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ABSTRACT

The two dimensional eigenvalue equation for electrostatic drift waves in
axisymmetric toroidal geometry is investigated. A model version relevant
for the Culham Levitron is constructed, and solutions obtained when poloidal
variations of shear, curvature and magnetic field are included. General
criteria for the existence of localised undamped eigenmodes are established
and it is found that for sufficiently strong modulations of various equili-
brium quantities, the stabilising effect of magnetic shear is completely
nullified. Equivalent criteria are obtained for the large aspect ratio

tokamak,

Investigation of the electron Landau resonance in strongly modulated
magnetic fields, indicates that for electron drift waves the growth rate
will be only logarithmically weaker than in the equivalent slab-model

calculation.
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I. INTRODUCTION

In the last few years there has been a considerable amount of theoretical

(1-4) of the stability of ‘drift waves in high temperature plasmas,

analysis
In most of these calculations the authors assume that the plasma geometry is
one-dimensional; that is the plasma is modelled by a slab in which only
variations in the direction of the density gradient are taken into account.
However,as will be shown in this paper the slab model does not adequately
describe the stability properties of drift waves in a toroidal plasma. A
theory of electrostatic perturbations in axisymmetric toroidal plasmas has
been given by Connor and Hastie(s). These authors obtain a partial differen-
tial equation for the potential @ as a function of the magnetic potential

X (the poloidal variable) and { the poloidal flux (radial variable). 1In
the present paper we obtain the drift wave solutions of this equation., These
solutions are different in character to solutions of the one-dimensional slab
and have different stability properties. In particular we show that the
prediction of simple slab theory that sufficient shear stabilises drift

waves may be incorrect when variations around the magnetic surfaces are taken

into account.

The local field line shear can be clearly identified in the partial

differential equation and is %% where Vv = BT/RBi. The poloidal variation

of L4 and of the other terms in the equation have been examined for the

oY

Culham Levitron and for tokamaks. The local shear in the Levitron is found

to vary very strongly with the poloidal wvariable ¥, in fact if one splits

the shear into an average part and a periodic part in the form %% = %% + %%-cosx,

then the amplitude of the periodic part %% is almost as large as the

average shear %%. Several other terms in the differential equation are found

2

. . . . 2
to vary strongly with ¥, the finite larmor radius correction term k, a,

and the curvature and VB drift terms kY vDy and kx v the latter are

Dx’
dominating for long wavelengths ky a, << 1, By comparing the magnitude of

the various terms we are able to reduce the equation in Section III to a
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simpler model equation for ¢ as a function of the poloidal angle © and

radial distance x. The coefficients of this equation being modelled by a

constant part plus a 6 dependent part which is either a sine or cosine.
For tokamaks, expanding all of the coefficients of the differential

equation in powers of the inverse aspect ratio €(= r/R) gives a simpler

differential equation for & as a function of 8 and x. This equation is
very similar to the model equation for the Levitron; however rather than

being a model equation it is exact in the limit if small €.

When all the varying parts of the shear etc are neglected the model
equation is identical to the differential equation of the slab model. The
solution of this equation was first obtained in the strong shear limit by
Pearlstein and Berk. The solution consists of a set of independent modes
which are centred on the mode rational surfaces, the modes are all radiating
energy away from their respective mode rational surfaces. This loss of
energy means that the wave amplitude would be damped, in the absence of any
destabilising effects, and the damping rate is found to increase linearly with
the shear strength. The marginal stability criterion is obtained by balancing
this damping decrement against the growth terms coming from the electron

Landau resonances. The criterion for stability is (in the long wavelength
4 m_ 1/3

limit) fE & (EEO (ky ai)4/3 and thus for sufficiently strong shear these
s i

modes are stable.
When the magnetic field properties such as shear etc vary around the
magnetic surface we show in Section III that it is possible to localise
a mode in both the poloidal and radial directions. That is modes are found
for which the potential decays in all directions in the x, 6 plane away
from the mode centre. Thus there is no energy radiated from this mode and
so it will have no damping decrement, and hence may easily be driven unstable by
the electron resonance terms,
Modes which are localised in the 0 direction have been discussed

previously by Adam, Laval and Pellat(e) and Coppi(3). The first authors used
: .



the poloidal variation of the drift terms to localise their mode, while
Coppi used the poloidal variation of the finite larmor radius correction terms

to achieve localisation. The structure in the radial direction was not

calculated in either paper.
In Section III of this paper local solutions of the model equation of

Section II, which contains all the significant poloidal variations for both
Levitrons and Tokamaks, are found. A condition is derived for the localisation
of drift waves in both © and x., We find that a very small periodic varia-
tion of the drift terms is sufficient to localise a mode pafticuarly for

long wavelengths (kyai << 1), and indeed the tokamak should be unstable to
these long wavelength modes. For the variation of shear alone to localise

a mode the amplitude of the periodic part ;; must exceed :7//5; where

;? i? the average shear strenmgth (V' = dq/dy , where q is the safety
factor). Although this condition is unlikely to be satisfied in a tokamak

it is satisfied on most of the surfaces of the Culham Levitron where as

mentioned earlier V'~ V'

(see Fig.l).

The structure of the remainder of the paper is as follows: in Section IV
the connection between these local modes and the modes of a toroidal plasma
in which there is no poloidal variation is established, Then in Section V
the stability of low frequency drift waves whose frequency is less than
the ion bounce frequency is discussed., In this limit the ions experience
the average magnetic shear and a stability criterion similar to that of the
slab model is derived.

Finally in Section VI, the electron landau resonance is examined in
detail to determine whether the basic driving terms become weaker in the
presence of poloidal variations of equilibrium quantities. We conclude that
for electron drift waves the electron landau resonance is only weakly modified
in magnitude. Of particular importance is the fact that the mode is now driven
by electrons of thermal energy and any pitch angle. Thus subtle neo-classical

distortions of the electron distribution function in the neighbourhood of the

trapped-passing boundary in velocity space, will have little effect on the mode.
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II. REDUCTION OF DIFFERENTIAL EQUATION TO A SIMPLER FORM

In this section suitable model differential equations for the propagation
of drift waves in levitrons and tokamaks are derived, The partial differential
equation for electrostatic perturbations in an axisymmetric torus has been
given by Connor and Hastie(s). Their analysis is for vacuum magnetic fields
which is appropriate for a levitron, but as we show later in this section

the analysis may be trivially modified for a tokamak, however, first we

derive a suitable model equation for the Culham Levitron. Using the same

notation as Connor and Hastie the equation for ¢D (Eq.(57)(5)) for waves

. _‘x -
whose perturbed potential ¢ = ¢D(w, X)e1(£¢ B U(lpo)CIX o)
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where the depéndent variables in this equation, X and | are the magnetic
potential of the poloidal field and the poloidal flux respectively, defined

in the usual manner;lép-= Ux = W 4 VO, Bp is the poloidal field, BT the
toroidal field, ' = 3/3y (BT/Rsz) is the local field line shear,

T = Te/Ti and the electron diamagnetic drift frequency w: = Te n’ /en.

In deriving Eq.(l) from Eq.(57) of reference (5) @0 was replaced by

¢oexp[i & feu day - is~4 R_IX\mwo)dX], and the sign of ® was changed for
convenience. The origin of the terms of Eq.(l) is as follows, the first term is
the finite larmor radius correction term ki ai, the second term is the ion inertia
term ki vi/mz, the fhird and fourth terms are the curvature drift terms

ky vDy/w and kx va/w.

In Eq.(l) the parameters R, B, B ¥  are all functions of ¥ and ¥

p!

and so the coefficients of Eq.(l) are also functions of X and Y . The

usual slab approximation is to neglect all dependence on X of these
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coefficients but retain the simple ¥ dependence in the shear term and also in
Uk g in the last term of Eq.(l). In the following treatﬁent we shall expand

y about a magnetic surface wo as in the slab model but the ¥ dependence
of the coefficients s modelled by an average part plus a periodic part

which will be taken as a sine or cosine. First, however, we transform
equation (1) into a form in which the s;cond derivatives have constant coef-
ficients. We multiply equation (1) by (ﬁ/ﬁ ﬁp)z where ﬁ = B/Bo’ ﬁ = R/Ro’

BP = BP/BO, and Bo’ B , R0 are constant fields and a scale length charac-

po
teristic of the configuration, and introduce new independent variables L and

%—K i e (D)

x given by .[X
P

x= (Y )/RB 5 L=
Here L 1is a stretched length in the poloidal direction, and x measures
length in the radial direction (i.e. along the density gradient). Then defining

a (constant) larmor radius and wavelength by

T 2 B
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where r gE-and we have chosen R B = RB..
n dx o O T

n

Now we split the coefficients of equation (4) into an average and a periodic

part and model the variation on L as follows.
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where 6 = 27L/L with L =§’P\\ dax
o o] BP

For comparison with these forms the actual functions of equations (5)~{1Q)
are shown in Figs.1-5 for a typical magnetic surface in the Culham Levitron.

With the above forms equation (4) becomes

2 \2
29 ¢ . 09 _ L .
By =k iAsin® a; =¢ D (35 + 1Sx/ai\ ()
9x
2,2
+ (Q - I'x /ai+Ecose + Fcos28)¢ = 0 el (1)
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i
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N n po a; o o e
s =kay . (1)
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-1 > _ 172
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2= o~ 2
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2, 2
where we have expanded Wy = Woo (1 - x/s7).

In deriving equation (11) the periodic part of the shear was separated from
the average by transforming to the new potential ¢ = ¢0exp(ikx?%in8)exp(§72c059).
Solutions of equation (11) are given in the next two sections. In the remainder
of this section the corresponding equation is derived for a large aspect ratio

tokamak. -6-



For the tokamak we again use an electrostatic treatment and this is
valid for B < mé/mi' In practice B exceeds this 1limit and the
electromagnetic corrections should be added. For expedizncy these corrections
will be ignored here, The differential equation for electrostatic perturbations

in a non-vacuum axisymmetric toroidal magnetic field is similar toE q. (1)

except QXE is replaced by Jdx and v= 1J/R°, where J 1is the Jacobian
Bp

of the transformation from cartesian coordinates to ¥, ¥, © coordinates

and is given by the differential equation

aw on (JB)——(%% 12 julb>/3 . (19)

For tokamaks of arbitrary cross section this equation (tokamak equivalent
of Eq.(1)) for the potential may be treated in the same manner as Eq. (1) for
the Levitron. However in the case of a large aspect ratio tokamak of circular
cross section a more detailed analytic treatment is possible. Expanding all
of the coefficients in the inverse aspect ratio, and retaining only leading

terms in r/R we obtain the following differential equatlon for ¢ 9

92 rq’
a? d)g kz . |:l 2 <._ + 2A'> cosﬂ] ® ( ) |: +1kx< ><l -Ycoseﬂ ()
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where k = 2q/r, q = rB /R Be , A is the radial shift in the magnetic surfaces

sitisfying

B o B e o B D | |
= (r Be é ) f_rBe/Ro 2r /Ro (dp/dr) oo (2D
and the prime in the above equation and in Eq.(20) denotes d/dr. In deriving

Eq.(20) radial derivatives on equilibrium quantities were neglected in

comparison with those acting on ¢0. In the ion inertia term the quantity



rg" ' .
=~ (L - ycosB) contains the local shear, and <Yy 1is given by

q
) R N1 7 R
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q r
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Thus the appropriate equation for drift waves in a large aspect ratio
tokamak may also be put in the form of Eq.(11l) with the constants A, D, E, F

and S having the following interpretation:
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where W =w, + 6w , and r = < LE
*e n n dr

To summarise, in this section we have derived a partial differential
equation (Eq.(11)) for the propagation of drift waves in an axisymmetric torus.
The parametric dependence of the coefficients of this equation have been

derived for the Levitron Eqs. (12)-(18) and for a large aspect ratio tokamak

(Eq.(23)).

ITI. LOCALISED SOLUTIONS OF THE MODEL EQUATTON

In this section solutions of the model equation (11) are found which
are localised in 6 and in x. We shall try and localise about an angle
8 = 60 and so expand all of the coefficients of equation (11) in (6 - 60)
keeping terms of up to (6 - 90)2. After removing the shear term by the

substitution ¢ = % exp(-iSx8/a;) equation (11) becomes

s [B e



2.-\ FaY '\21\ ~
2 9% . 3¢ _ 2 ¢ . ; 09
a; 5> + iQea, =" Dembkd & 51neoai T
ax ab
+ [W - szl-ai + U6 + V82] $ =0 ... (24)
where
Q = A cos 90 -.28
U = (AS - E) sin 6, + 2F sin 290
(25)
W=+ Ecos 8 + F cos 20
o o
V = (A8 - E/2) cos 6 - S° - 2F cos 20_
and we have replaced (0 - 80) by 6 to simplify the notation, We substitute

the form exp(a 92/2-+Inx2/23§ + c@x/ai + el + fx/ai)
and then by comparing the coefficients of the 92, xz, 0%, x,0 and constant
term show that this is indeed a solution with a-f given by the following

set of equations,

c2+ch-Da2+V=0 siw (26)
2eb + iQb - 2Dac = 0O S S
b2 i pe? - T=0 | ce. (28)
2bf - 2Dce + iA sin 6, b =0 vis G29)
2cf - iQf - 2Dea + U + iAc sin_eo =0 ... (30)
f2 + b - D(e2 + a) + iAf sin eo +W=0 o0 (31

The above set of nonlinear equations can be solved in the following
manner. The first three equations(26)-(28) are decoupled from the remainder,
and may be solved for a, b and c. Equations (29) and (30) are a pair of
linear simultaneous equations for e and f in terms of a, b, c and hence
may be readily solved. Then finally the eigenvalue W is obtained from

equation (31). To determine whether the mode is properly localised the
- =



coefficients of the quadratic terms a, b and c are only required., These are

as follows

2 _ (% - 2)% - DQ’/4 2

° 1)2(1'é - z)? o
b2 = TUT* - 2)% - DQ2/4]/(1"% - )¢ . (33)
c = - in“!E/Z(ré -z) .. (38)
where Z = {D(V + Q2/4)}% (35)

The conditions on a, b and ¢, for ¢ to decay in every direction from

the mode centre are

Real (a) < 0 ... (36)
and  Real (a) x Real (b) > (Real ()2 .. 3D

This result was obtained by putting 6 = rcos§, x = sind and assuming that
$+0 as r >~ for all 4. If the above inequalities are satisfied then
siﬁce there is no outgoing energy in any direction the eigenvalue W (and
hence § must be real, This last point may also be independently verified
by using Eq.(31) to show that the imaginary‘pért of W 1is zero when
inequalities (36) and (37) are satisfied.

To obtain a necessary criterion for a real eigenvalue using (32)-(37)
in terms of the parameters D, V, T etc is rather involved and probably
best done numerically. However one can obtain a sufficient condition £from

these equations for a real eigenvalue and this is

2

r > |D!EQ/2| - |z| , for z">0. ... (38)
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The above conditions are both satisfied when

V = (AS-E/2) cos 8, - 2F cos 290 - 52 >0 ... (39)
Although the above criterion is sufficient for the mode to decay in all
directions and the eigenvalue to be real, Fhe condition that the mode is
properly localised in 6, that is the amplitude is exponentially small at
the angle © = 80 =T, is

lan2/2| » 1 ... (40)

This latter condition is slightly more stringent than inequality (39) and we
check that it is also satisfied for the Levitron and tokamak examples of the
last part of this sectiom.

When I 1is small compared to the parametersD, Z etc, that is when the
scale length of W is large, simple expressions for a, b and c may be

obtained from Egs.(32)-(34),

L3 3
a=-V/D® ; b=-1I" [V—j ce. (41

&= 10 rz/{n(v & Q2/4)} Lae (42)

We now return to the criterion (39) for a real eigenvalue and determine
what amplitude of varying part of the shear etc is required for a real
eigenvalue. The parameters A, E, F in Eq.(39) are all functions of the
periodic parts of the shear, curvature drift and finite larmor radius
correction terms,so. when A =E = F = 0 then V = - 82 (note S 1is proportional
to the average shear), the eigenvalue §! has an imaginary part and the
solution is damped., However for sufficiently large A, E or F one can obtain
V > 0 and localised solutions with a real eigenvalue. Maximising V w.r.t. 6,

gives the following criterion for a localised mode.

- 11 -



2AS - E ’
= - - - 2 3 | ————————
Vo = |AS - E/2 - 2F| - 52 >0 i S| =1
aww (A3
_ (2A5 - E)? 5 . |2a5 - E
\') 5 —16F + 2F - 82> 0 if 16F < 1.

For the Levitron condition (43) is satisfied on most magnetic surfaces
for all wavelengths and so one would expect these local drift waves to be
easily driven unstable by the diamagnetic or ohmic currents. For short
wavelengths k, a; ~ 1 the varying shear is the dominant term in Eq. (43)
and this condition then reduces to v >V N2 or expressing
this in terms of shear lengths Es <2 f; . From Fig.l it can be
seen that the above condition is easily satisfied since v ~0.9 v .

For the tokamak F = 0(52) (see equation (23)) and then the criterion for
a real eigenvalue Eq. (43 ) reduces to

|as - E/2| > 82

or in more familiar notation

E
n

R T
(o]

kzaiz(rq'/q)2 < [2rq'/q - 1] + kzai2 [v(rq'/q)?-4"] N )
In this expression the first pair of terms are of order € and originate
from the two drift terms kfzg/w in equation (1). The third term is of
order € kzai and originates from the modulated shear, while the last term
is also of order ¢ k2 af and originates from the modulation of the finite
larmor radius (ks af) term, Clearly long wavelength modes are more readily
localised, and for these modes the drift terms are more effective in

localising the mode than the other terms. For long wavelength modes the

criterion for the existence of localised undamped modes is

g’y 'n
2 2 e
(q) tk ai)<R0'T

1 - 2rq’/q‘ cis (45)
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For parabolic density and current profiles this criterion is always satisfied

near the axis, and for sufficiently long wavelengths may be satisfied across

most of the minor radius.

Two validity conditions must also be satisfied before we conclude that such

a mode exists, First we have assumed throughout that wt, > 2m  where T is

the ion tramsit time. This requires that

r

n
kai > ROqT ee. (46)

which is compatible with inequality (45). In addition we must satisfy

inequality (40), i.e.

"Ro"rqz rrn
r !
k?a? ( . lR — |1 - 2rq’/q] - k2a(rq’/@)?| > 1 ... (47)
\ n L [6]

which is somewhat more stringent than (46), (A simpler version of this criterion

(8)

arises in a one-dimensional treatment given by Cheung and Horton' ‘). Taking

ka; as an adjustable parameter, we find that (45) and (47) are compatible if
rq'/q < q |1 - 2rq’/q| ... (48)

which for a typical profile of q = (1 + 4 r2/a2) is satisfied for

0 <r/ag .2 and .5 < r/a <1, The 'stable' band for intermediate values

of r/a is quite general, since (45) can never be satisfied in the neighbourhood

of rg'/qrf %u

IV, CONNECTION WITH THE ONE-DIMENSIONAL SLAB MODES

In this section the connection between the localised modes of Section III
and the modes of the slab model is discussed. That is as the amplitude of the
periodic terms of equation(ll) is reduced how does the structure of the mode
change., From equation (39) we see that as the amplitude of the periodic terms
A, E, F are reduced V becomes less than zero and from Eqs.(41l) and (42), a
becomes pure imaginary

a=-i ]V[%/D!E
and b and c¢ can be either real or imaginary depending on the sign of V+Q2/4.
Thus the mode is not localised in the Bl direction and is raﬁiéting energy

away from the mode centre in that direction; in the radial direction, x, the
=L e



mode can be of the local type or radiating type depending on the sign of
vV + Q2/4 which can usually take either sign by changing 90.

Since both modes are not local in the 6 direction one's first thought
is that the modes have to be periodic in 6. However this is not necessarily
the case, since the analysis in Section III does not take into account ion
Landau damping. Iﬁdeed if the mode is Landau damped before 6 - 60 = T then
it is again possible to have a mode of the radiating type which is local in 6.
The condition for the existence of this mode is a; S m > 1 which in terms
of the average shear length etc, is

a, rw/fs > 1 e £49)
The damping decrement of this mode is obtained from Eq.(31) and is

Yiw =-rn/fg wwe CD)

(7)

?

*e

This mode is similar to the quasi mode discussed by Roberts and Taylor
and has the same damping decrement as the Pearlstein and Berk slab modes but
the outgoing energy is radiated in the poloidal direction rather than the
x—-direction,
When the inequality given by Eq.(49) is not satisfied the solutions must
be periodic in 6., The relationship between the localised modes of Section III
and the periodic modes of a torus in which variations around the magnetic
surface are weak has recently been discussed by Iaylor(g). Using a somewhat
simpler model equation thanEq.(ll) a solution is found in the large modulation limit
which is the fourier transform in © of the localised solutions obtained in
Section III of our paper. The condition for an undamped mode is the same
as the localisation criterion of Section III (Eq.(39)). As the amplitude
of the periodic term is reduced it is shown that the mode splits into a set
of modes with a mode centréd on each mode rational surface radiating energy
in the radial direction away from their respective mode rational surfaces.
In the limit of zero amplitude modulation the modes are completely uncoupled.
Ion Landau damping can prevent the modes on different rational surfaces
from coupling together to form the localised mode and the criterion for

- 14 -



this is very similar to the reverse of the inequality given in Eq.(49). Thus

tﬁe picture that emerges is that as the amplitude of the periodic term is

reduced these localised or ballooning modes go over to quasi modes if

inequality, (49) is satisfied or to a set of weakly coupled Péarlstein and

Berk outgoing energy modes centred on the mode rational surfaces when inequality (49)
is not satisfied., The effect of the weak coupling of Pearlstein and Berk

modes is to reduce the shear induced damping from its slab value,

V. LOW FREQUENCY LIMIT FOR DRIFT WAVES

In Section III it was found that long wavelength drift waves are
particularly susceptible to localisation caused by modulation of the drift
terms in equation (1). However the eigenvalue equation used the approximation
wr, > 2T in calculating the ion response, and this condition is violated for

sufficiently long wavelengths, namely when
kai < 2wrn/LcT ... (51)
where L. denotes the connection length.

For very long wavelengths (satisfying (51)) we use the results of ref.5

in the wt, < 1 approximation. Writing the perturbed potential & in the

form X
& = ¢e-1u}t+ il(o-J v(¥ ) dx)
the perturbed charge density for ions is given by
1/B
W N
et [, () a |
Pi =T, {‘1’*'(1 w ) 2) <973
L ‘ [e)
1/Bm 1/8
w 2 1
,3em l_ﬁ)& (&ru -m>>f<¢>_dz t (37[91@(1} lﬁdx)
2 T B) M w ht 2 w n/ Jh t_ \ov’ B2
i o o P
‘ 1/Bm 1/8
w.r. !>_1 j. T'f '/2 \
i (n r | dy 1 7i( ydy|B /92¢
- e (A RB <H>+= — — (RB_)? 3
W <n qu £ o>+ T N h Lw? " p 9 x2Z,
aes (52)
4 \
o 92¢\
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while the electron charge density is the same as in Section III,

1/B ,
W
_e?n “re)) 1 dy
Pe = T [-¢+ (1- = ) 2.[<¢> = } owe (33
€ " 1/Bm
: 5 _ dX
In equations (52) and (53), h = (1-yB)°/B, t =

B2h

P
In equation (52) the ion inertia now contains the average shear q’, and is
integrated over passing ions only. The principal curvature contributes to

the drift term k.VD/w, but the geodesic curvature has zero average over a

transit.

As in the intermediate freguency case we determine a first approximation
to the eigenvalue from the dominant terms of the charge neutrality equation.,

In leading order this is

1/B 1/B
o) 1 cqstr, (1 %)l [co>8-
-¢Jl+7)+ <T+ = > = #hr=S% L~ w/)z <¢,>F=o0
° Tl cee (56)
If B is not modulated in ¥ equation (54) reduces to
<T+%_e\)£ ¢o-§lz = ¢_(1+7) %Xz- e, (55)

P P
and since the left hand side of this equation is independent of ¥, it follows

that the only solution is the flute solution

b =0 w=w ... (56)

o *e
If B is modulated in ¥, the flute solution (equation (56)) remains valid,
but other solutions with 0 < w < Wy o become possible. We discuss these later,
but for the moment examine the flute/drift-wave in detail. In next order,

expanding w = w, + Sw, and after annihilating the &% terms by integrating

*e

§ dx/Bi , Wwe obtain a one-dimensional eigenvalue equation for ®(x), O&uw;

o T o=



*

. a¢ T, -1
Sw d 3 3 d
i fofi-ammmt ] cav [ f—z* TR 1
P P

. 2 1/B_ -1 1/B
_3 Ti (2n(ygm) dy _ 3 n’_ 'f d {_CDS} a
2 M <-—-_§L-_-> ¢ ?1.-.5 ¢o (n) RBq o °

w 3 t, B2
0 o 0 P
v 97)
comparing this one-dimensional equation with the equation obtained in slab
r
geometry we may write down the effective fﬂ parameter (i.e., the quantity
s
which determines the damping) as
2 1/B = { = 2
r 2, m 5]
2-3 (2n_q_' -f-) {RE}X[ & {f{d—? (:1— (1-B/B) _l} vee (58)
L n B ) B
s &, ' o P

For the large aspect ratio tokamak, this reduces to
T
L
L <n
8

indicating slightly stronger damping than in the 'equivalent' slab problem,

1
b *
1 - ',E (l r/RO) ] 'R (59)

As in the analysis of Pearlstein and Berk, balancing the damping due to
the outward energy flux (proportional to rn/LS above) against the growth
due to the electron landau resonance results in a stability criterion with
*n m 1/3 4/3 . e
Ir-ﬁ-(F? (kai) . When B is modulated the electron driving term may be
somewhat weaker than in a slab calculation, but as shown in.Section VI this
is not a strong effect.

Thus in the low frequency limit the electron drift wave remains susceptible
to shear stabilisation even in the presence of strongly modulated shear or
curvature drift. As noted above,the possibility of other low frequency modes,
with w < Wy oo and a modulated eigenfunction, exists when B is modulated
in ¥. At first sight it might appear that strong coupling between different
mode rational surfaces might occur for such modes resulting in extended

undamped modes as found when Wt >.1. In the low frequency limit, however,

strong ion damping of each mode occurs before the first mode rational surface
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is encountered, so that such coupling becomes impossible.
We conclude that the criterion wr, <1 is effectively a stability

criterion for drift waves in strongly sheared systems.,

VI. ELECTRON LANDAU RESONANCE AND THE ELECTRON APPROXIMATION NEAR A MODE
RATIONAL SURFACE

In the determination of the two dimensional mode structure and the

oscillatory (or damped) eigenvalue the perturbed electron charge density

was taken, in Section III, to be 1/B
ezn ezn Yo 1
P == = Gt — i = e = ($o)dy /h e (60)
e T T w 2
= g 1/By

Near to a mode rational surface this approximation breaks down, and in a
narrow radial layer there are additional complex terms of similar magnitude
which give rise to an imaginary contribution to the eigenvalue. To determine
the growth rate we require to evaluate these terms. In addition we wish to
investigate the possibility that the additional real terms present a narrow
barrier to the outgoing Pearlstein-Berk solutions when these exist, and
reflect part of the outgoing energy, thus modifying the damping. This effect
is entirely independent of the direct coupling between Pearlstein-Berk modes
caused by modulation effects.

From ref.5 (equations (28),(38)) we see that the additional contribution

to o, occurring in the vicinity of a mode rational surface is:

X*Xo

= LS
6p_ = - Colps j' Bauac  FolU-tko (13072 + )] { BAX9OC) 4 (iox')
. -t 5q T s
e & : [2 (K-]JB) ]% [COSZ']TIQCI COSUJTej 33[2 (K“uB) ] H P :
LB ) (61)
where !

X ;
+i2xfx v dy
’ _ '
AP ()(,_x ) =wr, e

Te © 4' 2 — r n= g izTn
BP[2 (K=-uB) ]
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the quantity x is the distance (in flux coordinates) from the central mode
rational surface, Fo is the Maxwellian distribution, and we have used the
fact that mre << 1, (Lg=n) << 1 in obtaining the expression for Ap.

Introducing the pitch angle variable y = u/€ we may carry out the energy
integration in equation (61) to obtain

2 1/B : «, W,
2 1
g [y (o2 we] - 2Laboen 4D

(o}

vow (62)
d 2
h
whnere ) mfﬂxi;
m P
a =33 and
27 (2q-m)
Xf
X+X +i£x.Nf v dy o
'
AN=< 2Kopooxre X )({ —52125—>
B” h B h
X
=] —t2
with X denoting distance to the Nth mode rational surface, and Z(a) =n7% F E%?:{?E
-0

is the plasma dispersion function.
The imaginary contribution to Gpe, which we shall require in order to

calculate the growth rate, is given by

1/B
2 f " 2 m w ]
= - E—I}- T - * *
3'[}1 (Spe T '/T[ _dg_ a3 e a [ (1 ____(Eg) + (_g_- 3_2) —w- T] AN ea e (63)
o]

which contains the familiar a3 = (w/k VTe)3 dependence typical of the landau
resonance in general geometry.
When B is not modulated (ie. 9B/dX = 0) the pitch angle integration can

also be performed explicitly in equation (62) with the result,
2 w, W, 9 }
__¢€emn __"e _ —e 7z
Sp, = = 7 My {ad Z(a,) |:l == (4 n/2)] *——=mna (1+a %(@))
«oo (64)

 where a = a(y=0).

and the imaginary part is now

' ezn : -ag Yo 2 Pxe
jmﬁpe=--—.f—tfﬂ- ANaoe 1-T(1-n/2) ‘ao—w'—-n eaas (65)
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which contains the familiar a = (w/ky VTe) dependence of the landau resonance
in slab geometry. However as we shall see the apparent sharp decrease (from
a, to 33, where a and a are small over most of the radial extent of the
mode) in the imaginary eontribution to Gpe when 0B/9X # 0, is misleading.
After radial integration across the mode the difference between the imaginary
contributions is only logarithmic in the small parameter wt, << 1,

Before determining drift wave growth rates in the general geometry
(0B/3x # 0) and slab-like (3B/3Y = 0) cases, we examine the amplitude factor
AN'

The quantity AN determines the transparency of the Nth mode rational
surface to the eigenmode, and it is the only quantity in equation (62) which
distinguishes one mode rational surface from another. On the Nth mode

rational surface 2:{§ v dy = N3 thus, ignoring the variation of both B and

Bp’ we may model AN by taking

. -iNLg f
A =R = 5%-.f a8 ¢(8,x,) e Z ) vee (66)
and with ¢ = d)n(x)eine , L-le) = fL (1 - ycosbB)
s
EN is finally given by
AN = ]'_ZI_ ¢ (XN)J .YN) . so e (67)

A
Thus even if ¢ 1is purely flute-like (? = @o(x)), A is in general non-zero
so that each mode rational surface presents a complex barrier to the propagation
of outgoing solutions of the Pearlstein-Berk type when these exist. Only if

each of B, Bp’ Ls and -9 1is un-modulated is the true slab limit obtained:-

fo = % } (68)
AN 0 N#O L]

in which the central mode rational surface is unique.

{10,11)

We estimate the growth rate using a perturbation metho . Writing the
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complete charge neutrality equation in the form
L(w¢ + iR(w)¢ =0 vee (69)
where R denotes the electron landau resonance terms, and L is the operator
defined by,equation (1). Then writing w = w_ + iy, ¢ = ¢O + ¢1, where
L(wo)cbo =0 sss (70}
we obtain the following result for the Landau growth Y.

2 1n (02 > (oy0,") + gl o I + <6 Re,) = . (D)

where ( ) denotes fdw § Eé and Im Sw. is the damping decrement
due to shear when the modes %re of the Pearlstein-Berk type. Now we shall
finally be interested in the regime where Yy 1is of order Im dw so

s
that the ,(®1 @0) term may be neglected in evaluating 7. Thus

2
Y _ x
il b R o /<] | ) e (72)
where
% _ = g2 a 8u 3 2 2 dy
(¢D R ¢O) = V7 dy dy e a Re Eg—'+ n (Eﬂva ) IANI >
e B” h
o

+No  +x

1

N=-N, —X;
wae (73)

where the summation is over the mode rational surfaces, and the integration
f dx 1is the integrétion through each mode rational surface with 2xl the
distance between consecutive surfaces, The integer Nc denotes the surface
at which strong ion landau damping intervenes. If the mode is radially

localised, |[A + 0 exponentially as N increases and the truncation

il
at Nc is redundant.
Converting the x integration in equation (73) into integration over a,

using

= 9 =

B

P

2 2
v y [Rdef dy e 2 a3 {Re§u:—e+n(——a)]|AN| J“dfx"

h



we find X

. | 2
2 dx ade = 2x] §(y) ae da = X, 8(y)
o 8 (y)
In this expression &(y) << 1 for all y except in an exponentially narrow

region close to y = 1/Bm, which we may neglect. Thus we may approximate

as shown, and note that the dominant contribution has come from a ~ 0(l), and
all y wvalues. In other words the resonant electroms are of thermal energy,
and arbitrary pitch angle, but occur in a narrow region of real space close
to a mode rational surface (a ~ 0(1) => x/xl << 1),

Thus the growth rate is finally given by

1/Bp

R Sw 2 ; s 1
i -8 dX =
al—z T x, { f dy[ f* + n/2 - n62:| Se _gﬂﬁ"ulz]“%'z)
e o e P N
o <f£> viee LIG)
A

It is instructive to carry out the same procedure in the slab-approximation,

Although we could obtain the relevant result by direct integration of
expression (74) over the pitch angle variéble, we return to expression (73) and

perform the x integration, transforming first to a = 60 xllx where

60 = §(y = 0), Now the relevant integral is
X [s o]
1 — 2 =
2 ‘[ dx a e 20 =x, 8 j. e G AR o o x. 6 n 62 oo (75)
o 1 o t 1 "o o]
0 52
o
and
HJ-;— ~ J Xl 60 _r]AN| %—-i R_e -Ll:)-;:_ + n/2 IR,II (Sol - 5771 - Mn
e N B e
P
2 -1
x (|o,|
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The slab resonance is therefore logarithmically larger than the landau
resonance in configurations with a modulated magnetic field, and significantly
is driven by a different class of electrons, those with I 60 <<1l, Im
contrast to the result obtained in general geometry the resonant electrons
therefore occur in a narrow region of velocity space (small v,) and are widely
distributed in real space. The strength of the slab resonance is due to the

v .
relative abundance of slow electrons with v, < ® il [ these are 0(—%§EEJ],
compared to the paucity of long transit-time electrons in general geometry.,

In the latter case these may be of low energy, in which case there are
O(TO/‘EC)3 with transit times T longer than T, OF of the '"just passing'
variety (y = 1/Bmax) in which case there are O(e_(TC/TO)) with transit times
longer than Ty [whe?e ey denotes the transit time of a thermal electron
with y = 0]. In the transition from the general geometry result to the slab
result it is the narrow band around y = 1/Bmax which broadens to provide the

strong slab resonance. The criterion which must be satisfied for the slab-

like result to be valid is 5

wT
SB/B < ( 2ﬁ° eee ( 76)

which certainly is not satisfied in the Culham Levitron. For the large aspect

ratio tokamak this criterion takes the form

2 2m
< L
r/R < k a; §

T (Roq/rn)z e (77)
which again is typically violated.

We conclude that for electron drift waves in Tokamaks and Levitrons the
landau resonance is of the general geometry type, is only logarithmically
weaker than that found in a slab model, and is driven by electrons of thermal
energy and arbitrary pitch angle. Consequently we are also forced to conclude
that subtle neo-classical distortions of the electron distribution function
will have little effect on the drift wave growth rates. These conclusions
are essentially opposite to those of Coppi and Rem(a).

Finally, we note that whereas in the true slab model the summation over
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mode rational surfaces in equation (75) reduces to the zero-order term only

2 2 2
h = =
L ingl? = Igl7 = o)
modulation of B, Bp or LS, results in finite contributions from 2N + 1 mode
ka, L
i

2W T
Tl

rational surfaces where NC may be a large integer (NC_~ T

CONCLUSION

We have found that sufficiently strong modulation of many equilibrium
quantities as functions of the poloidal angle © can result in the localisation
of drift modes in both 6 and radius, thus rendering shear stabilisation
ineffective in axisymmetric toroidal geometry. In particular, rather strong
variations of the local shear quantity (%-%%? or of the product RBp can
remove the shear damping inherent in a one-dimensional treatment. Variation
of |B[ makes itself felt mainly through the geodesic drift, and a similar effect
results from modulation of the principal curvature drift. Small variations
of these quantities are sufficient to localise long wavelength drift modes,
so that even in a large aspect ratio tokamak of circular cross—section the
toroidal curvature may result in the appearance of unstable drift modes over
part of the minor radius.

When the poloidal modulations are insufficiently strong to establish a
localised drift mode, application of a different method of solution due to
Taylor(g) shows that a mode of the Pearlstein-Berk type persists, but now with
a damping decrement which is smaller than that found in the unmodulated slab
model. In this case there may be some additional reflection of the outgoing
energy from the mode rational surfaces, reducing still further the shear-induced
damping.

A detailed study of the electron landau resonance shows that this is only
marginally weaker than in a slab-model analysis, and that the main contribution
comes from a restricted region of real space, near to a mode rational surface
where w/k; = Vre and from the bulk of electrons with thermal energies. We

conclude that the electron landau resonance will be relatively insensitive to

small distortions of the electron distribution function.
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