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ABSTRACT

Although resistive diffusion is much slower than the growth of resistive
instabilities, the conventional neglect of diffusion in tearing mode calcula-
tions is incorrect. The proper criterion for neglect of diffusion in resis-
tive instability calculations, which is not satisfied for tearing modes, is
w >> v/8 where v is the resistive diffusion velocity and 6 is. the resistive
layer thickness. The effect of diffusion is calculated in the limit of
large and small wS8/v for the plane slab model, and new expressions for growth
rate and stability boundary are obtained. The diffusion appears to have a

stabilizing effect.
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I. INTRODUCTION

I

The resistive tearing instability of an incompressible plasma was first
systematically investigated by Furth, Killeen, and Rosenbluth™ (FKR). This
calculation, as well as all subsequent analytic w0rk2’3, assumed a stationary

equilibrium (V. = 0) ignoring magnetic field diffusion (BBO/Bt = 0). How-

0
ever, field diffusion is significant during the skin formation and current
contraction phases of a tokamak discharge and instabilities occurring during
these phases may be related to the tearing modeh’B. In a numerical simula-
tion of the diffuse pinch Robinson6 found that the diffusion velocity
modified the growth of tearing modes at finite resistivity. 1In this paper,
we investigate the effect of classical resistive diffusion on the tearing

mode and show its effect to be significant even in the limit of vanishingly

small resistivity.

FKR used the 'plane slab' model, in which the equilibrium depends
only on y, the magnetic field is ¥ EOx(y) + 2 BOZ and perturbations take
the form u(y) exp i(kx x + kz z). They showed that in the high conductivity
limit (n + 0) resistivity is important only in the narrow layer around
ﬁ : % = 0; outside this leyer the perturbation follows the ideal (n = 0)
magnetohydrodynamic equations. By matching the solution within‘the re-
sistive layer to the 'outer' magnetchydrodynamic solutions, FKR found

resistive modes with growth rates much faster than normzl resistive cdif-

fusion. However, they also showed that the most important resistive



modes--the tearing modes--are stable if A' < 0, where A' is the change in

logarithmic derivative of the ideal solution across the resistive layer.

FKR's assumption of a stationary equilibrium implies that the equilib-

rium satisfies
Vxn(VxE)=0 . (1)

However, zero diffusive velocity was assumed for more general equilibria

in their calculation because, for small n, the diffusive time scale TR =

2 ;. ; oy ; . .

a /n -~ a/V0 is much longer than the resistive growth time of the instability,

-1 n—3/5

w , i.e., WT, >> 1. Here a is the characteristic equilibrium

R
scale length.

In this paper, we point out that the equilibrium diffusion velocity
?b (or its equivalent ng/Bt if the equilibrium is nonstationary) does
influence the growth of resistive instabilities even though these are rapid
compared to diffusion times. We find that resistive iayer motion is impor-
tent if wry = ¢ (a/8) where § is the perturbation gradient scale length (or
the resistive layer thickness). In other words, the importance of 70 is
measured not by the normal resistive diffusioﬁ rate VO/a but by the rate
VOIG, ji.e., the time of diffusion across the resistive layer. For tearing

modes 6 ~ n2/5 so that V0/6 w 7'13/5

and is of the same order as the resis-
tive instability growth rate (when-BBO/at # 0, an equivalent statement is
that field diffusion causes the singular surface to move a distance § in

the growth time w_l).



One consequence of including the diffusion velocity ?6 in the calcu-
lation of resistive instabilities is that, even in the limit n =+ 0, the
stability criterion for tearing modes is no longer A' < 0. The growth rates

of the modes are also affected.

In Section II, the basic equations for the plane slab, resistive fluid
model are described. Section III reviews the high conductivity matching
procedure and the resistive layer in the high conductivity limit. Section IV
discusses the solution in the outer and inner regions while Section V dis-
cusses the eigenvalue equation for the resistive modes in the presence of

diffusion and gives some results including a new criterion for instability.



II. BASIC EQUATIONS

We consider the usual 'plane-slab' or sheet pineh configuration in
which equilibrium quantities are independent of x and z, the density
—-
gradient is p(y), the magnetic field B = A By, * b4 Box(y), and the flow
locity V. = v
velocity g = O?.

Following FKR, we assume the fluid perturbations to be incompressible

and to follow the simple scalar pressure equation

= 3 x B - Vp .

ol e
d|<+

The resistivity is taken to be uniform and the field equation, derived

from the assumed Ohm's law, is

For the moment, we assume that equilibrium is mainteined in a steady
state (9/9t = 0) against resistive diffusion by appropriate sources. (As
we shall indicate later, a non-steady-state equilibrium, 8B/3t # 0, can be
dealt with by an appropriate reinterpretatioﬁ of VO.) Then the steady state

is given by



or in the plane-sladb by

2

B
v aBOx =N . 0x (3)
0 oy Im 5 2 ’
¥

As described in the introduction, our main task is to determine the signifi-

cance of VO for the theory of resistive tearing modes.

- Introducing perturbations about the stationary equilibrium, writing

Aﬁ =B +B,V=V_+7v with V. ~ V(y) exp [1i (k.x + k z) + wt] the
0 12 0 1 1 x z

linearized equations are

wE v x (31 x ﬁo) + V x (?0 X f&)

n
0 -+
—WVX(V-XBI)

= _ 1 e o . - <> . e
pOV x (w vl + Vo vvl) = v x [B0 V) Bl + (Bl V) BO]
-+ - )
V e Vl =7 . B1 =0 .,

From this set, a pair of equations can be separated which involve

only B _ and V&l. The remaining quantities are not needed for the sta-

bility analysis. Again, following FKR, we introduce dimensionless variables

v =3,/ |, We=-dikv, e, F=(k-+ B)/kB |,
o =ka , P = Wi s C = VOTR/a .
8 = it = ay T, = hra/<n>
R’ Ty > y ’ R ~ °Ta /<n s
T, = a(lbm< >)1/2/B P =p /<p> =
" P g B = py/<p ’ fi = ny/<n> .



Then TR and TH are the resistive and hydromagnetic time scales end the

quantities <p> and <n> are measures of the mass density and resistivity.

For our analysis we take <p> = po and <n> = no. In these scaled variables,
the system reduces to
FW ! 1 :
v+ T + 9%_ ='5 (p" - 32 P) . ' (%)
mn
vo-afy -y s A fctim P ) +p(t - F WY (5)
SaF :

and from Eq. (3), the equilibrium diffusion velocity becomes
c=F"/F' . 3 (6)

As one would expect from the introductory remarks, the diffusion velocity
VO is significant only in the thin .resistive layer, over which it can be
regarded as uniform. To avoid supeffluous complications, we have therefore

treated C as uniform in the above equations.



III. THE HIGH CONDUCTIVITY LIMIT

We are interested in the high conductivity limit n - 0 or S + « (for
thermonuclear plasma S ~ 100 and in current tokemak experiments S ~ lOT).
In tﬁis limit, FKR found resistive tearing modes with growth rates p ~ 82/S
and we have implicitly confined our attention to these modes by ignoring

gravitation and gradients of resistivity, which can lead to other resistive

modes.

- As S+ o, Eqgs. (4) and (5) reduce to the ideal magnetohydrodynamic

equations
FW, _
(w+p =0 (7)
v -y -Su=o (8)

-+

everywhere except in the neighborhood of F = 0 (i.e., kX + B=0)., Solutions

of the ideal equations, satisfying the boundary condition Y 0 at the
boundaries of the slab will exhibit a discontinuity in logarthmic

derivative
6= i/, - v /] | (9)

i - 3 . 3
across the surface k * B = 0. The behavior of resistive modes is deter-
mined by the requirement that the solution of the full resistive equations

in the 'inner' resistive layer around X +B=0 should properly match



to this discontinuity A' in the "outer" solutions. Hence, the problem is
reduced to calculating the change in logarithmic slope Ai(p) of the re-
sistive solution across the resistive layer. The growth rate is then

determined by the dispersion relation Ai(p) = A",

As n + 0, the width of the resistive layer & + 0, the growth rate
p + ® and w[$ + ®, One must therefore introduce appropriate scaled vari-

ables to calculate Ai in this limit. The full tearing mode ordering written

in terms of the gradient scale length 8 requires that

p~&t . y.1 W62 , a~1 , Cc-1
P-.& F' w1 ™1 s . 87 . 53-~6_1.
u
Then the equations in the resistive layer become
m _
Yy =0 . (10)
no_ F_W
v] p(w0+p) (11)
i " n 2 Tn
—— (CW"" + pW") - F°W = pFy. - F" ¥ . (12)
52a2 0 0

The first important point of our work is already evident from these
equations. In the tearing modes the effect of the diffusion velocity C
is not of higher order in the § (or n) expansion than other quantities,

and so must be retained. In this connection it is important to note that



the order of the diffusion velocity is fixed by the equilibrium condition
(3) and cannot be chosen arbitrarily. (One may also note that for the g-
modes of FKR, the diffusion velocity is a higher order contribution in the

n-expansion and for such modes VO may indeed be neglected.)



IV. FUNCTIONAL BEHAVIOR
A. THE OUTER REGION

In the outer region the solutions are given by the ideal magnetohydro-
dynamic equation (8). All we need note here is that as one approaches the

resistive layer the ideal magnetohydrodynamiec solution behaves like
Y~ Au +B [1+C(ulogp -yl

so that (p'/¥) ~ A/B + C log u. The inner solution will later be shown to
match this behavior. Although (Y'/¢) is divergent as p -+ 0, the difference
A' between (YP'/Y) on the two sides of the resistive layer, remains finite

and is given by the coefficients A, B, of the magnetohydrodynamic solution.

B. THE INNER REGION

In the inner region, the lowest order solution_is ¢0 = 1 (the ordering

ensures that matching will only be possible if wé Z 0). Then the quantity

we need, Ai, is given by

Ai = f (p + FW) au . | (13)

10



The problem is to calculate W and hence.Ai. Before attempting this, we

note from (12) that as pu =+

C
FW ~ - +o—_
P

so that Y'/Y varies as C log p + constant. This is exactly the behavior
needed to match the outer solution and the divergent logarithmic terms may
be ignored provided matching is carried out at points equidistant from

H = 0. That is, we define

Al £ lim f (p + FW) du . (1k)

We now consider the resistive layer equation in more detail. Intro-

ducing new variables y = 66, and

vz o3 (22l

with

& = (p/a“F'“s%)

we obtain

3 2
% Q_% + E_g - 92h =0 - ) (15)
ae ae

>

He =
~

o)

St

I

= ]oLF's]“l/2 ps/h f (1 + 6n) a9 (16)

11



50

A = 1) = Jorrs| ™2 2P 6() = & c(h)

where from Eq. (6) we have defined

b
H

".C/Gp

_| (ar' )12 ]_E;__{
PS/ B

(17)

Note from our ordering that pé = ()(1) and C = ()(1) so that A is also O)(1).

2/5

Then since p ~ S

that of the usual tearing modes.

12

, the growth rate given by (17) is of the same order as



V. THE FUNCTION G()), GROWTH RATES, AND CRITICAL A'

The calculation of Ai, or equivalently of G(A), when A = 0 was carried
out by FKRl and other authors3. (In fact, in these calculations A was
retained in the term on the right side of Eq. (15), but Ah"™ was omitted
from the left side. Since only the antisymmetric part of h(6) contributes
to A', this omission has the erroneous effect of making A' appear independent

of A1) We shall not repeat these calculations for A = 0, but simply gquote the
1.,2,7

result . This is equivalent to
= r(3/4)
G(0) = 2m 3 0 | (18)

which, in conjunction with (17) leads to the well-known results that tear-

ing modes are stable when A' < 0 and given by

o = [T(a/u)/2nr(3/8)] (ar's) /2 ar

when A' > 0.

The calculation of G(A) when A # 0 is more difficult and we consider
only the limits of small and large A. The latter will provide a new cri-
terion for instability and the former a modification to the growth rates

of unstable modes.

13



A. EXISTENCE OF CRITICAL A!

That tearing modes must be stable even in the presence of the diffusion
velocity, if A' is less than some critical value Aé can be shown as follows.
Consider the homogeneous equation [corresponding to (12)],

(eW™ + pW") = FoW =0 . ' (19)

1
LW =
82a2

We multiply Eq. (19) by W* and integrate over all U to obtain

=) o
‘ C (w" W*l - W' WE") ap + P f lw1|2 dy
282 2 22
-0 . =00

o S o
(20)
[ee] (o]
+ f F2|W|2 au =—21—2— (cw" w* — g- [w [2 + DpW'W¥) ;
s%a
-=00 -0

_We see by taking the real part of Eq. (20), that there are no solutions to
Eq. (19) which decay as |u| + « when Re p > 0. Hence the operator I has an
inverse, and bounded solutions exist for Eq. (12). It has been previously

shown that for |u| + «,

2

p+FW~%+O(—-]—'—) .
u

so that since Eq. (1L4) defines symmetric limits the function Ai(p) must be
bounded for all Re p > 0. (Except possibly when ]p[ + «: however in this
limit we know that G(A) is given by Eq. (18).) Then the least of these

bounds represents Aé with Ai(p) > Aé for all unstable modes.

14



B. SOLUTION FOR SMALL A

We now turn to the evaluation of the central function G()X) and consider
first the case when XA is small (i.e., C small). In this case we can expand

h in powers of A,

2
h = h0 + Ahl + A h2 + ...

and obtain from Eq. (15)

2

1 —

ho -0 ho )

h; - 62hl = hg' 1
" 2 ! m

h2 -0 h2 = - hl X

We note that ho and h2 are odd functions of 0 and that hl is even.
Hence the latter does not contribute to A' or the growth rate. However it
does contribute to the perturbed field structure and produces an asymmetric
shift in the perturbed field across the singular surface, somewhat similar

to that of the rippling model. The resulting small A expansion for G(X)

becomes,
(o)

G(A) = 2r ng;t) . JE .}f 8 h, ae + O(Ah) 3 (21)

—00
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The hierarchy equations have been integrated numerically. In each
integration an intrinsic numberical instability, proportional to exp (82/2),
is eliminated by methods developed by Wang and Dobrotta. The functions ho,

hl, and h, are shown in Fig. 1. A further integration yields G(A) and

2
hence, finally,

: ’ C2
1 = o
Ai(p) 2,12 p& + 0.28 o8

where implicitly, 02/p6 << 1. This result can be written

Slh (oaF )1/2

At(p) = 2.12 F_—_T_7- + 0.28 ————75——-0 . (22)

The growth rate, obtained by matching Ai(p) to the outer solution, is

" seen to be sméller than that of the C = 0 case.

C. SOLUTION FOR LARGE A

The case of large A arises when p + 0 and so determines an instability

boundary, replacing the A' > 0 condition of earlier work. One cannot

immediately set A + © in Eq. (15) as the resulting function h(8) would not
have the correct behavior as ,8] + o, To obtain the correct behavior, we

again introduce scaled variables

Y5 2 n=[x3" ¢

k]

16



Then we find
M o2 p=o1 (23)

Incidentally, it should be noted that this is exactly the equation which
one obtains by setting p + 0 (or by treating p as higher order in &), in
the original Eq. (12). In the same limit of large A, or small p, G(X) is

given by

: X
G, = lim G(X)/[A| = lim z £(z) (2k)

0 o Ao
-X

/5y

and so is proportional to !A . Note that the next term is (Xll! . Then
A' is given as
X
A' = pé |A] 1im z f(z) dz +O(|l]-h/5)
X4 ‘
-x
or
x .
FH
lim A" = A! = |F—| lim f z £(z) dz . (25)
Ao o

Although the large A behavier for A' is not expressible as an even power

series in A, we see that it depends upon the magnitude of A only.

17



The value A; may be found by the application of Fourier transforms.

Taking the transform of Eq. (23), we obtain

2 ,
d—§+ iK3g = - o1 8(k) .
dk
Here
glk) = f eikz f(z) dz

is a continuous function, but has a discontinuous derivative at k = 0. It

can be written

A u(x)/u(o) k>0

g(k) =
A U*¥(- x)/u(0) , k<0 (26)

with U(k) expressed in terms of the first Hankel function,

L2

U(k) = x

L) (g Gim/h ks/e) .

1/5 \5
The coefficient A is determined by

1 dau _
2A * Re (UEE)=O B P (1)

+

18



Then A! can be expressed in terms of Eq. (26) by noting that

or

We recall that

yields

vhere from Eq.

or

Fl

o0

00

f—) lim fdk g(k)
X

X (o]
2—1 dzf dk zg(k) e K2
m
X 00

dk

dg/dk is discontinuous at k = 0.

|

"
T

RSN
AT 5/ k=0

(27) we find

i

m

™

"

Fl

Fl

ni¥

| tan (7/10)

+

19

.. ]

1l 4U
tan [arg (ﬁ- aK

9 sin kx

Then integration by parts

(28)



Recalling that A + ® corresponds to p + 0, we conclude that Eq. (28)
defines a new threshold for unstable tearing modes - replacing the previous
threshold A' = 0. Note that the diffusion velocity again has a stabilizing

influence, as it did in the case of small A in Eq. (22).
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VI. CONCLUSIONS

Al though it apparently has a much longer time scale than that for
resistive instabilities, the equilibrium diffusion velocity enters the
calculation of tearing mode growth rates in the same order as other quan-
tities. Consequently, even in the limit n + 0, tearing modes are affected

by the fact that the equilibrium of a resistive fluid is nonstatic.

Hhen this effect is taken into account, we find that the growth rates
of téaring modes, in the plane slab model, are less than those given by
FKR and others. Also, the threshold of instability at p = O becomes
A' > A! (where A! is given by Eq. 28) instead of A' > 0. (Unfortunately,
although we can conclude that unstable modes arise when A' > Aé we can no
longer conclude that all tearing modes are stable when A' < Am. The

argumentl that there are no oferstable tearing modes is no longer valid

when F" # 0.)

At this point, we should remark on the situation when the equilibrium
is not stationary and BBO/Bt # 0. Since the influence of this change, like

that of V is important only in the resistive layer, it can be incorporated

0’
by carrying out the resistive layer calculation in a moving reference frame
in which locally 8B/dt = 0. The appropriate reference frame has velocity

—VO, and the results obtained above are, therefore, equally valid for this

case.
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FIG. 1. hi(e) versus O for i = 1, 2, 3. ho and h2 are even

with respect to 6, and hl is odd.
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