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ABSTRACT

This paper discusses the time evolution of a slow Reversed Field Pinch
during the sustainment phase, starting from an initial low-B configuration
at the end of the setting-up phase which corresponds approximately to a
Taylor Reversed-Field Bessel-function state. Calculations are made with a
IDMHD equilibrium and diffusion code. Because of local overheating and
consequent rise of plasma pressure the central region of low shear becomes
Suydam unstable, and it is assumed that this results in local MHD turbulence,
so flattening out the central demsity and temperature profiles and leading to a
quasi-steady state which gradually evolves in time. The pinch then consists
of two main zones, a central Suydam unstable core I and an outer MHD stable
layer II which is responsible for confinement. An external Zome IIT may
exist near the wall but is not studied here. The configuration time T¢
depends on the time for which the trapped positive B, flux Y+ can persist
against resistive diffusion. This in turn depends on the electron temperature
in Zone II and hence on the anomalous electron thermal conductivity that is
assumed in the model. Some information can be obtained by normalizing the
phenomenological transport coefficients used in the code to the measurements
made on ZETA but this does not provide a very sensitive check. Further
information can be obtained from empirical Tokamak scaling laws. We then
predict the performance of the proposed device RFX. A significant difference
between ZETA and RFX is that in ZETA it was the disappearance of the negative
flux y_ that terminated the quiescent period, while in RFX it is the positive
flux ¢ _ that controls the configuration time. This leads to a substantial
improvement in predicted performance.
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1. INTRODUCTION

The Reversed Field Pinch (RFP) may have some advantage over the Tokamak
as an economic reactor because of the higher ratio B between plasma and
magnetic pressure [1J. An understanding of the performance of the RFP and
how it compares with the Tokamak is therefore significant for progress in
reactor design, and this paper is intended to contribute towards such an
understanding by developing a theoretical and computational model for the

evolution of the RFP discharge based on the available experimental evidence.

The magnetic configuration of the RFP is illustrated in Fig.l. It
differs from the Tokamak in having a toroidal field B¢ which 1s comparable

with the poloidal field B, and therefore operates well above the Kruskal-

8
Shafranov limit. MHD instability is avoided by reversing the B¢ field in
the outer region of the plasma so that a pitch minimum does not occur [2,3].

The lower toroidal field enables both the total B and the shear to be

substantially higher than in Tokamaks.

Unlike the stellarator which can in principle operate in a steady
state, and the Tokamak which can under suitable conditions maintain the
discharge for as long as the volt-seconds are able to sustain the toroidal
current I¢, the lifetime s of the RFP configuration is determined by the
decay of the trapped positive B¢ flux which is indicated by v, in Fig.l.
Once the field reversal point ap has moved inwards from the wall, there is
no way in which ordinary diffusion processes in azimuthally symmetric
geometry can allow ¢ to increase in value, and it must inevitably decay
due to the finite resistivity of the plasma. Although it might be possible
to maintain or increase y _ by neutral beam injection or by MHD turbuleﬁce

we do not deal with such processes in this paper, and therefore consider

two separate phases of the discharge:

A The "Setting-up Phase" in which the magnetic field configuration of

the type shown in Fig.l is established by some appropriate means.
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B. The "Sustainment Phase" in which the B¢ configuration gradually
relaxes to the point at which stable confinement of a hot high-Bg

plasma can no longer be maintained.

Phase A is complicated in both the Tokamak and the RFP and probably
involves MHD instabilities or turbulence. We shall not éttempt to follow
it in this paper although some discussion is given. Our main purpose is
to develop a model for the evolution of slow reversed field pinches during
the sustainment phase B based on IDMHD computer calculations similar to

those for Tokamaks [4].

The model envisages that in phase B the RFP discharge should consist
of three main concentric zones as indicated in Fig.2. The central Zone I
of radius ay (where aj can be 10 ~ 507 of the minor radius a) is expected
to be MHD turbulent at a rather low level caused by Joule overheating,
which raises the plasma pressure in a region of very weak shear and so
leads to Suydam instabilities. These instabilities should in turn lead
to enhanced diffusion of plasma and energy thus flattening out the profiles
and maintaining an approximate Balance. It is interesting that both Tokamaks
[5,6,7] and stellarators (8] also appear to have central unstable zomes
although these are observed to undergo periodic saw-tooth oscillations

rather than random turbulence.

Zone II of radius a, is a region of high shear which is expected to
provide stable MHD confinement. A crucial element in our argument is
that the Suydam instabilities which are localized in Zone I should not
lead to anomalous effects in Zome II, but only to small-amplitude
Lagrangian fluctuations of the magnetic surfaces which preserve their
topology and therefore do not allow the plasma to diffuse across the
magnetic field. This question is discussed further in section 5. Zone
III is an outer region in which wall interactions are expected to be
important, but little is known about this zone in RFP geometry as yet and

it is not dealt with explicitly in this paper.
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The decay of the trapped positive B¢ flux ¢+ is determined mainly by
the parallel resistivity n”, and experiments on many types of device
indicate that this is likely to be classical apart from a factor Zeff of
order 1 ¢ Zeff § 10. The main uncertainty affecting n" and therefore
the configuration time T, is expected to be the electron temperature profile,
and this depends quite critically on the electron thermal conductivity that
is assumed for Zone II. Little empirical information is available on electron
energy confinement in RFP geometry, and therefore calculations have been
made for several values of the electron thermal conductivity ranging from

pureiy classical to the level of anomaly that is observed for Tokamaks [9,]0].

The main evidence for millisecond containment of high~Bf plasma in RFP
geometry is provided by ZETA £11,12]. Reversed-field configurations were
not programmed directly in ZETA, which was surrounded by a B¢—f1ux conserving

shell so that

P = w+ - Y_ = constant ,

but they were observed to occur spontaneously for certain ranges of toroidal
current I¢ and B¢ flux, so leading to a "quiescent period" of enhanced
stability which lasted until y_ had decayed to zero by resistive diffusion.
Subsequent theoretical predictions by Taylor £13] and more recently by
Kadomtsev L[14] suggest that a force-free RFP configuration should develop
spontaneously during the unstable setting—up phase A as the plasma tries to
relax towards a minimum energy state, and although the details of the formation
of the RFP in this way are not yet understood these theories do help to

explain why it should occur. Another method to generate an RFP is by fast

programming of the currents in the external coils as is done on HBTXI at

Culham L[15].

Large RFP devices such as ZETA (a = 0.5 m) and small fast devices such
as HBTXI (a = 0.06 m) appear to operate in different regimes, due to a

considerable difference in the ratio of the Alfvén or MHD instability growth
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time Ty to the current rise time 1Y and the configuration time T, in the two
cases, In fact Ty N%/B-is roughly independent of radius a and of order

10 microseconds in most pinch devices, where N is the line density and B

is the magnetic field, while.TR and T, both increase with a. In order to
predict the performance of future large devices it is therefore natural to
start from the experimental results obtained on ZETA in which both phases

A and B occupied a period equivalent to many instability growth times, so

leading to a quasi-stationary level of turbulence L16] rather than to a

single non-linear unstable mode as in HBTXI L15].

The available ZETA results [11,12] include measurements made to
determine the initial structure of the RFP configuration formed during
the setting-up phase A as well as measurements of the discharge behaviour
during the subsequent "quiescent period" (current sustainment phase B).
The approach adopted in this paper is to regard these measurements as an
empirical reference point on which studies of the RFP will be based. We
discuss results obtained from computer calculations with a 1D MHD model
to be described in the following section. The model includes a number of
physical effects which are believed to affect the behaviour of ZETA, and
adjustments'are made until an acceptable measure of agreement between
experiment and calculation is established. Account is also taken of

empirical scaling laws based on Tokamak performance [9,10].

Having normalized the model in this way, we then present results from
an extensive series of calculations that aim at predicting the performance
of a proposed "next generation'" RFP device fa = 0.6 m) referred to as RFX
(Reversed field Experiment), whose main parameters are given in section 8.
An important practical difference from ZETA is that RFX is designed to
support the reversed flux ¥_ by slow programming of the B¢ field at the
wall, so that whereas in ZETA the stable quiescent period lasted until the

negative flux ¥_ had decayed away, in RFX it is the decay of trapped

positive flux y, that is important. Since the positive flux occupies a
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region of the discharge which is hotter, of greater radial thickness and
less subject to interference from impurities or poor magnetic field
geometry near the wall, one would expect that such a facility should bring
about a substantial improvement in performance over that of ZETA. This is

indeed one of the main results of our work.

The paper is arranged as follows. The MHD equations which are to be
solved numerically are given in section 2. To see that anomalous transport
and heating processes must be included we highlight in section 3 the
containment features of the RFP by examining the force-free model considered
in [13], It is realized that an ohmically heated RFP configuration is
likely to violate the Suydam criterion [2,3] necessary for stability, in
the central regions of the discharge. We therefore need to study
instabilities that may arise from "overheating" which causes a rise in
pressure and to estimate their effects. Section 4 contains results from
ideal MHD-stability theory and these are supplemented by 1D stability
calculations which employ the numerical methods described in reference3'£]7,183.
The instabilities caused by over-heating of the central RFP region are
expected (section 5) to lead to turbulent transport processes as previously

suggested in L3].

The experimental data and numerical parameters used for the calculations
on ZETA are given in section 7 together with the calculated results. The
agreement between experiment and theory turns out to be relatively insensitive
to assumptions about anomalous electron energy transport in the confining
layer mainly because the temperature did not greatly exceed 100 eV. The
predicted performance figures for the RFX which are presented in section 8
do on the other hand depend upon the behaviour.of the confining layer since
in this new device the temperature is expected to be considerably higher.
Thus to bracket our predictions we have investigated what happens as the
electron energy confinement properties of the outer layer are altered, and
we have related our assumptions to empirical Tokamak data [9,10]. The
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uncertainty surrounding this procedure is discussed in the last sectionm.

ST units are used throughout the paper with temperatures quoted in eV.

2. SUMMARY OF THE PHYSICS MODEL

A one-dimensional cylindrical approximation is used with coordinates
(r,8,z) and functions depending only on r. In the following z will denote
the toroidal coordinate ¢ used in the Introduction, so that the components
of the magnetic field are Be (poloidal or azimuthal) and Bz (toroidal or axial).
The plasma is described by an electron density n, ion and electron temperatures
‘1‘i and Te’ and effective values Zeff’ Aeff of the charge and atomic numbers.
It is assumed to evolve through a sequence of states in pressure equilibrium

with the field

Vp=JxB , (1)

where the pressure is p = nk(Te + Ti/Zeff) and the current density is given by

Mo J =V x B. Each new equilibrium state (1) is reached after diffusion of

the magnetic field and the plasma temperatures:

3B iy
— -VxvxB=—V¥Vx(n.VxB) (2)
T e

nk DTe | (3)
ok e _ _ - 3
y=1 Dt L Ey K+Qe

DT. 5

1 nk 1

- =-¥.F +K+Q: (4)
Zeff -1 BE * *

where %% denotes a Lagrangian derivative. The anisotropic resistivity tensor
gzcontains contributions N Ny from the scalar resistivities parallel and
perpendicular to B. The thermal fluxes Ee, F, across the field have the
form Kl'%% . K denotes the classical energy exchange rate and the source
terms Qe’ Qi include ohmic heating, Bremsstrahlung and turbulent ion heating.

No plasma is lost at the confining wall r = a, but energy is lost at the
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rate
aT

"L 37 dp=a

The transport coefficients are expressed in the calculations in the

form
_ 0
LTI ‘ (5)
o) V;
L 4w, Dy (6)
"
K e ™ Kie + nk (DT + Da) s (7)
- 0 : . N
Kyg = Kag * (/2 L )KkD, &

. 0 : ; i
where superscript denotes the classical value, and the anomalous diffusion

coefficients D, and Da are discussed in sections 5 and 6. Energy conservation

T

is ensured [IQJ.by including turbulent heating contributions proportional to

DT in the ion and electron source terms.

We shall also frequently refer to a set of parameters which are

commonly employed to characterize an RFP configuration. These are defined

as follows:

) 2 p(o)
Axial Beta Bo = "—Bzf(?)—' (9)

a
2
Poloidal Beta B - L4m)° p r dr (10)
o T, 12
[s]

Be(a)

<B >
Zz

Bz(a)

<B >
z

(11)

Pinch parameter e =

(12)

Field reversal ratio F =

r Bz(r)

EACEE 13

Pitch funetion P(r)

The calculations described in sections 7 and 8 have been performed

with & computer code EZOJ which solves equations (1) - (4) in finite

difference form.



3. RFP CONTAINMENT

A qualitative picture of the evolution of the RFP is obtained by starting
at the beginning of Phase B from the force-free (8 = 0) Bessel function model
studied in [13]. The unperturbed field components are given by the Bessel

functions

- r = r
B, BOJ0(2®a) » By =B J (2 e (14)

1

where B0 is the magnetic field on axis, and the current density has the components

Fig.3(a) shows the components of B and J as a function of wall radius or O,
and for @ < @I = 1.587 this configuration is stable according to ideal MHD
theory [21,22]. To eliminate resistive instabilities [23,24] (tearing modes)
the ‘radius a of the conducting wall must be moved inwards relative to the
field configuration so that @ < CE = 1.552 L25]. TFig.3(a) shows the two
wall positions @I and @T. It cannot however be brought in beyond the field
reversal point @R = 1.202, since although the configuration would still be
theoretically stable with the boundary conditions appropriate to plasma in
electrical contact with a perfectly conducting wall, the more realistic

boundary condition of a thin vacuum layer between the plasma and the wall

would lead to a point of zero shear and therefore to ideal MHD instability.

We now imagine that plasma pressure (B > 0) is added to the configuration
(14), "inflating" it in such a way that magnetic flux is conserved. During
this process it undergoes a Lagrangian distortion. The maximum Suydam
stable value BO = B(r = 0) that can be obtained on axis is calculated by inward

integration of the marginally stable pressure gradient [3,21]

2
o= - X g2(1 >
VpS SUO Bz <P VP . (15)

starting from the boundary condition Pg (a) = 0 and allowing for pressure



equilibrium. In Fig.3(b) the maximum values of B, for various wall radii
(or ® ) are represented by the curve labelled BS. The curve to the right
in Fig.3(b) labelled C)I calculated by Robinson [26] shows as a function of
Bo the maximum value of © at which the pressure-inflated Bessel-function
configuration is marginally stable against ideal MHD gross kink modes. If
resistive effects are taken into account then stability against tearing
modes [26,27,28] requires O g @T < C& with C& = C& of the order of a

few percent [27].

Our basic model will be that the setting—up phase A produces an initial
Bessel-function field distribution with 1.2 < @ < 1.6 following the
prediction by Taylor [13], with plasma of finite density and negligible
temperature. According to Newton [29J_this initial configuration can pe
thought of as an "empty, elastic magnetic bottle'". During the current
sustainment phase B the empty bottle is gradually filled and inflated as
the temperature is raised by ohmic heating, so increasing the axial value By~
The maximum value of BO which can be reached is indicated by the curveBS
in Fig.3(b), and the distinctive bowl shape of this curve emphasizes the
need for high shear (© > 1.5) if high values of B (B > 0.1) are to be

achieved.

Writing equation (11) as

(where Iz is the total current, and V, and y_ are the positive and negative
Bz fluxes) we see that the maximum B0 that can be supported in a Suydam
stable state depends on the choice of total current and Bz flux. Once the
RFP has been set up a further increase of © (and thus of Bo) is in principle
possible by controlling the total current Iz via the electric field Ez at
the wall, and/or by controlling the negative flux y_ in the outer region
via the electric field Ee at the wall. The control of wall fields (as in

RFX, but not in ZETA) might thus result in very high values of BO, S0
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it is therefore necessary to ask what actually happens when a low B RFP
configuration evolves through the current sustainment phase B: that is,
which of the stable high-B configurations can be reached and maintained

during the evolution of the plasma.

The function |;T_|2 which is a measure of the ohmic heating rate is shown
in Fig.4 together with the pitch profile corresponding to (14). It is clear
from these two curves that the heating rate is at maximum where the shear
n VP is at a minimum so that we should expect the Suydamstability criterion

Vp > Vpg (16)

to be violated quite quickly in the central region of the RFP. Violation of
(16) will result in instabilities whose growth rates and radial eigenfunctions
according to linear MHD stability theory depend on the pressure equilibrium

as well as on the extent to which (16) is violated. It is not well understood
hoﬁ'an instability grows into the non-linear regime and what happens sub-
sequently, Using intuitive arguments based on linear stability theory, we
therefore develop in sections 4 and 5 a model in which local wviolation of (16)
leads to a local "turbulent" transport of plasma and energy across the
magnetic fie}d. Within any Suydam-unstable zone this turbulent transport

will tend to flatten the density and temperature profiles so that the
departure from marginal stability is automatically reduced. A related
"marginal stability" approach to the enhanced transport resulting from other
types of instability has been pursued by Manheimer et al (30J. Within a
Suydam~stable zone we postulate that the MHD confinement properties remain
intact, although the transport across such a zonme will be enhanced by a
steepening of the gradients to balance the flattening elsewhere, and

anomalous transport due to microinstabilities may also be present. The
steepening of the gradients may become sufficient to violate (16) so causing

the inter—zone boundary to move.

A model of this kind was proposed by Suydam (3] in his 1958 Geneva
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Conference paper (p = %

"The result seems to go qualitatively as follows: the mixing of a small
unstable region leads to a distribution which is less unstable on the
inside and more unstable on the outside. Thus, if some interior shell
were unstable, it would mix until stable, and this in turn would upset
the stability of the next shell which would proceed to mix and so on.
In this fashion such an instability would eat its way outward towards
the surface. If, however, a layer near the surface is given excess

stability, the outward progression of the mixing should be stopped.
This excess stability of the surface l?yers'ought to be insured if
the B_ field were so programmed that yu is made quite large in this
region. The simplest programming appears to be one which would
reverse Bz in the vacuum after the plasma has pinched."

Sakanaka and Goedbloed [31] also concluded from their study of Suydam
unstable modes that these if sufficiently localized "would possibly result

in enhanced diffusion'; non-localized unstable modes would "lead to the usual
kink—~like loss of plasma''. The measurements by Robinson and Rusbridge L16]

of the density fluctuations in ZETA suggest a '"central core region in which the

turbulence is approximately homogeneous'.

This proposed distinction between "turbulent" and "confining" Zones
is analogous to the situation in many stars [32], but requires justification

in the MHD case.

4. LOCALIZED MHD INSTABILITIES

The stability of diffuse pinch configurations has been studied
extensively and references £2,3,21‘26,31,33—39J represent only a small cross
section of the papers published in this area. In ideal MHD theory the
departure from pressure equilibrium

Vp=JxB (17)
is described by a Lagrangian displacement vector £, which in cylindrical

geometry is represented by

i(mb+kz-wt)

.E_=1-ﬂz:k£nke E] %k=(€.)%sgz)

where we have dropped the subscript from the r-component for brevity. In
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the linear regime each eigenmode & = Emk satisfies an equation of motion

- pw?

= F {&} (18)

|y

where p is the mass density and the force operator is given in [34]. The
complicated form of F makes it impracticable to solve this equation
analytically for arbitrary profiles of p and B. Unless certain approximations
are madé (low shear, localization etc.) as in references [31,33—37} equation

{18) has therefore to be solved numerically.

The case of marginal stability (w? = 0) is algebraically more straight-
forward and many authors have therefore approached the MHD stability problem

by examining the change in energy [21]

AW =-=F {g} . &

1
2
caused by a displacement £. The equilibrium (17) is unstable if a dis-

placement exists for which AW < 0. Minimization of AW leads to the familiar

expression (211

Z 2
AW =f (f(—g—%) + g g2> dr , (19)
o

the minimizing eigenfunctions £ being the solutions of the Euler-Lagrange

equation

B2 e Bl . (20)

The functions f and g as given in [21] are

2
f=irF—2 (21)
uo K
2 2 %
g=——2k2 Vp+“2ukg%+ﬁLrF2<]— 2]2> " (22)
K o rK o r K
where
F =K.B=kB +28
— — z r 6
F3 b3
F =K .B=kB -28
— — z r 0
K2=k2+m—§ .
r



The Euler-Lagrange equation (20) has a singularity when f = 0, i.e.

at any radial point Ty where

=k =
F ry Bz~l-m.Be 0

or

P(rs) = -m/k (23)

where P is the pitch. In the case of a monotonically decreasing RFP pitch
profile similar to that of Fig.4, we see that for given m, there will be

one such point r_ at which (23) is satisfied for any k in the range

- mP(o) < k < mP(a) .

The eigenvalue equation that determines the frequency of modes with
w2 # 0 has a structure similar to that of (20) but with coefficients f(wz),
g(w?) that are frequency-dependent [38], For unstable modes (w? < 0, y = - iw)
the coefficient f is everywhere positive and the equation (20) is non-singular,
but the modes of interest in this paper are mainly those whose eigenfunctions

are localized near the point T defined by (23).

Since the first term in (19) is non-negative it is necessary for
stability that g < 0 in some region between r = 0 and r = a. This can be
caused either by the first or second term in (22), or both, and will give
rise to various types of modes [33]. The distinction between these types
of modes is most easily established for low shear systems, (see‘for example
the discussions in [34,35] based on the equation of motion (18)), If the
energy driving an instability is dominated by the second term of (22) the
mode is called a kink (Vp = 0) or quasi-kink (Vp # 0), both modes being
driven by the current. If the energy is dominated by the first term in (22)
we have a pressure-driven mode, and for a configuration of zero or low shear
there is a transition as Vp is increased from quasi-interchange modes which
are present only when F # 0, to pure interchange modes which are present

for both F = 0 and F # 0, but are dominant at F = 0.

In the following we shall look at pressure-driven modes in a high-shear
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system (the RFP) and allow for large pressure gradients. The most dangerous
radius is T, where the first term in (19) vanishes. Using the variable
X=r-7r to expand around this point we see that f is quadratic in x
(equation 21), while the three terms in g (equation 22) are respectively
constant, linear and quadratic in x. Near the singularity the second and
third terms in g may be neglected and the solutions of the Euler-Lagrange

equation are [21]

v 1,1 )

Envx 4 \)=—Ei§-(-'2)2 (24)
where the parameter I which measures the departure from a Suydam stable
equilibrium is defined by

L = Yp/Vpg - 1 (25)

with Vps given by (15). The condition for non-oscillatory (i.e. stable)

solutions is the Suydam condition ZS = E(rs) < 0.

For weak instability, i.e. Zs small and positive, the growth rates of
the unstable modes can be obtained by equating the kinetic energy 3}/ pw? £2 ydr
to the potential energy AW while retaining only the first term in g. To do
this it is necessary to match the solution (24) on either side of r = r, as
demonstrated by Pao [37]. An infinite set of eigenfunctions exists for each
m and ros characterised by the radial node number n, and it was pointed out
by Grad [35] that the growth rate y decreases exponentially as n increases.

This is well illustrated by Fig.6 of ref. [38]. Therefore in practice only

the least localized mode n = 0 need be taken into account.
The growth rate of this mode is given by (35]

2 .
.2 Rgl_g%_ Vpg e 2m/L
P x L

(26)

where the exponential factor expresses the radial width A of the eigenfunction (37].
Both y and A are exponentially small as ES + 0. From the shape of the dashed

curve shown in Fig.3 of ref, [39] it appears that y should be very small for
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Zs < 1.4, and this should also be true of the effective diffusion coefficient

~ yA%?, Another significant point brought out by the work of Goedbloed and

Sakanaka (ref. [38] Fig.7) is that for fixed k/m, i.e. fixed s the ideal

MHD growth rate tends to an asymptotic limit as m -+ =,

As I is increased well above zero the eigenfunctions become less and
less localized and y increases. Goedbloed [36]_has generalized the
Suydam criterion by including the linear and quadratic terms of g (second
and third terms of (22)). The resulting eigenfunctions (equation (18) of
ref..[36]) no longer depend only on the local value ZS and to estimate the

growth rates it now becomes necessary to solve equation (18).

We have used the methods described in [17,18] to solve (18) numerically
for a series of RFP equilibria. To investigate separately the effects from
violating the Suydam criterion (16) we eliminate purely current-driven kink-
modes by starting from the force-free Bessel function mﬁdel; the field
components (14) form a stable configuration for ® < 1,587 [22] and correspond
to a Bo = 0 magnetic bottle. The bottle is pumped up with pressure by
specifying £ = I(r) and solving equation (25) for p. Pressure equilibrium (1)
is established by the method described in [20]. A specific choice of I(r)
involving Z > 0 in the centre of the configuration represents the overheating
effect mentioned earlier. We have used
e-(r-r])zlrg

I(x) = - o, + g, , (27)

1
and varied 9y» 02 and Tys Tye

The results from several calculations made with the two different
computer codes [17 and 18 resp:J are summarized in Figs.5 - 7. Fig.5 shows
the increase in localization for m = 1 Suydam modes as the radial node number
n increases, while Fig.6 depicts a similar but less drastic increase in
localization with increasing m for n = 0 modes. Both sets of curves relate
to the same equilibrium and the same value of rs the eigenfunctions of Figs.5

and 6 are similar to those shown in ref. L38l which were obtained for a I(r)
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profile quite different from (27). In Fig.7 we show the calculated growth
rates y(m = 1, k, n = 0) against the value ZS at the singular surface r, for
three different equilibria with Z(r) given by (27). For each equilibrium

ES + 0 will result in the variation of w with Zs as given by (26). When ZS

is increased the growth rates now depend on the functional form of Z(r)

tather than on ES. For devices like ZETA and RFX the modes n = 0, m =1 - 5
have growth times T decreasing from 100 pusec down to | usec as the maximum
value of IZ(r) increases from 1 to 10. The half-width A of the n =0, m =1 -5

eigenfunctions (Fig.6) will typically be of the order 1 - 10% of a.

For a toroidal device such as ZETA or RFX, the allowable modes must

satisfy the periodicity condition

k = L=t 1, £2, .... (28)

3
'ﬁ_ ]
o
where R0 is the major radius. Every rational surface r < a can become a
singular surface r (equation (23)) by a suitable choice of m and k. However,
6f ‘all possible values of m and k satisfying (23) and (28) only a finite
number can in practice lead to instability, because non-ideal effects such
as finite ion Larmor radius Ps and viscosity will stabilize short wavelength
modes [39]. .In Fig.8 we have indicated the distribution of the singular
surfaces for modes m = 1 - 5 for a Bessel-function model with © = 1.5 and an
aspect ratio RO/a = 3. There is a fairly close distribution near the centre
although magic number effects cannot be excluded for the low-m modes. Beyond
some point r = a; the modes of given m whose distribution becomes increasingly

dense as r > ap should be stabilized by the high shear.

The stabilizing effect of finite ion Larmor radius depends dynamically
on I and on the ion pressure gradient and may be estimated from the work
of Stringer (ref. [39] Fig.2). The critical m—value is likely in practice
to be quite high, so justifying the assumption of a large number of competing

localized modes with small radial separation from one another.
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5. 'TURBULENT TRANSPORT IN THE CENTRAL CORE .

Overheating of the central region of the RFP can occur during the
current sustainment phase and a Suydam—unstable (I > 0) core of some radius
ay is likely to develop. When a Suydam mode grows the field structure

undergoes the Lagrangian transformation

r+r¥=1r+§ . (29)

*
or
At some point during the growth the Jacobian.<§§:> can become zero or unbounded

so that the transformation (29) itself becomes singular. This will happen

when the radial Jacobian

3 4 13
T
- tar
approaches zero corresponding to
9t | _
’ rpe 1 (30)

(the absolute value being appropriate because of the helical variation of £&).
From the study of Suydam unstable modes in the previous section we see that
(30) will occur in the neighbourhood of the singular surface r, when the
maximum displacement E(rs) has grown to the order of its width A. If the
initial amplitude £(t = 0) is assumed to be of the order of the ion Larmor
radius then the situation (30) will be reached after 1 - 4 growth times for

devices like ZETA and RFX as E(rs) = A varies from 1Z to 10% of the radius a.

The topological changes that we expect to take place in the structure
of the magnetic surfaces are indicated qualitatively in Fig.9. No change
occurs until condition (30) is reached at some radius r & ros when there is
a rearrangement in the neighbourhood of the singular surface. It will be
seén from Fig.6 that both £ and |3£/3r| remain quite small outside this
region, so that the surfaces should be only weakly distorted and their

topology should remain invariant.
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Modes whose m-number is sufficiently low to be unaffected by finite
Larmor radius all have comparable growth rates, while |3(log £)/3r| increases
with m, so that the change in_topology should occur first for some radially-
localized mode m > 1 which will not lead to a rearrangement of the entire
inner region as apparently occurs during mini-disruptions in Tokamaks L5,6,7J
and stellarators L8] where organized periodic relaxation oscillations are
observed. Destruction of the local topology should rapidly flatten the
pressure and temperature gradients in the neighbourhood of r_, SO raising
Z(r) in the regions on either side and triggering off Suydam instabilities
on adjacent magnetic surfaces by a sudden increase in their growth rate.

This piéture agrees qﬁalitatively with a remark by Kadomtsev L14] who pointed

out that pinches should exhibit a turbulent rather than an organized behaviour.

It is important for the conclusions of this paper that the instabilities
occurring in Zone I should not give rise to turbulent MHD diffusion in Zone II
(Fig.2). That is, the turbulence should not diffuse outwards. The argument
is clearly valid for a single mode or for a linear combination of modes,
since the radial derivatives of the eigenfunctions &k have too low an
amplitude to affect the topology of the magpetic surfaces in Zone II and should
simply lead to a random motion like the random oscillations of an elastic solid.
However we cannot yet exclude the possibility that turbulent MHD energy
generated in Zone I might undergo mon-linear coupling into stable Alfvén
waves whose singular surfaces are located in Zone II, and these could damage

the topology.

Another unresolved question is whether there is any tendency for the
magnetic surfaces in Zome I to "heal" themselves automatically once the
pressure distribution has been flattened, or whether the magnetic field
remains permanently ergodic as in the "tangled discharge model" of
Rusbridge [40,41] when part of the excess pressure might be continually
removed by longitudinal electron thermal conduction. We shall however

assume here that healing does take place.
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The usual y/kZ estimate for the instability diffusion coefficient, i.e.
D, = yA? (31)

is difficult to apply since DI is exponentially small near I = 0 from equation
(26). A marginal stability argument [30] is also not straightforward in our case
since i1t seems likely that once the magnetie surfaces have been locally
destroyed, which will occur for some finite value I > 0, rapid flattening

of the local pressure and temperature profiles will take place so that

I >-1 (25). We envisage that this hysteresis effect will lead to an

irregglar sequence of local explosive instabilities or "micro-disruptions',

with the marginal stability criterion IZ(r) = O applying only as an approximate

time average.

The expression (31) may be compared with the classical [42]_cross-fie1d

diffusion coefficient D0 and the poloidal Bohm diffusion coefficient De

For typical values B, = 0.25 T, Bo = 0.25, log A = 10 we have (T, in eV)

G|
B o _ -3/2 2 -1
DD = __l}]_jo Tl]J. = 50 T* m S (32)
- 2 -1
DB = 76 eBe 0.25 T, m"s . (33)

Evidently DI << Do as L + 0, but for the faster-growing Suydam modes, say

y v 10" = 10° s, A~ 0.01 - 0.05m
we find that DI lies in the range 1 - 250 mzs-l. This is to be compared with
DO = 5.]0-2 = 6.]0—3 mzs-I and D6 = 25 - 100 mzs_] in the temperature

range Te = 100 - 400 eV.

To simulate the turbulent diffusion numerically it is convenient to

choose a simple analytic form for the coefficients in (6) - (8):

C.—D (£ > 0, unstable)
D = (34)
0 (£ < 0, stable)

where CT is an adjustable constant. This switches on the diffusion like a
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thermostat whenever & > 0, but the switch-on process is smoothed out to some
extent both for reasons of numerical stability and also in partial accordance
with (26). The scaling of DT serves as a convenient reference point since

both DI and De are of the same order; in fact using the Bennett pinch relation

NT =« B 12 we see that
6 "z

2 .
D, = a (B/VN) , D, = DI(Be//N)

so that for pinch devices with similar magnetic field B, line density N and

. . 2 ; i o
the main dependence is on a~. However we emphasize that the specific

Bo

choice (34) has little influence on the results obtained so long D, is large
since I simply adjusts itself to the level needed to carry away the excess

pressure.

Turbulent diffusion of the plasma relative to the magnetic field is

7
represented in the ATHENE 1 code by the coefficient DT in equation (6), which

also leads to turbulent heating that can be divided in arbitrary proportion

between the ions and electrons and conserves the total energy L19]. The

1.4

- - " - .
coefficients D, DT represent turbulent thermal conduction. Calculations

L4

have been carried out [43,44] in which the corresponding constants Cé, CT’

C;Twere varied over a wide range, the allocation of heat between ions and
electrons altered, and the functional form (34) changed, Provided DT >> D0
the results are not seriously influenced by these parameters and for the

I

calculations reported in this paper the choice made was C& =C. =C

T o = Lo

with the turbulent heat production divided equally between electrons and ioms.

6. ELECTRON THERMAL TRANSPORT IN ZONE II

The enhanced transport of plasma and energy across the magnetic field
will establish flat density and temperature profiles in Zone I, the Suydam
unstable core of the RFP. The calculations referred to at the end of the
last section have demonstrated, not unexpectedly, that the details of the

turbulent transport do not greatly influence the performance of the RFP, i.e.
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the stable configuration time T, and the predicted temperatures. These mainly

depend on the confinement Zone II.

The effect of turbulence in Zone I is to steepen the gradients in Zomne II,
but provided that the MHD turbulence does not spread outwards the most this
should do is roughly to double the particle and energy loss rates. It is also
worth remarking that the level of turbulence in Zonme I is controlled by the
joule heating rate and by the rate at which heat can be transported across
Zone II, and should fall as the temperature rises. This is in accordance
with results on ZETA reported by Butt and Newton £45J, who found that during

the quiescent period the fluctuation level ABB/BG scaled as I;3.

As mentioned in the Introduction the configuration time T, is determined
by the decay of BZ flux, either the negative flux y_ as in ZETA, or the
positive flux ¥  as in RFX. Now the major part of the Bz energy loss takes
place in Zone II, so that since n v T_?,/2 the value of Ta will depend
strongly on the Te profile of this zone and therefore on the electron thermal
conductivity together with any other heat loss processes that may be
important. To emphasize this point, we have plotted in Fig.10 the rate
rEBJe at which the B, energy of a cylindrical shell of radius r is transferred
to the plasma. The full curve shows the initial transfer rate rq,Jg for the

Bessel function model (n” = constant), while the dashed curve shows the rate

computed during a run which has a hot core and a cooler region outside.

Unfortunately there is little experimental evidence as yet concerning
the scaling of electron thermal conductivity with T, B, n and radius a in
RFP geometry. Experiments on Tokamaks [5,6,7,9] indicate that the ion thermal
losses are neo-classical while the electron thermal losses are anomalous.
Several authors [9,1@] have derived empirical scaling laws for the energy
containment time g from the available Tokamak measurements and we have used
the results of ref. [10] in order to bracket the predicted performance of

the RFP.
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The most convenient theoretical definition of the energy containment

time in our calculations is
W _
g T T (35)

with

=
]
o=

nk(Te + Ti/Zeff)rdr

and L the total loss rate, which in the present calculations is approximately

L=a(F, +F) _ (36)

where Fe ; are the thermal fluxes to the wall, since Bremsstrahlung is small
3

and impurity losses are not yet included in the code. In experimental work

it is difficult to measure L, and since Tokamaks reach an approximately steady

state in which loss rate L balances the ohmic heating rate @ and the

configuration time T, ~ 10 g [46], the alternative definition

_— g (37)

is adopted in practice where

Q=1V
¢

and V is the loop voltage. It would not however be practical to use

definition (37) for the RFP calculations since a steady state is not reached.

The Tokamak scaling laws [9,10,46] may be expressed in various ways.
They do ndt directly relate to the RFP which has a lower toroidal field Bz
but a stronger shear. The most plausible comparison seems to be between
a Tokamak and a RFP with the same temperature, poloidal field and minor
radius, other parameters being disregarded, although it is not known which
of the two geometries this comparison would favour. Since the Tokamak

scaling laws provide an overall energy containment time T, rather than a

E
detailed functional form for the electron thermal conductivity, the approach

that we have adopted is to choose two alternative analytic expressions for
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the anomalous electron thermal conductivity in equation (7), each with an
arbitrary multiplying constant, and to carry out a series of calculations in which
o is determined from equation (35). The multiplying constants are then

chosen to bracket the Tokamak data. This procedure should be valid even

if part of the energy loss is due to processes other than thermal

conductivity, for example to impurity radiatiom.

The alternative forms chosen were

n

Pseudoclassical D CeD (38)

L CyDg (39)

Poloidal Bohm D

where DZ e Kie/nk is the diffusion coefficient corresponding to classical

transverse thermal conductivity, (classical and neoclassical are essentially

the same in the RFP), while D, is given by (33). The coefficients used in

0
the calculations reported in Sections 6 and 7 covered the ranges Ce =0 - 100,
Ce =0~ 0.15.

7. ZETA CALCULATIONS

The main parameters of the ZETA apparatus are given in Table I. The
" time variation of the toroidal current is shown in Fig.l of ref. L12] and
indicates a quiescent phase lasting 1.5 msec. The initial field profiles
used in our calculations were constructed from experimental data given in
Fig.4 of ref. [li]'and Fig.11 of ref. [12]. We have normalized the B,
values measured at R = Ro + a to the vertical plane R = R
(where R is distance from the foroidal axlis so that Bz ~ 1/R). The measured
density and temperature profiles were flat near the centre [27], with
T
3
T.

liner [27] with poloidal copper rings. The toroidal liner resistance

]

100 eV on axis; little is known about Ti so we assume that initially

1l

Te [12,27]. The plasma was surrounded by a stainless steel bellows

Rz = 2.5 x 10—2 Q and poloidal resistance Re = 3.9 x 10-'4 Q are included

in the calculations and have the effect of shunting the plasma currents
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at the liner radius so affecting the decay of the ¢_ flux. This requires
a modification to the components N, Map and N6 of the resistivity tensor

at the boundary point.

Results from the ZETA calculations are summarized in Figs.11,12 and
Table II. Although the anomalous electron thermal conductivity was varied
over a wide range using both expressions (38) and (39), we see that there is

only a rather small change in the predicted energy containment time g and the

configuration time Ty defined here to be the time at which B, at r = a goes
through zero so that the discharge is expected to be unstable due to a pitch
minimum at the wall. Thus ZETA appears to provide very little information about
the aﬁomalous electron thermal conductivity in Zone II. On the other hand the cal-

culated change in the reversed BZ profile shown in Fig.11 agrees quite well with

the measured results, and the calculated time variation of the electron
temperature on axis is within the experimental error bars, so giving a
reasonable degree of confidence in the theoretical model. A value zeff = 2.5
gives better agreement with Fig.5 of ref. [12] than Zeff = 1.

As the reversed field gradually disappears (Fig.11) the shear is
lowered and Fig.13 shows how this leads to a marked increase of the Suydam
parameter Z-in the outside reginsn. We have performed stability calculations
with the codes [17,13] on the ZETA configurations at t = 0.5,

1.0 and 1.5 msec, although these calculations are not conclusive for modes
whose singular surfaces lie in the outside region, since the stability of
such modes is strongly influenced by the exact distance d between the liner
at r = a and the conducting shell at r = a + d. The boundary condition
£(a) = 0 ought therefore to be replaced by br(a + d) = 0, where br 1s the
perturbed radial field, so that the vacuum region a < r < a + d contributes

to AW (equation 19).

Fig.l4 shows the eigenfunctions of three typical m = | Suydam unstable
modes both being of the type shown in Fig.6. Fig.14 also shows the development

of a mode whose singular surface lies in a nearly Suydam stable zone. This
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mode, m = 1 and & = - 5, stable at t = 0.5 msec, becomes progressively
unstable; at t = 1.5 msec the mode is not 1ocaiized at all and it might
cause a kink-like loss of plasma. Such a result can be derived from the
interpretation of new results from ZETA by Butt and Newton L47] who suggest
that the end of the quiescent period occurs when the pressure limit BS shown

in Fig.3(b) is exceeded because of the decay of e,

8. PREDICTIONS FOR RFX

- Table I also shows the parameters for a proposed new apparatus RFX
which is intended to have a larger minor radius a, programmable wall fields,
and a larger toroidal current for stable operation than ZETA. Since the line
density N appears from experiments to be a critical parameter for pinch
operation, we have for the purpose of comparison assumed the same value

2,107 o o

as in ZETA so that the central density is lower in the ratio a_z.
The calculations start off from the magnetic field configuration (14) with
parabolic density and temperature profiles; initially a very low temperéture
Te = Ti = 10 eV is assumed on axis in order not to disturb the initial

Bessel—-function configuration appreciably, but the temperature quickly rises

in the first few timesteps.

The reversed flux y_ can be supported by programming Ee in various ways;

a simple choice is to maintain the ratio

Bz(a,t) Bz(a,O)

B,(c,t) - B_(0,0) = 3,28 (40)

of the wall field to the field on axis, where Jo is the Bessel function.
The toroidal current IZ can either be kept constant or allowed to decrease

in a controlled fashion in order to prolong the stable period.

Table II shows the predicted axial temperatures for various choices

of the transport coefficients. To emphasize the difference between classical
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and strongly anomalous thermal transport we indicate in Figs.15 and 16 the
profiles of Ti and Bz for Cases 1 and 12, The dashed curves (classical case 1)
show that little B emergy has bgen consumed by the plasma in Zone II which

is relafively hot. Strong anomalous thermal losses cool down Zone II, causing
Y, to decay so that the configuration pinches. For RFX the configuration

time t = T, is defined to be the time at which the pinch parameter ¥ exceeds

®1ss0 leading to an m = 1 gross kink instability [26] (see Figure 3(b)).

Empirical Tokamak scaling laws [10,46] predict an RFX energy containment

time T, ® 26 ms corresponding to C

= & 0.05 or Ce ® 50. Since there is

(5]
considerable variation between different Tokamak discharges, as well as
uncertainty in the comparison between RFP and Tokamak and in the extrapolation

of the present experimental results to radii as large as a = 0.6 m, we have

extended the calculations to Ce = 0.15 and Ce = 100.

The variation in predicted performance is greatest for the configuration

time T whereas for given Ze the predicted axial temperature variation

ff
is only of order 10%Z. To increase Ts the rate at which the discharge pinches
can be reduced by letting the curreﬁt Iz decay. Several calculations have
been performed in which iz/Iz is either kept constant or proportional to

@+/w+. The resulting rate of pinching is illustrated in Fig.17, which-

plots the field reversal ratio F of equation (12) against the pinch parameter ®
of equation (11). The solid line to the left represents the B = 0 Bessel

function model for which
J (2 ©)

F=—ﬁ#@)® . (41)
By adding pressure to this model, but keeping £ < 0, one can obtain [47] a
kink-stable high-8 configuration which is indicated by the solid line to the
right. The route taken by ZETA (case 12) is compared with three RFX discharges,
the first two (with constant IZ) being cases 1 and 12 of Figs.15 and 16,
while in the third discharge (case 12a) i’z/Iz = 0.6 $+/¢+ with the parameters otherwise

the same as in case 12. The configuration time is prolonged to T ™ 22 ms .
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in case 12a compared to 10 ms in case 12, but at the expense of a somewhat

lower axial temperature Te = 501 eV at 20 ms combared to 702 eV.

Trying various forms of field programming we have found that ® can
remain below ®I for as long as 30 - 40 msec. Whether a discharge could
remain kink-stable throughout this period would have to be studied in detail.
The criterion U < L'i’I(Bo) [26].can only serve as a guide. Sakanaka and
Goedbloed L31] have made an interesting comparison betwen an unstable and
a stable equilibrium whose profiles £Fig.18 in ref. 31] hardly differ. They
conclude categorically that "answers about which configurations are bad

and which are good with respect to stability cannot be given".

The main conclusion from these calculations is that, on the basis of
a wide range of reasonable predictions for the electron thermal conductivity
in Zone II, the RFX apparatus should be able to attain central temperatures

of order 500 - 600 eV, Be ~ 137, with a stable lifetime Ty & 15 - 25 ms.

9. CONCLUDING REMARKS

We have studied the current sustainment phase of a slow reversed field
pinch on the basis of theory, numerical calculations and available experimental
data. This has led to an RFP model qualitatively sketched in Fig.2. The
turbulent behaviour that is expected to arise from instabilities localized in
the central zone I is found not to degrade the performance of the RFP unduly,
and although the details of this MHD turbulence remaip unknown their precise
form is not expected to be important. The model emphasizes that, in general,
the predicted performance is likely to depend on the electron thermal
conductivity in the confining layer II. At present there is little experimental
evidence on anomalous transport coefficients in RFP geometry. We have
therefore used alternative analytic expressions with adjustable coefficients
to narrow the uncertainty concerning the behaviour of the plasma in this

zone. For calculations on ZETA this has led to an acceptable agreement with
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the experimental results, largely because temperature in ZETA was sufficiently

low not to be greatly affected by electron thermal conduction.

The calculations on RFX demonstrate a substantial improvement in
performance over that of ZETA. Programming of the wall fields ensures that
the configuration time is determined by the decay of positive flux ¢, rather
than the decay of negative flux ¥_ as in ZETA. Our calculations indicate
that RFX discharges with a stable lifetime of 15 = 25 ms should reach

500 - 600 eV with a Be ~ 137,

Compared to the IDMHD diffusion codes that are now used for studying
Tokamaks the physics model employed in this paper is still in a relatively
embryonic state and additional effects will be included in due course. The
main uncertainty in our predictions is probably the implicit assumption of
~a good set of nested magnetic surfaces, concentric with the wall, in the
outer region of the pinch. The configuration time T, is sensitive to the
electron temperature in this outer region, and a lack of concentricity
causing magnetic field lines to cut the wall could lower Te by longitudinal
thermal conduction and so reduce T Adjustment of the axis of the current
channel by means of a programmable vertical field may therefore be needed

if the performance is to reach the theoretical predictions.
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TABLE I

Main parameters for ZETA and RFX

Symbol ZETA RFX

Radius of liner [m] . a 0.5 0.6
Radius of shell [m] a+d 0.535 0.63
Major radius (] Ro 1.84 1.8
Current [MAJ IZ 0.42 0.7
Toroidal Flux Lvs] P 0.088 0.183
Line density (m-1] N 2x1019 2x1019

B on axis [TJ B 0.33 0.55

2 - @ 19 19
n on axis [ 3] n 5x10 3.2x10
n at liner [w3] n, 1019 1.21:]0]9
T . at liner Lev] T .(a) 20 8

s1 €,1

Pinch parameter at t=0 C 1.36 1.44
Field reversal ratio at t=0 F - 0.145 - 0.53
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TABLE IT

Calculations on ZETA and RFX

Electron ZETA RFX
CASE (Z,A)eff ;:Zizal = :
port L c e i 86 25 To Te Ti 89

1 Classical 1.93 .60 146 126 12.7 85 100 598 518 16.4
2 C8 = 0.05 1.62 .68 145 125 13.1 27 40 513 474 13.5
3 (1,1) Ce = 0.1 1.53 .68 144 125 12.8 | 21 40 472 447 12.6
4 Ce = 0.15 1.47 .6 144 125 12.5 17 32 443 426 12.0
5 CE = 50 1.36 .50 144 125 11.8 24 35 543 - 489 13.0
6 CE = 100 1.16 .39 140 123 11.3 19 22 520 476 12.2
7 Classical 1.80 .16 198 112 T2z 81 60 896 645 16.9
8 Ce = 0.05 | 1.68 .16 196 113 11.9 19 25 720 609 13.5

(2.5,4) CB = 0.1 1.56 .15 195 113 11.8 14 20 651 585 12.5
10 C9 = 0.15 1.49 .2 193 113 11.6 11.5 15 608 565 11.9
11 CE = 50 1.01 .07 187 113 10.6 15 12 754 617 12.5
12 CE = 100 0.82 .02 174 113 9.6 12 10 702 603 I'1«8

Data from 12 calculations on ZETA and RFX using various values of the scaling

factors C

38 and 39).

0

and CE

The energy containment time T

temperatures in eV are given at t

E

in ms, B

8

in %Z and the axial

20 ms for RFX.

1.5 ms for ZETA and at t =

The configuration time T, for ZETA is defined to be the time when Bz at the

liner goes through zero, while for RFX is is the time at which © exceeds ¥

(see Figure 3(b)).
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I

in the electron thermal conductivity coefficient (equations
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Figure | Radial profiles of the toroidal (B¢) and the poloidal (BB)

field components of a reversed field pinch (RFP). b, is the
positive flux trapped inside the field reversal point ap and

¥_ is the negative flux at the outside.

Suydam
turbulent
core

\\ Confining layer .
~ -

S -

— —

Figure 2 Qualitative diagram of an RFP model divided into regions
I,II,I1I of radii a ,a,,a respectively. The field reversal

point a_ may extend into the exterior zone.
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B/B,

1.0

Bz~ J;

%

Figure 3(a)

%:a(r=0)

o2t

01k

Radial profiles of magnetic field and current density components
for the Bessel-function model. A given value of & (equation I11)
corresponds to a fixed wall radius r = a. The configuration
is MHD unstable for © > @I = 1.587 and tearing mode unstable

for © > ©. = 1.552. The reversal point is ®R = 1.202.

Suydam
criterion

.-
A (12 A
otEgMBL 7 REX )

MHD Instability
{gross kink [26))

Figure 3(b)

10 1587 20

The curve labelled Bg indicates the maximum Suydam-stable
central value B, obtained by integration of equation (15) and
allowing for pressure equilibrium. The curve labelled ﬁ&
calculated by Robinson [26] shows the maximum value of @ at
which the pressure inflated Bessel-function configuration is
marginally stable against ideal MHD gross kink modes. The
dashed curves show the calculated routes taken by ZETA and
RFX for cases (1) and (12) (see Table II and Figure II).

The time spacing between the points is the same as in Fig.17.
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Figure 4

Radial variation of pitch and total heating rate n J2 for the

Bessel function model in normalized units.

v

Qe



1.0

1.0

n=2

'l'2 =90us '[3:975}15
s ——
m= 1, ka = = 5/3 eigenfunctions of Suydam unstable modes.

T

n denotes radial node number.

surface r

99

is shown.
s
=10, r

- 37 -

The position of the singular
IZ(r) is given by (27) with 9,
P = 0.3a, T, = 0.3a.



4
1.0}
m | T [us]
1 5.0
2 3.2
3 2.8
4 2.6
0.5
5 2.5
1
2
5
: Lol
Figure 6 n=20, ka = - 5/3 m eigenfunctions of Suydam unstable modes
withm = 1,2,5. The equilibrium parameters are the same as
those used in Figure 5.
Y(sY)
)
5
107
10° |
Uzzfo r1=0
10° |
1 1 ‘=ZS
0.1 1.0 10
Figure 7 Growth rates y for three equilibria where I(r) is given by (27).

oy == 0.9, r, = 0.3a. The growth rates correspond to RFX with
B0 = 0.55 Tesla and n = 3.2 x 1019 m_a.
E(rs).

ZS is the value of

CLM-P484

s 38 =
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Figure 8

Positions of singular surfaces rg for the Bessel function
model (Fig.3(a)) with @ = 1.5 shown for modes with 1 s m g 5;
k satisfies (23) and (28) with an aspect ratio Rola = 3,

The lowest value of =% is indicated to the left for each value
of m. The distribution of singular surfaces becomes
increasingly more dense as r -+ ag; it is indicated by a dashed

line. Singular surfaces T > aj are not shown.

Figure 9

CLM-P484

25’ + 1 (Figures 9(a) and 9(b)) as a result

T
of an unstable localized m = 4, n = 0 mode. After cutting and

Qualitative interTretation of the transformation (29)

corresponding to

rejoining the field lines the field structure in Figure 9(c)
is established. The arrows show the directions of the field

component transverse to the field direction at r, (dashed curves).
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Figure 10

Figure 11

rE,J, [arbitrary units
kEG g [© Y ]

/N casetz
ase
\ \
i \\-/ t=15ms
/S \
7 \
’ \
/ \
/ \
/ \
/ \

Bessel function model II
2
r Ee."a -r .'e

~—
1 —=

Cl.R a

Rate at which Bz energy is transferred to a cylindrical plasma
shell of radius r. The full curve is the initial rate obtained
for the Bessel function model while the dashed curve shows the
rate of Bz energy transfer from a hot central region and a
cooler outside region. The dashed curve corresponds to case

12 (Table II)at t = 15 msec. The scaling is arbitrary.

B, (T) a Vacuum )
interspace
0051
0041
—_—h—
003+
002
001+ \
PRy
0 I 1 i | i 1 1 1 1
042 044\ 046 I:l\" o ?-5 r(m)
|
-0.01} [—O0—
1=0 /]
-0et liner shell

Disappearance of the reversed B, field in ZETA. The calculated
values (case 12 in Table II) are drawn as full curves against

the experimental points.

= Kb =



Teo[eV]

4
200
Case.12
—— Case 1
100
! L L st [ms)
0.5 1.0 1.5
Figure 12 ZETA: Calculated increase in axial electron temperature
Teo = Te(r = 0) for cas:s | and 12 (Table II). The experimental
points and error bars are taken from L[12].
z
A
2.0
1.0
Figure 13 ZETA: Radial variation for the Suydam parameter I (equation 25)

for case 7 (Table II). Dotted curve t = 0.5 msec. Dashed

curve t = 1,0 msec. Full curve t = 1.5 msec.
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T [4s] |0.5ms| 1ms | 1.5ms

l = 39 29 20

{ =7 410 208 122

e L i, T r [ﬂ'I]
01 /0.2 03 04 05
[=-5 l=-6 l=-7
Figure 14 ZETA: Radial eigenfunctions for three m = | Suydam unstable

modes obtained from case 7 (Table II). Legend as in Figure 13.
The growth times and the positions of the singular surfaces
r, are indicated. Notice the expansion of the & = - 5 radial
eigenfunction which is stable at t = 0.5 msec. The increase

in width is associated with the growth of I shown in Figure 13.

T, [ev]
Y
700
600 -
Case1 t=20ms -
500
400 | g
Case 12
t=15ms
300+
200
100 F
1 | 1 1 e I [rn]
0.1 0.2 0.3 0.4 05 0.6
Figure I5 RFX: Electron temperature profiles for cases | and 12 (Table II).

The ion temperature profile for case | (not shown) is much less

steep in the outside region.
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Figure 16 RFX: The difference between the purely classical case | and
the highly anomalous case 12 is emphasized by the resulting
Bz profiles. In case 12 more energy has been transferred
from the Bz field to the plasma.
6 18 20 °
o Casel
so Casel2
% Case12a
t=15ms
Figure 17 Pinch parameter © against field reversal ratio F for ZETA

(case 12) and RFX (cases 1,12 and 12a). Case 12a is like
case 12, hut hgs izllz = 0.6 @+/¢+- The increase in Bb leads
to a decrease (ZETA) or increase (RFX) in Y as shown in
Figure 3(b). Support of the reversed field (RFX) via
programming (equation 40) maintains F and further control

of Iz (case 12a) prolongs the stable lifetime. The time

spacing between points is 0.5 msec for ZETA and 5 msec for RFX.
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