orbits for particles reflecting at R=1.4 and unfavourable

drifrs for particles reflecting at R=1.6. Interpolating between these

limits, we found a reasonable compromise configuration with the parameters

HWLA =8, 2.3, 5, 107, I . =7MA, I . = 7.5MA: the B contours
yin yang bending

and field lines are shown in fig. 15. From the J contours, it can be

-inferred that this configuration, which we designate TLM 4Y3, has a value

of Rw =~ 1.7, and a fanning ratio F = 3.7 for field lines starting at a

radius of 35cm.

We finally considered a system of four ternis-ball seam coils. As in
the yinyang case, we arranged these in pairs with a straight axis, and
added bending coils as necessary to minimise the dip in B in the linking
regions. As in the yinyang case, our initial layout had the two pairs as
ciose as possible without coil overlap, and we were forced, because of the
observed toroidal effects, to increase the separation. By contrast with the
yin yang case, however, reasonable separations proved insufficient to reduce
the interaction between the adjacent coils to an acceptablé level. TFor
example, when the separation of the axes and the layout of the bending coils
are asin TLM 4Y3, and the individual tennis-ball parameters are as in 813,
even particles reflecting at R=1.4 are on uncontained dirift orbits, and an
increase in the separation of the axes from 14 to 16m produces no detectable
improvement in the B contours. We confirmed, by removing the bending coils
altogether, that this behaviour is due to the toroidal effects resulting
from the field of the adjacent tennis-ball coils. The difference between
the tennis-ball and yinyang coils in this respect is due to the much greater
separ;tion of therﬁurrents generating the quadrupole component of the field

in the tennis-ball coil. We conclude that it is not feasible to design a

4-mirror TLM system using tennis-ball windings.
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Summary and Conclusions

The analytic theory of TLM fields in the neighbourhoéd of a curved,
planar magnetic axis shows that the field is specified by three scalar
. functions a, b and g, which determine such‘parameters as the overall mirror
ratio R, the magnetic well mirror ratio RW’ and the fanning ratio F. For
any field so specified, one can calculate the adiabatic invariant J defining
the guiding centre &rift surfaces. The J 'contours' (the curves in which
the J surfaces intersect the midplane) are approximately circular and are
‘nested about a drift axis: this drift axis is displaced radially as a result
of the field bending necessary to achieve toroidal linking, and various bend-
ing strategies can be proposed to minimise this radial displacement, the most
promising being to bend the field locally in R neighbourhood of the vertical

fishtails of the quadrupole field.

For a given profile b(s), it is possible to specify an 'optimum' profile
for the function g because this then determines '&N and F. For given mid-
plane flux, the cost of a TLM magnet is shown to scale approximately as (FR)?Z,

and for fixed RW this has a minimum when F lies in the range 3-4.

These analytic studies provide a starting point for computational |
studies of filamentary coil layouts which will approximately reproduce these
optimum profiles in the neighbourhood of the magnetic axis. In the case of
8-mirror TLM systems, it proves possible to design configurations which
approach the optimum, using 8 yinyang coils laid out along an approximately
square magnetic axis, with four additional bending coils to guide the flux
around the rounded corners. Approximate optimum dimensions are derived.

It also proves possible to use 8 tennis-ball coils, each of which can be
built up out of three flat coils., However the resulting field configuration
is significantly inferior to the yinyang design. It is also possible to
design a 4-mirror configuration using 4 yinyang coils plus eight bending

coils : the corresponding 4-tennis-ball coil configuration proves to have

unacceptable adverse toroidal effects.

- 27 -

A






Acknowledgements

The analytic part of this paper was substantially influenced by
discussions with J. Votruba, who also wrote the computer programs used to
prepare figs. 1 - 4. The computations described in sections 5 -7 were
made possible by the Culham magnetic field design programme MAGINT, written
By T.J. Martin, and we are most grateful to him for developing it with this
application in mind. We also acknowledge the help given by P. Kirby in

investigating the drift orbits referred to in section 7.

- 28 -






References
aclttences

i

10,

11.

12.

13,

14,

J.G. Cordey, C.J.H. Watson, Toroidally Linked Mirror Reactor Design,
Proc. IAEA Workshop Fusion Reactor Design Problems, Nucl. Fusion Suppt.

p.199 (1974).
H.P. Furth, M.N. Rosenbluth, Phys. Fluids 7, 764 (1964).
L.S. Hall, B. McNamara, Phys. Fluids 18, 552 (1975).

J.G. Cordey, C.J.H. Watson, Proc. 5th. IAEA Conf. Plasma Physics, Tokyo,
IAEA-CN-33/H5 - 1 (1975).

J.B. Taylor, Phys. Fluids 7, 767 (1964).
J.D. Jukes, J. Nucl. Energy Pt. C, 6, 84 (1964).

L.S. Solovyev, V.D. Shafranov, Problems of Plasma Physies 5, (1967).

A. Erdelyi et al., Higher Transcendental Functions Vol. I, p.122.

E.W. Hobson, Spherical and Ellipsoidal Harmonics, Chelsea 1955,
B. McNamara, private communication.

J.G. Cordey, C.J.H. Watson, Proc. BNES Conf. on Nuclear Fusion

Reactors, Culham 1969, p, 122.

M.A. Peterson et al.,, UCRL 75826.
T.H. Batzer et al., UCRL 51617.

P. Kirby and C.J.H. Watson, to be published.

- 29 -






(SL°0T - “SL*%) PU® (SZT°OT- ‘Sz°%) 3® BuTaiels sour] £q pauryap 4

§'L = § uotrieiedss (- ‘%) 3Ie 2ijuU=)

sucIjeand81Juoos Buef uilx Xo1itm g
Sh*'C = 1 L9 = 1 G¢'6 = I 6°9 = 1 0°'9 = I c°L
T X T z T
2= d €= 1 GB'T = 1« 8°C = ¥ L'T = 1 C k!
8°L = 4 0°6 = 4 L9 = 4 6 = J 7°6 = 4 G°L d
200 = V¥ 0’0 = VvV ¢0'’0= V¥ 20’0 = V¥V S0°0 = V Z0°0 v
#0°C = ¥ 80°¢€ = ¥ 0°'¢z = o G0t = ¥ OT1°¢ = ¥ L6°¢C q
' = M va LT = M aq €' = M HQ 6°'T = M 2q 8°C = M ia (A M
0T =V GL°E =1 O0IT = V¥ =1 00T = V g =
6°6 = 1 Se'L = 1 _ 0’9 = I §°L = I GZ'9 = I 9°L
X x T x T
6'T = ¥ ¢e'e = ¥ LT =14 12 = 14 €T = H# 6°1 q
'y = 4 e = 4 0'¢ = 4 '€ = 4 e = A 7°C d
g E - = ¥ = v ‘ = * = Vv Q0" 0 v
£0°0 v ¢0°0 v mmmm z0'0 ITA ¢! v FC 10°0
G0'¢ = H 10°e = ¥ €0’ = o I10°€ = ¥ 11°C2 = 4 G6°¢C q
8°C = M I SI'Z = M 53 €= M 19 7' = M 9 S'€ = M 10 LT
02l =V S'9p=1 . . 0T =V 0°'§=1 »00T = V g6 =

I @219=L






10

11

Table II

G = 4,15 4.45 4.9
™ R = 3.03 FN R = 2,5 | TFO R = 2,03
A = 0.36 A = 0,25 A = 0.15
F = 6.1 F = 4.8 F = 3.9
Rm = 2.1 Rm = 1.75 Rm = 1.5
I = 18.0 I =15.8 I = 13.5
TP R = 3.04 FQ R = 2,52 |FR R = 2.05 [8T2
A = 0,24 A = 0.14 A = 0.08
F = 4.8 F = 4.0 F = 3.4
Rm = 1.8 Rm = 1.6 Rm = 1.45
I =18.1 I =15.9 I = 13.6
FJ R = 2.99 - [813 FK R = 2.53|FL R = 2.03
A= 0.13 A = 0,08 A = 0.02
F = 4.1 F = 3.6 F = 3.15
R, = 1.7 R, = L.45 R = 1.35 |
I =18.0 I =15.8 I =13.6
FS R = 2,95 FT R = 2,49 |FU R = 2,02
A = 0.045 A = 0,01 A =-0.01
F = 3.8 F = 3.35
Rm = 1.5 Rm = 1.4 Rm = 1
1 =17.8 I =15.7 I = 13.6
8-mirror Tennis-ball seam configurations
Centre at (4, -11): length L =6
F defined by lines starting at (3.95, -10.95) and (4.

45, - 11.45)






Captions
Figs. 1 and 2

The correspondence between the parameters C; and C, in the

expression for g and the fanning parameter F and the critical

mirror ratios RW and RJ
————— Rw and T for fixed C, and C,, as labelled

——— RJ for peaked g profile (with C,; chosen so that (6.3) is

just satisfied at midplane) and flat g profile (with C,

h t1t—§i@§=o t midplane)
chosen soO 1a azz a‘!, a ml p ane

—iE Ry for peaked and flat g profiles.
Fig, 3 g% profiles for various choices of g profile.

Fig. 4 Magnet cost optimisation function FR for fixed Rw , showing

optimum R value.

Fig. 5 Rectangular yin yang winding
(a) plane protection

(b) conical projection
Fig. 6 An 8—§in yang coil layout TLM 8Y2 in plane projection.
Fig. 7(a) ]B] contour and field line plots for 8-yin yang configuration TLM 8Y2.
Fig. 7(b) [BI contour and field line plots for 8-yin yang configuration TLM 8Y3.

Fig. 8 Rectangular tennis-ball seam winding constructed out of three flat coils
(a) plan view of the three coils
(b) projection onto horizontal plane

(c) conical projection showing direction of current flow.
Fig. 9(a) |B| contour and field line plots for 8-temnis-ball configuration TLM 8T2.
Fig. 9(b) |B] contour and field line plots for 8-tennis-ball configuration TLM 8T3.

Fig. 10 A 4-yin yang coil layout with 45° tilting of the coil axes.

Fig. 11 IBI contour and field line plots for 45° tilted 4-yin yang configuration.
Fig. 12 A 4-yin yang coil layout with no tilting of the coil axes plane

projection: separation of axes = 8m, two bending coils.






separation of axes

|B| contour and field line plots for 4-yinyang configurations:
= 8m,
A 4-yin yang coil layout TLM 4Y3 with separation of axes = l4m

and eight bending coils.

|B| contour and field line plots for configuration TLM 4Y3.
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Fig.5: Rectangular yin yang winding
(a) plane projection

(b) conical projection






CJohAM LABSRATORY "10/03/78 MAZINT FIELD DEGICH PROCRAM

| 19:34:07
YIN YANG AT (G110 S27.%5 HNLA-S 3.2 § 11D 14 [G=2 TLMGY2

VIEW G (OMNDUCTCRS

ToJ MART N

20m ~y

1
]
1
¥
1
1

Fig. 6:

An 8-yin yang coil layout in plane projection.
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Fig. 7(b): [B[ contour and field line plots for 8-yin yang configuration  8Y3.
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" Fig. 8: Rectangular tennis-ball seam winding constructed out of three
flat coils

(a) plan view of the three coils

(b) projection onto horizontal plane

(c) conical projection showing direction of current flow
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Fig.

9a):

'B! contour and field line plots for 8-tennis-ball

confipguration

&T2.
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Fig. 9(b): I3l contour and field ling plots for 8-teunnis-ball
configuration 8T3.
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Fig.10: A 4-yin yang coil layout with 45° tilting of the coil axes.
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Fig.1Ll: |B| contour and field line plots for 45Y tilted 4-yin yang

configurations,
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Fig.12 A 4-yin yang coil layout with no tilting of the coil axes

plane projection.
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Fig.13 [B[ contour and field line plots for 4-yin yang configurations .
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