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ABSTRACT

The spectrum of light scattered by a plasma in a magnetic field consists
of a sequence of peaks if the scattering vector k is almost perpendicular to
the magnetic field B. Serious smearing of the peaks occurs when 2kve cos ¢ = W
where ¢ is the angle between k and B. Hence the scattered light will exhibit
modulation only within a thin angular wedge. The angular location of this
wedge can be determined by using a Fabry-Perot or a Michelson interierometer
and from this the direction of the magnetic field can be determined. A
generalised treatment is presented to allow for the interpretation of
experimental results from any light scattering arrangement or plasma
field configuration. The limits imposed on this diagnostic technique,
such as the laser beam divergence and field uniformity, are also derived. For
a representative Tokamak plasma of B _— =3 T, B . ™ 0. 3T and T = 1 keV, the
poloidal field must be uniform within 0. O0I5T in the scattering volume for 30°

scattering by a ruby laser beam whose divergence must be less than 3 mrad to

obtain an accuracy of about 5% in the determination of the ratio BpollBtor'
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LIST OF SYMBOLS

> » . .
B¢ toroidal magnetic field
> 5 . .
Be poloidal magnetic field
c speed of light
o electron charge
F Fabry-Perot finesse
> . : ;
k scattering or differential wave vector
+ - .
ko incident wave vector
-
ks scattered wave vector
OL laser axis
0s collection opties axis
M telescope magnification
n, electron density
q image tube quantum efficiency
r laser beam radius
r, classical radius of an electron
Te electron temperature
TR collection optics transmission factor
LA electron thermal velocity
X,¥52 basic frame of reference whose origin is at the scattering volume and where
ey unit vector parallel to torus major axis
e, = e¢, unit vector in the toroidal direction
e _Xe
x y 2z
W laser beam energy
z ’
B angle between BB and laser beam axis
s laser beam divergence at the scattering volume
Ts half apex angle of collection cone of scattered light directions
60,63 inclination angle of laser beam, collection cone to torus major axis

- - -
> angle between B and Be



single value scattering angle

angle between laser axis and axis of collection optics

laser wavelength

laser beam, collection cone azimuthal angle

half azimuthal angle width of scattered light which exhibits modulation

laser beam axis, collection cone axis azimuthal angle about torus major axis
direction

angle between k and B
apex angle in laser beam, collected scattered light
minimum collection cone apex angle required to detect magnetic modulated light

maximum laser beam divergence (in the plasma), permitted to retain
highest accuracy in field direction determination

electron gyro frequency
solid angle subtended by partial interference fringe

solid angle subtended by Fabry-Perot interference ring



1. INTRODUCTION

The technique of laser light scattering has been successfully employed in
measuring the intensity of a plasma magnetic field (Evans & Carolan (1970),
Kellerer (1970) and Ludwig & Mahn (1971)). The direction of the magnetic
fields in these experiments was known fairly accurately and the mean weighted
differential scattering vector (Carolan & Evans (1971a), Carolan & Evans (1971b)),
>

kav’ was arranged perpendicular to this direction. When both the electron

Larmor radius and the Debye length greatly exceed the scattering scale length,
k;i , the scattered spectrum should exhibit modulation with peaks located at
integer multiples of the electron gyro frequency T The width of the in-—
dividual peaks is approximately (Carolan & Evans (1971a), Meyer & Leclert (1972))
2kve cos ¢av’ where v, " VEET;7hé and ¢av is the angle between ﬁév and B. When

this width exceeds the peak spacing serious smearing occurs.

There have been several suggestions (Murakami & Clarke (1971), Perkins (1970)
and Sheffield (1972)) put forward on how the method might be extended to measure
the magnetic field direction. They all take advantage of the sensitive dé—
pendency, especially at high electron temperatures, of the modulated spectrum
on aligning k perpendicular to B. Sheffield made the novel proposal by which
the directions of scattered light which gave the deepest modulation could be
measured in one shot. These directions yield the values of the scattering
wave vectors, ﬁ, which satisfy the relationship k.B = 0. For the scattering
geometry suggested it was then a simple matter to determine the field direction.
A typical light scattering arrangement to measure the magnetic field direction
in a Tokamak plasma is shown in Figure 1. Suppose, for simplicity, that the
laser beam is perpendicular to the poloidal field. The scattered light with
the highest modulation will then be directed along. a plane perpendicular to
B. The angular location of this plane may be found by the observation of
partial interference fringes from a Fabry-Perot (or Michelson) whose free
spectral range matches the electron gyro frequency. |

In this paper the basic principles of Sheffield's proposal is generalized to
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include the whole range of scattering arrangements and magnetic field
configurations. Also included are the safeguards which must be taken to limit
the effect of real experimental conditions, such as magnetic field gradients, which
reduce the quality of the diagnostic. Using the generalized treatment comparisons
.are made between different scattering arrangements e.g. at 90° scattering more
accurate determinations of the field direction are possible but proper matching
of the interferometer to the peak spacing is more difficult.

Since all possible scattering geometries are included in this treatment,
the efrfects of laser beam and collection optics misalignments are implicitly

considered.

Vs EXPRESSION OF B AND k IN COMPONENT FORM FOR A GENERAL SCATTERING ARRANGEMENT

In a successful experiment to measure the magnetic field direction, by the
‘scattering of laser light, the directions of such scattered light that exhibits
'magnetic modulation' will constitute the basic raw data. In these directions,
the ;cattering wave vector, i, will be perpendicular to the magnetic field,

ﬁ, (i.e. k.B = 0) and the scattered spectra will consist of peaks separated by the
electron gyro frequency, W and contained within a Gaussian envelope of width Zkve.
Given the angular coordinates of the laser beam it then remains to determine

the magnetic field direction from the experimental data.

A general treatment is presented here to provide for all possible laser
scattering arrangements, including misalignments, and magnetic field configuratioms.
The basic method adopted is to describe angular coordinates in frames of reference
most convenient from the experimentalist's point of view and, then, transform
these directions to a basic frame of reference and by imposing the alignment
coﬁdition, k.B = 0, determine the magnetic field direction.

In Figure 2(a) is illustrated the toroidal and poloidal magnetic fields in
the plasma, the axis OL of the laser beam and the axis 0S of the collected cone

of scattered light. The point 0 is a representative point in the scattering



volume. The basic x,y,z coordinate system is determined by the major axis and
‘toroidal directions and the scattering volume as in Figure 2(b). The vectors
=4 o . - N i .

B, and B, are the plasma toroidal and poloidal magnetic fields respectively.

? 8

i ¥
Expressing B in component from we have

> 5
B = - Be sin B (1)

BB cos B

B¢ stsz

where B is the angle between Ee and the y axis.

Although arbitrary laser beam and collected scattered light directions are
considered throughout the derivations following, the scattering arrangementis
presented in a more restricted range in Figure 3 to improve the conceptual
clarity of the method. (The general representation is presented in Figures A.l and A.2
in the Appendix). Using conical coordinate systems, a particular laser wave
vector and scattered light vector is described by Eo =(k0,x0,u0) and ﬁs = (ko,xs,us)
respectively, where Xo and Xg are apex angles and My and H, are azimuthal angles.

(It is assumed here that |E | = |E§| o ko for small Doppler shifts). In order to

S

determine the scattering wave vector, given by

- -> >
k—ks—ko (2)

it is necessary to express the components of Ké and Ks in a common coordinate
system. The required transformation matrices for the defined x,&,z coordinate
system are given in the Appendix. At this point it is convenient to describe a
misalignment factor by

fal<_ﬁ,i§o,fs> - Bk . 3
The scattered light will exhibit maximum modulation when the misalignment factor
is zero. When the conical coordinates of the modulated scattered light are known

we can then determine the ratio BB/B¢ from

B k
= = : (4)
B¢ kX Sin B - ky Cos B :

Since the angle R is in general not known, it is necessary to find experimentally

= g o=



at least two directions of the scattered light that exhibits maximum 'magnetic
modulation' to determine the magnetic field direction,

To bring out the essential features of the points made above, consider the
case where the plasma is illuminated by a perfectly parallel laser beam which is
parallel to the torus major axis and is at normal incidence to the poloidal
field (i.e. the angle B of Figure 2 (a) is 900) in the region of the scattering volume.

Under thegerconditions the geometrical analysis can be simplified a great
deal. In Figure 4 the centre of the sphere is a representative point in the
scatteringrvolume; the laser beam is the axis of the sphere whose radius is ko.
Therefore all scattering directions can be represented by points on the sphere's
surface. So circular areas on the surface represent cones of scattered wave
vectors for various scattering geometries. The angle, 55, between the cone axis
and the-laser beam, can be represented here by the lines of latitude. .A particular
scattering wave vector, ﬁ, is that obtained by joining the 'morth pole' point to
the surface point corresponding to the scattered direction considered. The
plane containing the vectors Ko and k will then intersect the surface of the sphere
along a line of longitude containing this point. For the line of longitude
given by n = 0, the corresponding plane will be perpendicular to the plane of
the diagram. As represented in Figure 4, this plane is perpendicular to ﬁ#.

If the poloidal field were zero, then, in this case all scattered wave vectors

in the n = 0 plane would satisfy the perpendicularity condition of E.ﬁ = 0, and
so magnetic modulation. in the scattered spectra would be observed. However, for
a finite poloidal field the relevant plane will be represented by the longitudinal

. . > > \ ; i
line n = e where € is the angle between B and B, (cf. Figure 4 where, in this case, the

¢
poloidal field lies perpendicular to the plane of the diagram). When the cone
axis of the collected scattered lightlies in the n = 0 plane, (e.g. the geometry

depicted in Figure 3) the azimuthal angle, u;, at which modulation will be observed,

can be shown to be



B, sin §
7 - -
u = sin ! [ g 8 T ] - tan : o (5)

B, tam X (1 +a)?

5]
where o 5 cos GS . (6)

3. DETERMINATION OF THE LIMITING FACTORS GOVERNING THE OBSERVATION OF

MAGNETIC MODULATION

3.1 Angular considerations

(a) Collected scattered light

Serious smearing will occur in the modulation of the scattered spectrum

when the width of the individual peaks approaches the spacing of the peaks. When

2 kve cos ¢ = ¥.e (7)

where ¢ is the angle between K and f, the degree of modulation will be less than
30%. For the purposes of this paper, this will be considered to be at the limit
of resolution. Suppose that maximum modulation is obsetrved at a certain: azimuthal
angle, u;, in a_cone of scattered light. We will now determine the change,

Aus, in the azimuthal angle for which modulation will disappear.

We have for the misalignment factor

fal(“s)=0 (8)

and from Eqns. (3) and (7)
£ o+ A —EE—BMCE (9
al ‘Ms us) ) v, )

where B is in teslas. For magnetic fields and electron temperatures of interest

the quantity Aus can be considered to be a differential so from Eqns. (8) and (9)

we can write

/ 3 ‘ ce
g ) 10
fal (us * Al'ls) aus fal (us) Aus 2ve (10)
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We then get

W
ce
Ay = — = . (11)
s B 2ve ko sin X, 8

¢

[e=]

(The derivation of Exp. (11) and the definition of g, are given in the Appendix).
Obviously the smaller the quantity Au; the more accurate the magnetic field
direction can be determined. Since Aus has approximately an inverse-dependency
on sin Xg the field direction can be measured more accurately for large values
of cone apex angles,xs. For the restrictive scattering arrangement discussed

in the previous section, and where BB/B¢ << 1, we have the approximate numerical

expression

6 B)(o
Aus ~ 1.4 % 10 —r—— degrees (12)
Te2 sin Xg

where Ao is the laser wavelength in metres and Te the electron temperature in eV.

As the ratio BB/B increases, the plane containing the modulated light will

¢
increase its inclination angle to the plane defined by the laser axis and the
torus axis. If the collected cone axis of scattered light lies in the latter

plane it can be easily shown that to collect the modulated scattered light a minimum

apex angle, XMy is required where

- -1 (B
XMy & tan <B_ sin 65) " (13)

(b) Laser beam divergence

In the scattering experiments performed to measure the magnetic field

intensity by laser light scattering, it was clearly seen (Carolan & Evans (1971b))
to be advantageous to have a laser beam of relatively large divergence to assist
in the alignment problems. The opposite applies to magnetic field direction
measurements where it is important to enhance the effect of 'misalignment',
between the scattering wave vector, K, and the plane perpendicular to E, and

so increase the experimental accuracy.



For any particular direction of scattered light, there will always be a
fange of corresponding scattering wave vector directions due to the finite
divergence of the laser beam illuminating the plasma. Consider the case where a range
of scattered light directions manifest maximum modulation for a single incident wave
vector in.the axial direction of the laser beam. As a figure of merit we will require
that the beam divergence be sufficiently small so that the degree of modulation
of the scattered light spectrum, arising from any other incident wave vector within

the laser beam cone, be always greater than about 307 (i.e. 2kve cos ¢ g mce). The

maximum beam divergence, Xomx® CaD be shown (cf. Appendix) to be
X e wce
RX s

oe

or numerically
4 AO.B 4
s radians
XOMX 2.36 x 10 T—%—
e

B
where EE << 1 (Tokamak plasmas).

When the beam divergence exceeds XoMx the increment, Aus, of azimuth angle
wherein magnetic modulation is observed, increases and thus the accuracy in

determining the field direction is reduced.

3.2 Magnetic field uniformity

Suppose for a particular scattering direction, maximum magnetic modulation
obtains for the central field values B¢ and B9 of the scattering volume. Since
the magnetic field intensity and direction can be expected to vary in any
finite volume of plasma, the scattered light, originating from different points

within the scattering volume, will exhibit different peak spacings and degrees

of modulation. We will consider these two effects separately.



3.2(a) Uniformity of magnetic field directions

The magnetic field directions within a scattering volume Will be
contained within some conme in vector space. Suppose for the central field
direction (i.e. the cone axis) a maximum degree of modulation will be observed
in a barticular scattering direction. Scattered light originating from other
points will exhibit less modulation in this direction due to the increase in
the misalignment between the plane perpendicular to B and the fixed k direction.
The detected spectrum will be a composite one consisting of the weighted
superposition of many spectra of different degrees of modulation in much the
same way as described by Carolan & Evans (1971a). Eventually, for a relatively wide
range of field directions the degree of modulation of the composite spectrum will be
unacceptable. In the Tokamak context it is more meaningful to speak of the
maximum range of toroidal and poloidal fields acceptable for a useful experiment.
Using the same figure of merit described above and proceeding in a manner
similar to tha£ used in section 3.1(a) we obtain for all scattering arrangements

a limit to the variation AB, and ABe of the toroidal and poloidal fields,

¢
given by

B Be .
2B¢ kz A

B
)
AB AB, . B

5 o ; 5 (14)

When the scattering arrangement is restticted as above it can be easily shown

that for the most stringent BG/B¢ values we obtain
BG che
AB, = AB . =— | < : : (15)
@ ) A 2k0 v, (cos SS sin x  + sin GS cos XS)
or numerically
B A B2
AB, - &B¢ E@" < 2.96 x 10* T 2 © (16)
: ; :
¢ T, (cos GS sin x_ + sin 6_ cos XS)

For larger values of AB_, and AB¢ loss of experimental accuracy ensues.
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3.2(b) Uniformity of magnetic field intensity

In any finite scattering volume of a magnetized plasma the electrons
will execute gyro orbits of diffefent frequencies because of the finite range of
magnetic field intensity. As a result, the 'magnetic modulation' scattered
spectra generated will have slightly different peak spacings. The detection
system will,of course, see only a weighted superposition of the scattered spectra.
This spread of peak spacings is of little significance if only the first few
peaks about the laser line are of interest, as was the case in the experiments
performed to measure the field intensity. However, in high temperature, low
density plasmas,. it is important to utilize a large,ffaction of the scattered
spectrum due to the unacceptable small number of photons per peak. In this
case the limit of field variations is more stringent to ensure the spectral
overlapping of high order peaks.

Suppose that there is a total field variation of AB, about the central
field intensity Bo’ within the scattering volume. We will assume that it is
desirable to utilize all the light in the scattered spectra within the 1/e
intensity points of the Gaussian envelope enclosing the peaks. In the vicinity
of a frequency shift nw o from the laser frequency, complete smearing out of

the spectral peaks will occur when

+ -
nw _-—nw =W (17)
ce ce ce

where

¥ e -
- e b 2 . =
W = (B0 AB) ; w

e —
el - H (BO AB) s W =

ce

g|m
o

On substituting for the electron gyro frequencies in Eqn.:{17) we find that in

order to observe n peaks we require

AB 2_‘- i (18)

The peak order number at the I/e intensity point is simply
kv "
e

ni/e. = w
ce

(19}

s 10 s



So to collect the 857 of the total scattered light, contained within the

1/e intensity points, we require

w
AB __ ce (20)

B 2kv

i o e

or numerically
A B
2 < 2 x 10" -2 21
o T * 8in 8 f2
e av

where eav is the average scattering angle.

3.3 Accuracy of magnetic field direction determination

For a fixed value of apex angle, Xg» in the scattered light, magnetic modulation

'
for different values of BG/B¢’ will be observed at different azimuthal angles,us.

’ 3 - -
The more sensitive u, is to small changes in BB/B , the more accurate field

¢

direction measurements can be made. The absolute accuracy is given, approximately,

B B
0 ] i)
& <1_3_> = Aus T du (F) (22)

¢ s ¢
where Aus is obta;ned from Eqn.(12) and the derivative obtained from Eqn.(4). The
derivative 53—- Eg is plotted in Figure 5 as a function of 65 for BG/B¢ = 107,
X = 80 and BS= 90". It can be seen immediately that more accurate BB/B¢

‘measurements can, in principle, be made at larger values of SS.

3.4 Interferometer and detection system

Most methods proposed to-measure the magnetic field direction, by the
scattering of laser light, rely on measuring the spectral profile of individual
peaks in the scattered spectrum. However,the finite laser beam divergence and
collection aperture in addition to the non-uniformity of the magnetic field
in the scattering volume, affect substantially the peak prefile. Unless the
correct deconvolutions of the detected spectrum are used, the final result
will be in error. Sheffield's proposal,.oﬁ the other hand, would detect

simultaneously the scattered light from a relatively wide range of angles,
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and by identifying the scattering directions which exhibit maximum modulation
‘the field direction can be determined. In what follows, we will consider the
important features of the interferometer and detection system required for
such an experiment.

The peak spacing in the modulated spectrum, for an incident ruby laser

beam (at present the most attractive from the photodetection aspect), is given
by

Bry = .45 R/tesla for A, = 6943 b ] (23)

Magnetic fields in the range of 2 to 5 teslas are typical of those used in plasma
confinement machines, thus necessitating relatively fine resolution detection of
the scattered spectrum. Amplitude division interferometers such as the Fabry-Perot
and the Michelson can easily achieve this high resolution and both have a much
higher light transmittance than the equivalent grating (Jacquinot (1954)). These
interferometers behave as wavelength and angular filters, and so angular information
in: the light illuminating the interferometer is retained for monochromatic light
or narrow lines separated in frequency by the free spectral range.

The Fabry-Perot and the Michelson mirror spacing (Katzemstein (1972)) is
-chosen to tune—-in on the frequency of modulation of the spectrum by setting the free

spectral range of the interferometer equal to the peak spacing on adjusting

_ e
d = w Cos {246)
ce

where d is the mirror spacing, c the velocity of light and ¢ is the angular
radius of an interference ring produced when the interferometer is illuminated
by light of the laser wavelength. In this case the interference fringe patterns
from all the peaks are suberposed. This superp;sition technique makes more
efficient use of the scattered light and may be critical in some scattering
experiments on low density, high temperature plasmas. The modulated scattered
light will be almost completely transmitted by the resonant Fabry-Perot when

the incident angle, Xgs equals . However, the modulated light will be
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contained only within a small increment, 2Aus, of azimuth and, as a result,
two bright partial interference fringes, instead of the usual rings, will be
observed at azimuthal angles, u;, of scattered light where k.B = 0. These
fringes constitute the raw data from which the field direction can be calculated.
An attractive method of locating the angular positions, Xg> Mgs of the partial
fringes has been suggested by Katzenstein (1972). This entails placing the
photocathéde of a gated image intensifier in the focal plane of either
interferometer as illustrated in Figure 1.

Outside of the plane defined by the partial fringes, the scattered light
will be featureless. Since the total light intensity is the same for both
the modulated and unmodulated spectra, in the latter the light intensity at
the peak frequencies will be relatively low. Consequently, as the interferometer
is 'tuned-in' to the peak frequencies at the partial fringes, the a;erage
transmission of the interferometer will also be relatively low for unmodulated
light which forms the background light to the bright partial fringes.

It is, of course, desirable to have high contrast fringes. We will now
determine the fringe contrast factor as a function of the interferometer
finesse, F.

The relative transmission T(w) of a Fabry-Perot for an incident frequency, uw,

is given by the Airy function (Born and Wolf (1959))
-1

4F2 . T W (25)
T(w) = | o Sinl{ -

where AmSR is the free spectral range and F is the finesse of the Fabry-Perot

and given by

(26)

where R is the reflectivity of the plates.

The average transmission, T, is then obtained from

wtiw,

~ SR T (w) .
T =f Tw) 4, (27)

SR

w

o L0



It is a simple matter to show that Eqn (27) can be expressed by

2m

T = ZL dp (28)
" 4F2
] + — Sin?

n2

5] Re)

where p is a free parameter. On evaluating the integral we get
- 4F2 \ 7 2
T - <1 ; __) . (29)
T2
Since the modulated light will be fully transmitted by the interferometer

at the fringe positions we get for the fringe contrast factor, k,

T2

1
o 2N 2
k= (@ =<1 +.‘-*E.-> . (30)
Alternatively, the dark spots of the interferometer pattern can be used where
the modulated light is largely reflected by the interferometer. The relative

transmission factor is obtained by simply taking the minimum value of the

Airy function (Eqn 25) giving

_ 4F2
Ty = <1 * __;__> . (31)

On comparing Eqn (31) with Eqn (29) we see that the dark spots of the interferometer
pattern will have the same contrast factor as that of the fringes. Due to the
small number of photoelectrons involved (cf. section 4) the bright fringes will
give the more accurate determination of the field direction. From the transmission
point of view the Michelson interferometer can be regarded as a low finesse
Fabry-Perot with the comsequent disadvantage of having a low contrast factor
of the partial fringeg. In what follows, therefore, we will concentrate on
the Fabry-Perot (the approximate corresponding values for the Michelson may be
obtained by setting F = 2).

It remains to calculate the solid angle subtended by the partial interference
fringe. It can be easily shown that the solid angle, AR, subtended by a complete

interference ring is given by

s 19 =



B = ol . (32)

On substituting for the mirror spacing, d, we get
Ao “ee
AQ = _CT . (33)

The total solid angle, &%, subtended by the partial fringe is then given by

’ ;\0 wce AUS
60 = T . (34)

Since in general the collection aperture will be large enough to illuminate
several interference rings it is of advantage to use a telescope (cf. Figure 1)
to illuminate only the central ring of the interference pattern and thereby
increasing the light intensity. In this case we get

M2 A w  Au

_ o ce 's ’
89 = —F (35)

where M is the telescope magnification factor.

3.5 Number of useful photoelectrons

As we shall see, the major difficulty that will be encountered in measuring
the magnetic field direction by laser light scattering in a Tokamak plasma will
be the small number of photoelectrons per partial interference fringe. It is
therefore worthwhile determining the important-parameters which limit this

number and how they may be optimised.

The number of photons, Nph, scattered into a solid angle, dQ, is given by

I 2
Nph = o r o, Lo de (36)

where W is the laser emnergy, v, the laser frequency, r, classical electron radius,

g the saattering length defined by

n, the plasma electron density and L
L =2 (37)

where VS is the scattering volume and AL the area of the laser beam. The

scattering volume is, by definition, the intersection volume of the laser beam

v Ll =



and the volume defined by the collection optics. The latter can be regarded
as a cylinder when an amplitude division interferometer of the Fabry-Perot or
Michelson is used as the disperéive instrument, due to the inherent symmetry
about the, optic axis. In this case the scattering volume is simply the

intersection volume of two cylinders which can be shown to be

1
8 rl3 1 r22 "
= - p2)2 .
vy = orh f (1 - p2) ( - p> o (38)
o]

where T, and r, are the radii of the small and large cylinders respectively,

Ois the angle between the axes and p is a free parameter. The volume, VS’

can then be evaluated in terms of elliptic integrals. Here we take the simple

case where T, =T, =T, Iy being the radius of the laser beam. We then get
16 r '
_ b
Ls = 3r sin © : GH)

Equation (39) does not apply to the scattering geometries where the scattering
volume cannot be considered as the intersection volume of infinite identical
cylinders such as extreme forward scattering,ror where special selection optics
are used. For the restrictive geometry considered we can set 9==GS.

The number of photoelectrons, Npe’ is given by
N _ =T.qN | (40)

where TR is the transmission factor of the collection optics and q is the
quantum efficiency of the detector. The number of photoelectrons, Nf, for
each partial interference fringe is then obtained from Eqns (35), (36), (39)
and (40). On making the appropriate substitutions we obtain the approximate

numerical expression

n B2Wwr3r M2T, q
N, ~ 300 &0 0 R 1)

T 2 8in 8§ Sin x_F
e s s
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for the restrictive range of scattering geometries discussed in section 2.

4, CALCULATIONS FOR A TYPICAL SCATTERING EXPERIMENT

To illustrate the above theoretical and numerical results we choose a
representative Tokamak plasma with T, = 1 keV, n, = 2 x 10I9 m-3 and B¢ = 3 teslas.
The appropriate scattering geometry is shown in Figures | and 3. A ruby laser
beam (Ao = 6943 2) of pulse energy 10 joules and radius 5 mm is assumed. Typical
collection optic parameters would be collection angle ke = 80, optical
transmission TR = 257, telescope magnification M = 10, and a quantum efficiency
q = 6%. Setting BB/B¢ = 10%, and assuming that the laser beam is perpendicular
to the poloidal field (B = 900) and the torus midplane we obtain for various
collection cone inclination angles,ds, the parameter values listed in Table I.
(The values given in this table were calculated from the exact expressions.

In the 65 = 0 column the scattering length was set equal to the one for 65 = 300).
We can see immediately that the case for 90° scattering offers the highest
accuracy. Since the theoretical accuracy of 17 in determining the BG/B¢
value is more than sufficient, the laser beam divergence may be increased beyond
1.6 mrad. This is of advantage in achieving large incident laser beam energies
and thus relaxing, somewhat, the photodetection problems.

However, scattering geometries with large values of 68 have as a
disadvantage a relatively wide scattered spectrum and hence a large number of
peaks in the modulated spectrum. This increases the difficulty of accurately
adjusting the interferometer mirror spacing to match the free spectral range
to the peak spacing. As can be seen from Table I, a scattering angle, 65,
of about 30° offers the best compromise, in this case, for obtaining a large

number of photoelectrons and high experimental accuracy, whilst, at the same

time reducing the mismatch problem.
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TABLE I

S ' o 30° 60° 90°
o i
us [ =i 5,7 15.0 34.1 45,4
Auso 64 .68 .80 .92
XOMX (mrad) 1.6 : 1.6 1.6 1.6
Be s
AB_ - AB <—> (T) 034 .012 .006 .004
8 o\ B : -
4’ : :
Be : i
A(—) (mrad) : 11.2 ; 4.4 2.5 2.2
B ! ;
¢ L
§Q (u ster) L35 ;37 25 25
N 25 i 26 18 18
pe ;
89 (u ster) 108 b 198 78 78
N 77 82 55 55
pe !
i
Table 1

Some important parameters for various scattering geometries on a representative

Tokamak plasm of B

¢ = 3T, Be = 0.3T, Te =

laser of 10 J pulse energy is assumed.

P o

1 keV and n, = 2x 10 m

19

=3

A ruby




S5, CONCLUSIONS

The laser light scattering diagnostic, for measuring the magnetic field
direction in a plasma, which was proposed by Sheffield, for a particular
scattgring geometry, has been presented in a general form to cover all scattering
geometries and magnetic field configurations. It was then possible to study
the effect that real experimental conditions would have, and to choose the
scattering arrangement most suitable for the plasma in question. A representative
Tokamak plasme- of Te = 1 keV, n, = 2 x ]019 m_3, Btor = 3 T and BPol =0.3T
was considered where the laser beam was assumed to be parallel to the torus major
axis. A low finesse Fabry-Perot interferometer with its mirror spacing adjusted
to match the free spectral range to the spectrum peak spacing is assumed in the
collection optics. The light intensity in the peaks is then superposgd in the
dispersed spectrum and so the whole spectrum of scattered light can be utilized.
Large Séattering angles yield higher accuracy in determining the field direction.
For a ruby laser beam (Ao = 6943 K) with an energy of 10 Joules in the plasma
and a beam divergence of about 2 mrad an experimental accuracy of 5% shall

be feasible where about 80 useful photoelectrons are obtained with a scattering

angle of 30°.
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APPENDIX

"Al. THE WAVE VECTORS ic"o, kK AND k FOR AN ARBITRARY SCATTERING GEOMETRY

In a successful experiment the raw data available to the experimentalist
will be the angular coordinates of two partial interference fringes at the
focal plane of a Fabry-Perot or a Michelson placed in the scattered light
collection optics. The two fringes readily give the angular conical coordinates

of the scattered light directions which exhibit magnetic modulation. But before

the magnetic field direction can be calculated from these coordinates it is

necessary to transform all relevant vectors to a common coordinate system
(viz x,y,z system of Figure 2 (b)).

In Figure Al the orientation of an arbitrary laser beam axial direction, OL,
is shown in relation to the x,y,z coordinate system (cf. section 2) where

60 is the angle between OL and the y axis

Eo is the angle between the plame OL, y and the xy plane.

A coordinate system X 5Y 9240 convenient for the input opticsy is
obtained from the X,¥,2z coordinate system by a rotation of EO about the y axis,
giving the x', yI, z’ system, and then by a rotation of GO about the z' axis
(cf. Figure Al). A wave vector ﬁ; expressed in the X s Yo 2, system can then
be easily transformed into its x,y,2z components.

Similarly, another coordinate system X Yoo Zgo is defined for the collection
cone with the corresponding angles SS and Es where

53 is the angle between 0S and the y axis

Es is the angle between the plane 0S, y and the xy plane.

/ '

We now have x\ = cos Eo 0 sin Eo X\ = Ao x (A1)
y o 1 0 y y
z - sin 3 0 cos Eo 2 z'

and
7 = _ , - 7/
x' cos 60 sin 60 0 X AO X (A2)
v sip 60 cos 60 0 ¥ ¥,
¢ 0 o 1/ \z z_ :

_Al_.



From Eqns. (Al) and (A2) we have

‘
X\ = Ao Ao X, (A3)
Yy Yo
z7 Z .
o]

Similarly, we have

; ; > >
It now remains to express a particular ko and ks in the X0» Vo z
and Xgs Yoo z systems respectively and then perform the transformations of
Eqns. (A3) and (A4) to express the vectors in the x,y,z system. Figure A.2

i . =¥ -
shows the angles necessary to define a particular ko and kS where

Xx_/x_1s the angle between k /ﬁ and OL/0S
o' s o''s

(A4)

uo/us is the angle between the plane OL,y/0S,y and the plane defined by

OL/0S and k /K
(o] S

8 is the angle between ﬁa and Ks

Yo/Ys is the laser cone/collected come apex angle.

- -
Then expressing k and k in the x z and x Z systems we
P & %5 s o* Yo’ %o g Vg2 25 SV

have

-
k =k sin cos
Xo Mo
cos
Xo
- sin sin b4 z
Xo u > Yoo

and

k =k 1
sin x  cos u_
cos X

- sin sin X z
XS US o yS’

s
where it is assumed that ks = k0 for small Doppler shifts.

Therefore, from Eqns. (A3) and (A4) we have

_Az_

(A5)

(46)



sin x_ cos (A7)

=¥
i

I/
(o] kO AOAO
cos X,
- sin X sin Mo X,¥,2
k (A A
o] S S
c

and
>
= i A8
ks sin x cos U (A8)
cos Xg
- sin Xg sin Mg X,V ,2 .
- -> > . .
The scattering wave vector k = ks - ko can then be easily obtained from

Eqns. (A7) and (A8).

A2. AZIMUTHAL HALF WIDTH, Ap_, FOR WHICH MAGNETIC MODULATION WILL BE OBSERVED

We have from Eqn. (10)

che ] / ~
Aus T v |: Bus fal (us):l ' (A9)

We can then write for the derivative in Eqn. (A9)

P iy, o o
Bus fal (US) = B Bus k
A
US
=-B sinBk _ +3B Bk +B. K . (AlO)
g Sin - g COS & > By

The derivatives k;x, k;y and k;z are obtained from Eqn. (A8). On substituting we get

d Piag .
Ws fal (].IS) = kO sin XS' B¢. gS (All1)
where
- _9 cos £ cos § si ' 4+ si ! i - sin & sin s B
gs B ( s s s in “s sin Es c:os_,.uS sin B sin 5 in us co

B
¢[:
5 ) . ‘ ‘
+ [Fln ES cos 65 sin u cos Es cos us:] : (A12)

On combining Eqns. (A9) and (All), we obtain Eqn. (11). (For the most relevant

cases where 60 =f =y = ES = (0 and B = 90°

& ” the factor gs-is not very dependent

on BB/B¢ or 55 values and can be approximatedby g = 1, provided BB/B¢ sin GS << tan Xs)‘

. A3_



A3, LASER BEAM DIVERGENCE

> i
Suppose, for a particular scattered wave vector, kS, and where the incident

>, .
wave vector ko is along the laser beam axis, that we have

>

- >
fal (ko) =k,B=20

-

(A13)

We now wish to determine the maximum value, XomMx? of conical apex angle that will

+l 3 3 -
not contain an incident wave vector, ko’ for which the corresponding scattering

>4 .
wave vector k satisfies

>i > che
k .B =

2v -

e

(Al4)

As we require only an approximate value of Xomx Ve limit the analysis by setting

§ =¢ = Es =0 and g = 90°. Since the wave vector is is held constant, we get

from Eqns. (Al13) and (Al4)
Bw

ce el - >
S Ry = ko).B

e

We also get from Eqn. (A7)
¥ o7 -k i
. o = kg sin Xoyyx COS Mg
COS Xomx ~ 1
- sin XoMx sin Mo .
It can then be easily shown that

-1( Bmce

X = sin : } .
OMX L 2(B¢ sin + BB cos uo) ko v,

In the case where B, >> B_ and w << 2k V we obtain
(0] 6 ce oe

0]
ce

XoMx ~ 2k v .
O e

_All-"'

(A15)

(A16)

(A17)

(A18)
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Fig.1 Optical arrangement for the measurement of the magnetic field
direction in a Tokamak plasma.

Scattering volume
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Fig.2 Relation of the x,y,z coordinate system to the toroidal and poloidal
fields By and By. OL and OS are the axes of the incident laser beam and
the collected cone of scattered light respectively.
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—laser beam cone

Fig.3 Scattering geometry convenient for measure-
ment of small By/ By values. The laser beam is
parallel to the torus major axis and the cone axis
of the collected scattered light is perpendicular to
the toroidal direction.

collected cone of
one ot scattered light

scattered wave vector
—-

ks

b laser axis

______ - Q‘ Fig.4 Spherical representation of scattered wave vectors.
RS 30 - _The scattering volume is at the sphere centre. The axis of
qy\\ \\ 5o the sphere is the laser beam wly;ch is considered to be
§l perpendicular to both By and By. The plane perpen-

60° dicular to B containing the modulated scattered light,
Hs2 intersects the sphere surface along a line g; longitude
\ \ \ \75" n = ¢ where ¢ is the angle between B and B 4.
90°

S

Collected cones of scattered wave vectors are repre-
sented here by circles at §¢ = 90°, 60°, 30°. The angles

;21:2
w
8

.9o° so° :.5° -3n° -150 Y 0° 158 30° 450 60° 90° . Z
: X jangtugnaioe e tig1 and ugy are the conical azimuthal angles where
- e magnetic modulation will be observed for By /B¢ =10%.
0
B
_4:"'"_'—"..
0 & g

B
a‘:ts( & |
-015_
0104
Fig.5 Variation of the derivative & (Bg/By) asa
function of & for Bg/By = 10%. e
0 30° 60° 90° L
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YO yay I

Z!'Zo

Fig.A.1 Relation of the x,, ¥4, 2, coordinate system of
the laser beam to the basic x,y,z coordinate system.

Ho

Fig.A.2 Conical coordinate systems for the incident laser
beam and the collected cone of scattered light.












