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Abstract

We consider the stability of an axisymmetric, arbitrary cross-
section, arbitrary aspect ratio toroidal plasma, to axisymmetric modes.
It is shown that configurations with toroidal current which decreases
monotonically towards the boundary, and are maintained by an external
magnetic field with negative decay index, must always be unstable in

the absence of any external stabilising agencies such as active or

passive feedback.
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I INTRODUCTION

In this paper we study the MHD stability of an axisymmetric
toroidal plasma to axisymmetric (n=0) modes. We consider configura-
tions which are symmetric about the equatorial plame, and which are
maintained in equilibrium by current-carrying wires in the vacuum;
we a;sume that conducting walls and shells are either absent, or so
far away as not to affect stability. It is further assumed that,
during any ensuing perturbations, the current in the wires is main-
tained constant. In practice, this situation is achieved by coupling
the wires in series and including a very large inductance in the
circuit. Thus the wires are precluded from influencing the stability.
Our results are appropriate to tokamaks and pinches for which the
toroidal current density, j¢’ is everywhere positive, that is, there

are no current reversals.

The earliest studies of the n=0 mode were concerned with the
uniform vertical displacement (m=1) of a circular cross-section
plasma of large aspect ratio, the current being essentially uniform.
Osovets [1] and Yoshikawa [2] showed the stability for m=1 (rigid

displacement) to depend upon the sign of the so-called decay index,

that is
N S
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where Hl is the externally applied magnetic field perpendicular to
the equatorial plane, and R is the distance from the axis of

symmetry. These authors showed that for stability N must be positive.
It should be noted, however, that the above result is only strictly
valid if the plasma is regarded as a point. Assuming the plasma to
have an elliptical cross-section of small eccentricity (b/a ~ 1),

and to be carrying a homogeneous current, then the relation between

b/a and N has been shown [3] to be of the form
8R 8
= a2 3, (_p)_L17_ T 3
1+RP2|:4.E11<&> 16 N<£n<a>+ﬁl-—4>],

where BI = 2<P>f§;(a) and RP is the major radius of the plasma.
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It follows that for stability to vertical rigid displacements
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In the limit of large aspect ratio, this result shows that for values
of b/a close to unity, an ellipse with b/a > 1 will be unstable to
this mode. This conclusion is supported by the work of Laval et al.[4]
and Haas [5]. Applying asymptotic methods to the energy principle,
these authors demonstrate an elliptical plasma with a 'flat' current
profile to be unstable to m=1 for all b/a >1. Eq. (1) suggests
that for a finite a/RP » an ellipse can be stable for values of b/a
larger than ome. This conclusion is confirmed by the numerical calcu-
lations of Okabayashi and Sheffield [6], and Lackner and MacMahon [7].
In particular, for the 'flat' current profile the latter authors
demonstrate stability against m=1 for values of b/a up to 1.25.

The upper limit to b/a is found to depend on the form of current
profile. More recently, Wesson and Sykes [8] have studied numerically
the actual equations of motion for n=0 perturbations of an approxi-
mately elliptical cross-section plasma with a 'flat' current, and find
the motion to be vertical but non-uniform. Thus, in general, the

rigid perturbation is not the minimising axisymmetric mode.

Recently, there has been considerable interest in obtaining
laboratory plasmas of strong ellipticity. Experiments with belt
pinches (see eg. [9]) and shaped cross-section tokamaks (see eg. [10]),
have the decay index of the vacuum field negative throughout the
region occupied by the plasma. In the case of TOSCA [10], stability .
is achieved by passive feedback. Now the brief theoretical review
given above did not consider stability due to external agencies such
as passive (conducting walls or wires) or active feedback, and this
leads us to the objective of the present paper. We study analytically
the n=0 stability of a general axisymmetric plasma to perturbations
which include a non-rigid compoment; all external stabilising agencies

are assumed absent.

Using the energy principle, our procedure is to carry through a
program of partial minimisation, and then to use a trial-function.
Since the actual minimising perturbation is not rigid [8], we assume
a function which includes both rigid and non-rigid components. The

final form for the potential energy, 6W, comprises contributions from



the decay-index, the shape of the current profile, and the magnitude
of j at the plasma-vacuum boundary. Recalling the strictures on

w
symmetry and sign of j¢ given at the beginning of the paper, we

derive the following theorem :-

Any axisymmetric toroidal plasma with toroidal current decreasing
monotonically towards the boundary, and maintained in equilibrium by
external fields such that the decay index is negative throughout the
region occupied by the plasma, is unstable in the absence of active

or passive feedback.

The validity of the theorem has been established strictly only for
cross-sectional shapes which are simple, but otherwise arbitrary.
Strongly indented configurations would require a detailed study of

the flux and current density contours before an assessment of their
stability to n=0 could be made. The theorem, which is somewhat anal-
ogous to that of Earnshaw's in electrostatics, is also true for the

academic case of a 'flat' current profile.

Finally, for completeness, we discuss the straight problem. In
this case we consider equilibria which are symmetric about both the

equatorial and vertical planes, and we derive the following theorem : -

Any straight plasma with longitudinal current decreasing monoton-
ically towards the boundary, and maintained in equilibrium by external

fields, is unstable in the absence of active or passive feedback.

The analogy with Earnshaw's theorem is closer for this case. We note

that this theorem also holds for a uniform current.

IT  AXISYMMETRIC MODES IN TOROIDAL PLASMAS
We adopt the usual coordinate systems appropriate to an axisym-
metric toroidal equilibrium, namely, the set (R, ¢, Z) based on the
axis of symmetry, and the locally orthogonal set (W, o, %). Following

the definitions of Mercier [1l], we write

_ e X Vv
> I > S X
B = R ecp - R 3 (2)

where V¥ is the total poloidal-flux and I = Rlﬂp. The basic MHD

equilibrium equation takes the form

j
v. (3 v¥)=- 22, (3)



where

i, = B/ (¥) + o %)

and the poloidal current demsity is given by
j_=IB . (5)

Since V{ consists of contributions due to currents in the plasma, and

currents in the external windings, we can write

v = ¢p W (6)
and hence by Eq. (3),
1 AN
v.(iz WW)- 0, (7)
and ' N j
1 B o
v.(\R2 v\pp) 2, (8)

We shall restrict ourselves to equilibria which are symmetric about

the plane Z =0, and thus

v (Z) =vV¥ (-2), (9
P P

and further

‘pr (-2). (10)
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In general, the potential energy &W resulting from a small

displacement E , comprises three terms [12],

8W = 6W + &6W + &6W
ol v S
where p
o =j (Q2-3.Q X €+ Ww(V.E)2 + V.¢ €. % )dr (11)
P
and "
o = / 582 a7, (12)
v

all symbols having their usual meaning. In the present work we con-
sider skin-currents to be absent, and since this implies continuity

of'E at the surface (and hence p=0 at the surface), then SWS =0.

Changing to V{, ¢, x coordinates the plasma energy for n=0

becomes
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and J, the Jacobian, is given by J = R(|V¥| |Vx|) . Since we are

only concerned with n=0, the g-integration will be ignored through-

out.

The above form for BWP is the same as that used by Jukes [13]
to investigate axisymmetric perturbations for the wall-on-the-plasma
case. For completeness we repeat his initial steps, and then modify

and extend the analysis to cater for the free-boundary problem.

Minimising 6Wp with respect to Z, we are led to the equation'

G—'I;—ZX=%£(\!!), (15)

where f is an arbitrary function. Now the 1ntegral/ x{ <aZ+XG>](
J

in Eq. (13) can be written as
1 Gsz Jf2 K 2. 2 /¥ \ )1
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where we have used Eq. (15) and noted the periodicity in x for all

o

quantities. Similarly, using Eq. (4), the integrals

fororf p(BE 12w & oo -]}
become
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Substitution of (16) and (17) into Eq. (13) leads to

p J|vx| 2 2
. Jf£2 3 3 )
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R R? J
i i Jj :
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Consideration of Y indicates the minimising perturbation to be
incompressible, and this yields the comstraint

¢§XJ dy = 0. (19)

A further minimisation is achieved by setting £=0. Using Eqs. (14)

and (15), this leads to the additional constraint

L]
i

( XJ
f——ﬁ'f d’x =0. (20)
The form for GWP now becomes
p |vx|2 i, }} y
= e xz d 2
oW jJ dyd\l!{ = [W( ) X —-5" Xz, (21)
where g% is to be carried out holding R constant. Our definitions

indicate V¥ to increase inwards from the plasma boundary, and hence the

sign of the last term in Eq. (21) is negative.
=3
We now minimise 6Wv subject to the constraint V.8B = 0. Thus

we can write

—-— _e’ va —
6B = —CL-R———E + 6B(P 5 {22)
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and the Euler equation for 6B is V X 6B = 0. It is straight-

forward to show that the minimising Xv must satisfy the equation

L
v'(iz va>=o, (23)

for axisymmetric perturbations, and also that 63@ = 0., At the plasma-

vacuum boundary we require the condition

o

~

- - =
n.68 = n.Q , (24)
to be satisfied. It follows from our definitions that condition (24)

becomes

X=X . (25)



The total energy can be expressed as

[or{Sr ol ()] s, [ T

wheré dr = Jd¥dy. This form is anmalogous to that given by Laval

et al. [4] for the cylindrical approximation.

ov
To continue further we take the trial-function X = a —L

v oz
throughout the plasma, and Xv = o _B-ZR in the vacuum, & being a

constant. By Eq. (10) this choice ensures that the constraints (19)
and (20) are trivially satisfied; the trial-function for the vacuum

region clearly satisfies the condition that Xv vanish at infinity.

From Eq. (8)

1
V. <E2 V‘l‘p> =0, (27)
o
in the vacuum region, and hence Xv =@a FZR is a solution of
Eq. (23). Using Eqs. (6), (23) and (25), together with Gauss'
theorem, &W becomes
p j ? ov
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where [n.V’X]v denotes the jump in n.VX at the boundary, and n
is the outward unit normal. Differentiating Eq. (8) with respect to

Z and then integrating it through the boundary, we obtain

> P _ _EEB‘P)

[n.VX]Vr <B 57 s (29)
X ‘b

which is equivalent to the perturbed pressure balance equation.

Substituting Eq. (29) into Eq. (28) leads to the result

2

2
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b
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We now discuss this result, and begin by showing the first inte-
gral to be related to the decay index. In order to fix our ideas
concerning signs, we consider the illustrative example given in the
figure. This shows a toroidal plasma maintained by an external
vertical field combined with that of a quadrupole. Thus, using our
previous definitions, we write the decay index as

R o w
N=-—— 2z [B ], (31)

W
Y]
and it follows that 6W can be expressed in the form

2 2
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P
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We observe that, for an equilibrium with ‘jm everywhere positive,
and the decay index negative throughout the region occupied by the
plasma, then the first integral is destabilising. In fact, N<O implies
a vertically elongated plasma. The second integral is destabilising
if j@ at the boundary is positive. The third integral is destabil-

ising if ~g% j¢ =2 0 along each plane R= constant. Alternatively,

since
aj
az‘ g:' ey a2
R IR
p &
it follows that this integral is negative if E;-—géE 0. To keep
R

the argument straightforward, we now discuss these inequalities for

plasmas with cross-sections of simple, but otherwise arbitrary shape.

For a 'flat' current the jcp contours are vertical planes, and

9] 9]

7;% = Tﬁg = 0 throughout the plasma. For a current profile which
R

has a positive and constant jm around the boundary, and a single

maximum on the Z =0 plane, the above inequalities are clearly satis-

fied; this also covers the case j(p= 0 at the boundary. We can

also discuss configurations with two current maxima, for example, the

doublet, In this case, for currents which decrease away from each

9] i
maximum, the conditions -éqfe =0 and B TZ(E < 0 are again satisfied,
R R

-8 -



Thus we can conclude that the third integral is destabilising for
currents which decrease monotonically towards the plasma boundary,
and hence the theorem stated in the introduction. It is likely

that our theorem is also valid for equilibria which are strongly
distqrted or indented. However, for such an equilibrium, it would be

necessary to examine the particular V¥ and j(P contours before passing

judgment as to its stability against n=0.

ITI AXISYMMETRIC MODES IN STRAIGHT PLASMAS
We now consider the large aspect-ratio or straight case. Setting

R = Ro + X we take Ro to be a very large constant. The basic equi-

librium equation now becomes

92 9y .
Ox 2 + v Ehae RoJcp’ (34)
where ,
j =R p'(y) +E0 (35)
0 o Ro

We confine ourselves to configurations which are symmetric about both

the z=0 and x=0 planes. Thus as well as the conditions (9) and

(10), we now have

v (x) =¥ (-x), (36)
P P
and
0 _ a
o ‘l’p(XJ =% 5 \I’p( -x), (37)

These additional conditions allow us to introduce the new trial-
oy oV
function X = a-?gf in the plasma, and Xv = 75? in the wvacuum

region., Thus we obtain

2
r oy oV dj r dy oV
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Using the previous trial-function, we obtain

L v \* g dx o\’
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Adding Eqs. (38) and (39), and noting that

82¢w 82¢W
ox? + 9z 2 = 0: (40)
we derive
- ] ' ay
oW+ oW =- “2j (V¥ )2 ﬁ dxdz - 02] swanpts P 6 R L €08
P b| VY| [Vx] °
dj
Taking jw =20, we observe that for jif = 0. everywhere, the right

hand side of Eq. (41) is negative. Hence either 6Wx or &Wz (or

both) must be negative, and thus the equilibrium is unstable. As
before, since V¥ increases inwards, it follows that -any straight system
for which j decreases monotonically towards the boundary, is
unstable, Wz note that for the case of uniform current, that is

dj

___Q=0

v s instability is due to the boundary term alone.

IV  DISCUSSION

We have established a theorem for the situation where the decay
index (of the vacuum field) is negative throughout the region occupied
by the plasma. In the case of positive j(p we have demonstrated the
adverse effects of a monotonically decreasing current and jcp finite
at the surface. We have not been able to draw any definite conclusions
for the case of current reversal. A cursory examination of Eq. (32),
however, indicates the possibility of beneficial effects in the presence

of reversed current.

So far we have made no attempt to interpret the trial-functions

oy o v
X =g 57 and Xv = a.iﬁ? . We note that had we assumed X = a'gz

in the plasma, then a is directly interpretable as a uniform vertical
displacement, Ez' Taking Xv = o %% in the vacuum, however, is
unsatisfactory for two reasons : firstly, ¥ becomes singular in the
vicinity of the wires, and secondly, Xv is not a minimising solution.
This is confirmed by a comparison with the special case of the large
aspect ratio ellipse. Thus inserting these test functions in our
general formalism leads to 6&W = 0, whilst in the case of the large

aspect ratio ellipse, 6W is negative [4, 5].

We now investigate the nature of the trial-functions used in the

present paper.. In particular, we consider the equations

- 10 -
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V. =0 (42)

and

£ = (¥ - \llw) (43)

in the neighbourhood of the magnetic axis. We denote all quantities
at the magnetic axis (R = Ro s 2=0) by thgﬂsubscript zero, and
define x = R-Ro . Thus, Taylor expanding £, V and *@ , and
taking into account the vertical symmetry of the stream-functions,

it is straightforward to derive
(ff_) <u) . (8%) («u . ( 02y )
2 -y 2 2
oz o ox L 9% o 0Z e zo\ OZ? ox 5
s \ ( RCHY (44
( 228}: zza / *

where @ can now be expressed as

2 -1t
oy
32y
ame [14{52) (&) | - (45)
ZO0 3220 9z /
/3§X\
Thus if we regard gzo and —52—) as arbitrarily prescribed
o

o¢
quantities, then we can derive <-8?z> from Eq. (44). Finally,
o

we deduce that

ot ot
= Z X
€= [%”((‘5) % (‘a‘z‘)

where

F=% g +2 8 . (47)

Thus we observe that ¢ in the vicinity of the magnetic axis com-
prises an arbitrary vertical rigid displacement, combined with an
arbitrary rigid rotation, as well as a shear in the vertical
direction, the magnitude of which is itself determined by the

rotation and displacement.

= Tl .-



V  CONCLUSIONS
We have considered the stability of an axisymmetric, arbitrary
cross-section, arbitrary aspect ratio toroidal plasma, to axisymmetric
modes. We have shown that configurations with toroidal current which
decreases monotonically towards the boundary, and are maintained by
an external magnetic field with negative decay index, must always be
unstable in the absence of any external stabilising agencies such as

active or passive feedback.
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Example of a vertically elongated plasma maintained in equilibrium by external fields.









