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ABSTRACT

Scaling laws for plasma energy confinement must be invariant under any
transformation which leaves the basic plasma equations themselves invariant.
Hence constraints can be placed on the scaling laws even though the cal-
culation of energy loss may be quite intractable. These constraints are
derived for several plasma models and shown to be characteristic of the
model. Hence, in addition to reducing the number of parameters which have
to be obtained empirically, these results could delineate which plasma
models are appropriate for the calculation of losses. They show that
the empirical scaling laws at present proposed for Tokamaks are incompatible

with many conventional plasma models.
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1. INTRODUCTION

One objective of large plasma experiments, such as the Tokamak series,
is the determination of the relation between the overall energy confinement
time T and the parameters of the apparatus - such as radius and magnetic
field, This is the so-called 'scaling law' for confinement.

Several attempts have been made to deduce empirical scaling laws from
the observed data [1], most recently by Hugill and Sheffield [2]. 1In these
attempts one assumes that the confinement time 7 can be expressed as a function
of certain independent physical variables, such as plasma density n ,
plasma temperature T , field strength B and minor radius a , together
| with geometrical factors such as inverse aspect ratio a/R and safety
factor q = aBT/RBe . One then seeks a best fit of the experimentally observed
confinement times to a function f(n,T,B,a,q,a/R) , usually in the form of
a power law, T « ol o AP

One may also attempt to obtain scaling laws purely theoretically, by
calculating the loss due to, say, a nonlinear collisionless-trapped-particle-
drift-wave instability - though usually it is necessary to introduce some
hypothesis about the nonlinear saturation mechanism or about the nature of
plasma turbulence.

In the present paper we approach the problem from an altogether
different point of view - more general than the theoretical calculation of
nonlinear drift waves or the like, but still based on plasma physics rather
than empirical curve fitting.

The basis of our approach is the observation that if the basic equations
of plasma behaviour (which might for example be the Vlasov equation together
with charge neutrality) are invariant under a certain group of transformations,
then any scaling law derived from these equations must be invariant under the
same group of transformatioms. It turns out that for all the conventional

plasma models this invariance property greatly circumscribes the permissible

.



scaling laws. (Indeed in one extreme example the invariance properties alone
completely determine the scaling law!) In other words, even though the
necessary nonlinear theory may be quite intractable, the mere fact that a
scaling law is, in principle, derivable from certain basic equations already
provides information about that scaling law. For example, we shall be able
to show that some recently suggested empirical scaling laws [1,2] for Tokamaks
are incompatible with theories based on the Vlasov equation in the electro-
static limit, or indeed with many conventional plasma models!

In the following sectionswe consider a number of basic plasma models
and for each model we determine the constraints which are placed on the
scaling laws by the invariance properties of the model. An alterﬁétive inter-
pretation is briefly discussed in section 3. Insection 4, we summarise these
results in a form convenient for comparison with the empirically deduced
scaling laws, in particular those for ohmically heated plasmas. The com-
parison with empirical laws suggests that radiation plays a significant role
and the influence of this on scaling laws is discussed in section 5.

2A., COLLISIONLESS VLASOV EQUATION IN THE ELECTROSTATIC LIMIT

As a simple and archetypal example of our approach we consider first

the collisionless Vlasov model. 1In this the plasma distribution function

fi(x,v) for each species is described by

of. e, afi
— 4+ (v.VEf. + 2E+v xB).—L=0 (1)
ot ~ i mi ~ ~ ~ BY..

The electric field is determined by charge neutrality
Le [£f (x,w) dWv=0 (2)
i 1 1

and, in the electrostatic limit, the magnetic field is fixed. [This model
may be said to describe collisionless, low-f plasmas.]

Instead of dealing directly with the confinement time it is more con-



venient to work with the energy loss/unit area/unit time, given by
Q= [ vv2i(x,v) d?v (3)

We assume that this flux can be expressed, in principle, as a function of
n,T,B,a and the geometfical factors a/R,q . In fact nothing can be
deduced by the present methods about the dependence of confinement on the

geometrical factors and we therefore concentrate on
Q = Q(H,T,B,a) . (4)

We now seek all the linear transformations of the independent and

dependent variables
foaf ,vofv,x->v% ,B~->86B,t et , E-nE (5)

which leave the basic equatioms (1) and (2) of the problem invariant.

There are three, and only three, such transformations

Ay: £ - oof
Ay: vopBv ,B-pB,t-ft,E-pBE

A;: x> 7k ,B-7Y1B,t=-9t,E-ylE

Under these combined transformations the heat flux transforms as
Q - aPB%Q, the temperature as T - B2T and the plasma density as n - afin .

Consequently, if the heat flux is expressed as

- P..d,r_ S
Q Zcpqrsn T'B a (6)

the requirement that it remain invariant under the transformations A, -4,

imposes the following restrictions on the exponents,
p=1,3p+2g+r=6,r-5s5=0

so that the general expression for Q 1is restricted to



Q=1=r % na3B3(T/a282)% = na3B3F(T/22B2) (7

where F 1is some unknown function. The corresponding energy confinement

time (7 = naT/Q) is restricted to the form
Bt = F(T/a2B2) ., (8a)
An alternative way of expressing this is
BT = F(B/N) (8b)

where f = nT/B? and N = na? 1is the "line density".

Thus we see that if a scaling law can be derived, by however tortuous
a route, from the collisionless Vlasov equation in the electrostatic limit,
then it must take the form (8). Consequently, if the scaling is assumed to

follow a power law, then it must be
BT ~ (T/a2B2)% (9)

and can contain only one free exponent.

Before we examine more complex plasma models, we note a remarkable
extension of the present result. Suppose that instead of assuming a scaling
law for confinement time, we made the stronger assumption that a local
transport coefficient exists, i.e. k = k(n,T,B) , such that Q = -kBT/dx .
In such an event the confinement time would be proportional to a2? and this
must be reflected in the scaling law. However in conjunction with Eq. (8)
this is sufficient to completely determine the scaling, which becomes
T ~a?B/T . This represents the ubiquitous "Bohm diffusion coefficient"
which is now seen to be the only local transport coefficient compatible with
the collisionless Vlasov equation in the electrostatic limit! [A similar

result was derived in two-dimensional guiding-centre plasmas[3], but it is now
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seen to be a more general conclusion.]
2B. COLLISIONAL VLASOV EQUATION IN THE ELECTROSTATIC LIMIT
If the plasma is described by the Vlasov equation including collisionms,

that is by the Boltzmann equation,

9f. e, of.
e ey X B BB § KB = GTLF) (10)
ot ~"77i m,~ ~  ~9v

1

(where C represents the coulomb collision operator) together with charge
neutrality and the electrostatic approximation (a model used for all
collisional, low-f plasma studies) the discussion proceeds in a very
similar way.

We again seek all transformations similar to (5) which leave the
equations of the collisional Vlasov model unchanged. There are two such

transformations

B,: £-pff,v-pv,B-PB, t->pt,E~pPE

B f -y , x> ,B->~vy1B, t->vyt, E- vy E

2°

Under these transformations Q - B7y~!Q , T - B2T , n - B4y~!n and so for

this model the exponents in Eq. (6) are subject to the restrictions
4p+ 2q+r =7 ,and s -1 -p = -1

so that

n T
Q = nalp? F< péal ° 3_2]5—2_> (11)

In a collisional low-f plasma, therefore, any scaling law for con-

finement times must take the form

BT=F< z - (12)



or if a power law is adopted
BT ~ (n/B4a)P (1/a282)9 . (13)

Note that in this case the power-law scaling contains only two free exponents.
2C. COLLISIONLESS VLASOV EQUATION AT HIGH-f3
Even at high-f3, a high temperature plasma may be described by the
collisionless Vlasov equation, Eq. (1), but the electric and magnetic fields

must be self-consistently determined from the Maxwell equations

8B
7XE = - TR V X B = 47j (14)
with j = v vi(x,v) d3% . Charge neutrality may still be assumed if the

debye length is negligible. (This collisionless, high-f plasma model may be
that appropriate in the thermonuclear reactor regime.)
In this case there are again two independent transformations under which

the full set of basic equations are invariant. These are

C;: £-B™f ,v->fv,B-BB,t-f1t,E-BE, j~Bj.

Cy: £-v972 , x> ,B=>%1B,t->9,E->~v1E, j- v2%.

Proceeding in the now familiar way, one finds that in a collisionless high-f3

plasma the heat flux is restricted to the form
Q = na3B3F | na? T (15)
’ a2p2 /

and the confinement time must be

BT = F(naz . a-':'rBz>= F(N,B) (16)

Note that if a power-law is adopted then the scaling law can again contain

at most two free exponents.



2D. COLLISTONAL VIASOV EQUATION, HIGH-f
The most complete plasma model of any normally used for plasma confine-
ment studies is one in which the plasma distribution function is described
by the Vlasov equation including collisions (Eq. 10) while the electro-
magnetic field is determined self-consistently from the Maxwell equations
(14), and charge neutrality, Eq. (2). There is only one transformation

which leaves this set of equations invariant;
D,: f-pf,v-Pfv,x->Pf%x,B-BB,t~fp7%t,E- B°E 4 § =%«

Consequently the scaling law for a collisional high-f plasma is subject to

one constraint and must be of the form
5 5/
Q = na’B3F (na? , Ta  , Ba'4) (17)
and
% v |
Bt = F(na2 , Ta® , Ba'4) (18)

Note that in this model a power-law scaling for confinement time may contain

three free exponents, more than allowed by any of the simpler models but still

fewer than the general expression (6).
2E. FLUID MODELS

Fluid descriptions of plasma can be derived from appropriate Vlasov or
Boltzmann equation models under certain additiomal approximations. However
because of their widespread use and because the additional approximations
lead to extra constraints on the scaling law, it is convenient to analyse
them as independent models in their own right.

The fluid equations comprise the continuity equation relating the demnsity

p and the macroscopic velocity v ,

90 4 v.(pv) =
Tt (pv) =0, (19)

= 'F =



the momentum equation

(——-+ V. VV) +Vp- jXB=0 (20)

where the pressure p is related to the temperature T through p = noT

and e.g., satisfies an energy equation such as

v
_p [ 9 =Yy _ 2
,Y_l(at-*-g-V) (pp™™) = nly] (21)
: : ; -
with the resistivity n ~ T '2 The fluid model is completed with Ohm's
law
E+ v XB=nj (22)

and the Maxwell equations (14) for the electromagnetic field;
In the ideal fluid we ignore the resistivity n ; then the equations

are invariant under the three transformations

5 5 %
E;y: n-oon ,B-aB ,E-aE,p-ap, j-aj

Ept voPBv,t-B't ,B-BB,E-BE ,p-f2p, j~Bj, T BT

E3ZX—>'YX,1:—>'Yt,j‘-'Y-1j

In a fluid model the energy loss transforms like nvT , 80 any scaling

laws which are invariant under the above transformations must have the form
5
Q = T"B?F(nT/B?) (23)

and

%

e
= (na2)® F(nT/B2) = N° F(B) (24)

Thus in the fluid model only one combination of the two quantities
(na?) and (ééﬁﬁj occurs whereas they arise independently in the scaling law

of the collisionless high-£ Vlasov model, (Eqs. (15) and (16)). Correspondingly
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only one free exponent is allowed by the ideal fluid model when a power law
is assumed.

For the resistive fluid there are two transformations which leave the
full set of equations invariant:

% 5 %
F,: n-»aon,B-2aB,E->aE,p~-ap, j>a]

Fo: V'*BV,X—'B-I‘X,t—’B_St,B—’BB,E—'BzE,p—'sz,j-'st ,T"’BZT

These transformations lead to the scaling laws

3 / na? 3 BT 2 1
Q = T°B2F K\;;—gg 5 Tazj s L =F ( :aW2 , Ta% > = F(B,Ta”®) (25)
a n-a B2a

which are also special cases of the corresponding laws for the colli-

sional Vlasov high-f model, (Eqs. (17),(18)), with the quantities na? and

5 !f 2\
(Ba,a) appearing only in the combination k ;? ). A power law scaling
a’2B%

similarly contains only two free expoments.

Finally we comment on the inclusion of additional effects in the fluid
equations. Adding finite larmor radius (FLR) effects to the ideal fluid
leads, not surprisingly, to the same scaling law (17),(18) as the collisonless
Vlasov model at high-f , while including FLR, electron thermal conductivity
or viséosity in the resistive fluid equations leads to the same law as
the collisional high-f Vlasov model,

3. INTERPRETATION

At this point it is useful to give an interpretation of the present
results from the point of view of Kadomtsev's discussion of scaling laws
using dimensional analysis [4]. From the variables =n,T,B,a one can
construct four independent dimensionless parameters. The choice of these

is arbitrary, but if we select the set

B 5 ai/a s v/wc 5 AD/a



where a, is the ion larmor radius and AD the electron debye length, then

the confinement time can be written
\

=
BT = = F(B , ai/a p v/wc . )«D/a)

A basis for the preceding results is now apparent. The most general
expression for confinement time is a function of four variables (or in power
law form contains four arbitrary exponents). For all the conventional plasma
models, however, charge neutrality is assumed so that one of these functions,
or exponents, (that relating to the debye length) is removed. For the
collisionless Vlasov models a second function or exponent (that relating to
collision frequency) is removed leaving the scaling law as a function of
two variables. Finally the electrostatic assumption removes a third variable
or expoment - that referring to the parameter f - with a corresponding
further limitation of the possible scaling law.

However this interpretation of the results depends on a judicious choice
of the independent parameters. This is illustrated by the fact that if the
dimensionless line demnsity, (e?/mc2?).na? ~ N were adopted as one of the
variables instead of aiz/a,2 » then B appears in the scaling law (8b)

despite the fact that it refers to a plasma model in which 3 is neglected.

Furthermore as we shall see in section 5, the present method can be used to
discuss dependence on some dimensionless quantities such as atomic number.
In the case of the ideal and resistive fluid models, which do mnot refer

to particle aspects, we have only the dimensionless parameters [ and

/

where T JEEE

TR A- 3 3 and T = a?/n are the Alfvén and resistive time-

T
A
scales. Thus we can write
Bt _ TA
T “F R,

R
so that confinement time is a function of two variables, or in the case of
a power law has two free exponents. Restriction to ideal MHD removes one of
the variables or exponents, that referring to the resistive timescale, and

the scaling law then contains only one free variable or exponent.
- 10 -



4. COMPARISON WITH EXPERIMENT
.AND ITS IMPLICATIONS

To facilitate comparison between the restricted scaling laws of each
model and any experimental data we now summarise the thegretical results.

If the confinement time is written
BT = nPTi8%a® (26)

then each model imposes its own characteristic constraints on the exponents

as in table I.

TABLE I
Plasma Scaling Law Constraints on Free
Model , for BT Power law scaling (26) | Exponents
Collisionless | F(T/a2B2) Pp=0,1=s=-2q 1
low-f3
Collisional ol 2 na? 3p+ 29+ 8 =0 5
low-J3 a2B2 * B4a’ 4bp + 2q+ =0
Collisionless 2 T 2p - 29 -s =0
high- £ (“a ’ a-"-B2> r+ 2q=0 2
Collisional ) % e q , 5r _
high-B F(na? , Ta®, Ba '4) p+ 5+ -s5=0 3
b P=q+%
Ideal MHD (na2)* F(nT/B2) r+2q =0 1
s =1
L % P -q+ 28 - 2= 0
Resistive MHD | (na2?)® F(nT/B2,Ta®) 2 2
2p+r -1=0

Ideally one would now review the empirical data in the light of table I,
and so ascertain which model best describes the current experiments.
Unfortunately the majority of the experimental results at present available
have been obtained with ohmically heated plasmas, and there is probably

insufficient other data to form sound conclusions. In ohmically heated
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experiments, plasma temperature is no longer an independent variable but
is determined by the other parameters and the confinement time. To make a
valid comparison, therefore, one must first eliminate the temperature from

the scaling law using the appropriate ohmic heating relationship

3, Bir
B
T =3 (27)
Then for ohmically heated plasmas the most general scaling law becomes
BT = n'B'a" (28)

and in each model the constraints imposed on the exponents are given in

table II.
TABLE IT
Plasma Scaling Law Constraints on Free
Model for BT Power law scaling (28) Exponents
Collisionless BT = F(na7B4%) z=7x , y =4x 1
low-f3
Collisional BT = F(na2?,a®B4) | 8x + 5y - 4z = 0 2
low-f3
Collisionless | Bt = F(na2,a%B4) | 8x + 5y - 4z = 0 Z
high-f3
Collisional BT = F(na2,a’B4) | 8x + 5y - 4z = 0 2
high-f3
deal .1 [P 2x =1 1
Ideal MHD BT = n"a F a534/ z X = , ¥+ 2x =
% _/n?as)
Resistive MHD | BT = n"a F Py bz + 2x =5 , y+2x=1 1
/

Note that for ohmically heated plasmas, unlike the more general situation,
the same restriction on the exponents occurs in three of the four Vlasov models,
despite their different basic assumptions. [This coincidence does not depend

on the particular (classical) form of Ohm's law which has been adopted; it

- 12 -



arises whenever the temperature is in principle determined by the collisional
high-f Vlasov equations and so follows the appropriate scaling.] Similarly
both ideal and resistive MHD models produce the same constraints on the
scaling law for ohmically heated systems. [By introducing ohmic heating into
collisionless-Vlasov or ideal-fluid models one is implying that although
resistivity is the source of the heating it is unimportant in the energy loss
mechanism. ]

An obvious application of these results is to compare table II with the
empirical laws derived from data on ohmically heated Tokamaks. According to
Daughney [1] the data from ATC and other machines is well represented by
Eq. (28) with x =1,y =%, z =% , and one finds that these values do not
even approximately satisfy any of the criteria of table II. From a more
recent and more comprehensive survey of the available data on Tokamaks,
Hugill and Sheffield [2] conclude that the observations are well fitted by
Eq. (28) with x = 0.61%+.08 , y = 1.89+0.13 , z = 1,57+ .17 . One again
finds that these values are incompatible with any of the plasma models in
table II and that the discrepancy exceeds the quoted uncertainties in x,y, z.

One possible source of the discrepancy is, of course, that the energy
transport in present Tokamaks is not dominated By plasma transport but by
radiation due to impurities or neutrals., In the next section, fherefore, we

consider the effect of radiation on the permitted scaling laws.

5. RADIATION AND IMPURITIES
The effects of radiation, by Bremsstrahlung or from impurities, on the
scaling laws can easily be incorporated into the resistive fluid model. To
achieve this Ohm's law is modified by introducing an effective charge Z

3
into the expression for resistivity n ~ Z/T g and a general radiation loss

k 1

P ~n Tz (29)

rad

is introduced into the energy balance equation (21).
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The influence of atomic mass can also be investigated in the model by
writing p = An , so that scaling laws incorporating both the dimensionless
variables Z and A are obtained.

While the introdﬁction of Z and A leads to two mnew scaling factors
Z - 0Z , A- pA there is also an additional restriction from the necessity
for the radiation term to remain invariant. Consequently the resistive fluid
model, with radiation, effective charge and atomic mass included, is invariant
under just three independent scale transformations. These are
G;: n~ B8b-2p . v 5 Bv , x 2B 4x , t - Bt , B P4PB , E & Bab+1g |
p - Bobp , j - Bebte), T o o1
n-0¢2%2n,x->0x, t>0t ,B=->0¢C°B ,E>0C%, p2o-2¢p , j g ¢ 1j,
Z - oZ
Gy n -~ p2d-1n |, x - p ,B-pudB , E - pdE , p - p2dp ,
TR TR S, SN

where b,c,d are related to the indices of the radiation loss by

p o= 5 +2ke20 _ m+1 g=3t2k-2¢
8(k-1) % " 2(k-1 %" T&(k-1

Consequently the scaling law for confinement must take the form

BT
3 1
n°A‘a

% b
b_c-b,32 _
= F<—§f , 5y » Ba AT d) ; (30)
Z°A

The most general power law scaling for confinement time, when Z and A
are incorporated, contains six indices

Br = nPr98%a%zA" £31)

but we see from (30) that only three of these indices can be independent if
the radiation law (29) is specified. However it may be more useful to note
the converse of this, namely that if the six indices in (31) are determined

empirically then these provide just sufficient information to determine the

radiation loss formula (29).
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6. SUMMARY AND CONCLUSIONS

We have shown that each of the conventional plasma models imposes
constraints on any scaling law which can be derived from it. For general
(i.e. non-ohmically heated) plasmas these constraints are characteristic of
the model (table I) and for some models the constraints are severe. In the
extreme example of a collisionless low-f3 model BT can depend only on the
ratio [/N and the only local transport coefficient possible in this regime
is Bohﬁ diffusion. 1In the collisionless high-8 regime, which may be appropriate
in reactor conditions, the constraints are less severe but BT still depends
only on [ and the line demnsity N . For ohmically heated plasmas (table II)
in which the temperature is not an independent variable, all models show BT
to be a function of N and (Ba%l) , and the temperature is given by
T ~ a_JE F(N,Ba%;) .

Clearly all theoretical calculations of anomalous heat transport, such
as those involved in the widely used 'six regime model'[5] which incorporates
various drift and trapped particle instabilities, must be consistent with
these general results and one may use table I to check that this is so.

For example the dissipative-trapped-ion mode has p =1, q = -5 » T = 3 4
5 = 4_, which satisfy the constraints appropriate to the collisional low-f3
Vlasov model (table TI).

Using the present results it would be possible to reduce the number of
adjustable parameters which have to be determined empirically in the scaling
law - provided the appropriate model were known. This possiblity might
become particularly attractive as the reactor regime is approached. Alter-
natively one could compare the data with the scaling law of each model and
so determine which models are appropriate for attempting to calculate the
losses in present Tokamaks and what form of transport coefficients should be
sought. In view of the vast number of possible instability-driven loss
processes which have been proposed some such preliminary screening would be

valuable.
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Unfortunately when we examine the empirical laws which have so far been
proposed we find them to be incompatible with the conventional plasma models.
The most probable reason is that radiation from impurities is important and
we considered the effect of this on the scaling laws of the resistive fluid
model in section 5. 1In this connection we note that if Z and A are truly
independent experimental variables then the exponents of n, B,a in the
empirical law are not affected. However the empirical law would be distorted
if, in the experiments, Z (or some other variable such as q ) varied
systematically with n,B or a

On the theoretical side it is possible that the assumption of charge
neutrality might be invalid, as it would be if plasma oscillations, excited
by runaway electrons, were an important source of energy loss. However Hugill
and Sheffield explicitly rejected data taken in the "slide-away" regime so
that this is unlikely to be significant. Nevertheless for completeness the
scaling laws for models which do not assume charge neutrality are described
in the appendix.

Finally, we note that although we have emphasized energy confinement in
this paper, similar scaling laws apply to particle confinement times, and
since these will not be influenced by radiation, comparison with experiment

may be more rewarding.
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APPENDIX

THE INFLUENCE OF CHARGE FLUCTUATIONS ON THE SCALING LAWS

In this paper we have concentrated on models which assume charge
neutrality but there are situations, such as low density Tokamak discharges
and more commonly, Mirror-machines, where this assumption may be invalid.
The purpose of this appendix is to reconsider the various plasma models when

we include Poisson's equation
V.E = -4nLe, [ £, (x,v) d3v (A1)
~ i i

in the description of the plasma, instead of assuming charge neutrality.

The requirement that the transformations of any one of the plasma models
also leave Poisson's equation (Al) invariant reduces the number of these
transformations by one in each case. We illustrate this for the collisionless
Vlasov, low-f model, and tabulate the results for the others.

In the collisionless Vlasov, low-3 model we require transformations G
which leave the Vlasov equation (1) and Poisson's equation (Al) invariant.

There are now only two such transformations

Gy EAB1f , v=PBv ; BBB, t->pkt ; E~LE

G2 f-v2f , x> ,B->v1B, t->y , E- v7lE

and these lead to the scaling laws

n T A n T |
Q=na3B3F<-F’aZ_BZ-/"BT=F<§E’a2_BZ> (A2)

so that if the scaling is assumed to follow a power law, there are two free
exponents. This additional freedom can be interpreted physically as allowing
the ratio of debye length and plasma size to influence the plasma loss
mechanism. In table III we list the modified scaling laws for all the plasma

models when the charge neutrality restriction is removed.

A.l



TABLE IIT

Plasma Model

Scaling Law for
BT

Constraints on Power
law scaling (26)

Free Exponents

Collisionless
low-f3

Collisional
low-3

Collisionless
high-f

Collisional
high-f3

g
F (== W Bayz} 6p + 2q + 3r - 2s =
B? ? a?p* /

2p+r-s5=0

It is interesting to note that Kadomtsev's theory of turbulent losses in

Mirror-machines [6], despite invoking convection, a boundary scrape-off layer

and turbulent mixing, still accords with this collisionless low-f model modi-

fied for the lack of charge neutrality.
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