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1. INTRODUCTION

A self-sustaining thermonuclear reaction requires a plasma (a fully ionized,
electrically conducting, neutral gas) to be held in a state of high temperature
and high particle density for a sufficiently long time. At this high temper-
ature direct contact between the plasma and any material container would cause
serious contamination. A current line of research is to confine the plasma
away from the container walls by applying a magnetic field. The design of
such a field for advanced experiments frequently requires the solution of an
elliptic equation if simplifying assumptions are made. In many of the present
experiments a copper shell is used to enhance the stability of the plasma.

The finite conductivity of the copper allows the magnetic field to diffuse
through the shell. Although this is a time dependent problem, the fully
implicit finite difference method is always used and as will be shown, requires
an elliptic equation to be solved at every timestep. For an applied magnetic
field it is important to know where the plasma will position itself in equi-
librium. TFor a theoretical study it is usual to treat the steady state MHD*
equations and under certain assumptions these reduce to a single nonlinear
elliptic equation. Expertise in solving electrostatic problems ﬂas also been

used at Culham Laboratory in applications outside the fusion field.

In this paper we describe the approach made to these problems at Culham
Laboratory. In Section 2 we derive the differential equations for certain two
dimensional electric and magnetic fields and outline the engineering and compu-
tational aspects of typical problems. In Section 3 we show how our approach
was extended to treat three dimensional electric fields. We derive the differ-

ential equations for two dimensional magnetic flux diffusion inSection 4 and

*The MHD (magnetohydrodynamic) equations are a combination of Maxwell's
equations and the fluid dynamic equations



describe the computational aspects of wvarious problems. The two dimen-
sional MHD equilibrium equation is derived in Section 5 and we show how
the physics of the problem determines the computational approach. Finally
in Section 6, we give two typical examples of solutions of elliptic

equations in fusion research.

2 IWO DIMENSIONAL ELECTROSTATIC AND MAGNETIC FIELDS

An electrostatic field is produced when a potential difference is applied
between two or more conductors or when the region between conductors is
occupied by electrostatic charge. In the former situation, the region
between the conductors may contain one or more insulators. Combining

the two situations, the general problem is to solve
V.D=p (1)

where ¢ is the electrostatic potential with E=-VYp and D = €E, E
being the electrostatic field, D the electric flux density, € the
local absolute permittivity and p the local charge density. If the
conductors form a closed region, we have sufficient boundary conditions
to solve (1) since ¢ = constant on each conductor. If the region is
not closed we must consider the behaviour at infinity and represent this
by the appropriate boundary'condition, frequently %E =0 (uniform
field). Symmetry about some line also gives this boundary condition.

The most frequently occurring two dimensional electric field is the

cylindrically symmetric field. Introducing cylindrical coordinates

(r, 6, z) and setting all derivatives é@ = 0, (1) reduces to
138 de) ., 98 [ 8¢} _
=53\ T )t 5, (fa%) - p when r #0 (2)
and
9 (8¢) .28 [ 2e) _ _ =
Zar €or + 35, €5, p when r =0 (3)

In rectangular cartesian coordinates (x, y, z) a field can be considered
to be two dimensional if effects in two coordinate directions are much
more pronounced than in the third direction. Assuming that this third

direction is the 2z direction, (1) reduces to
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Magnetic fields are produced by currents flowing in conductors. Frequently
iron occupies part of the region between the conductors. If the currents are
D.C., we know the current densityin the conductors but the region between the
conductors is typically infinite. In the A.C.case and in the limit of high
frequency or high conductivity, the magnetic field becomes tangential to the
surface of the conductor. The region between the conductors is usually

closed. Hence we have two special cases of the general problem
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where A is the magnetic vector potential with B = pud and B = VXA, B
is the magnetic flux density, H is the magnetic field, p is the local

absolute permeability, and j is the local current density.

The most commen two dimensional magnetic fields in fusion research are

axisymmetric. Using cylindrical coordinates (r, ¢, z) and setting all

1 oV
derivatives -Q—acp = (0, we can introduce a stream function V, where Br=-?a—:-
1
and Bz =7 gﬁ . Since currents only flow in the ¢ direction it is easy
to show that V satisfies the equation
o /1L av), B (Lav)_ _ .
T or \Fr ar 0z \u 0z Jw (6)
and IB = constant. Now 3 . ?ﬂ- = 0, so the magnetic field lines are the

contours of V., In rectangular cartesians (x, y, z) with negligible

effects in the z direction, we introduce a stream function V¥ where

B = £ and B_ = - QE. Since currents flow only in the z direction, it
b4 dy b4 ox
is easy to show that ¢ satisfies

0 (1 ov g (Lav) _ .
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and B = constant. Once again B.YY¥= 0. Hence both these two dimen-
sional fields are the solution of a scalar equation, whereas the full

three dimensional field requires the solution of a coupled set of three

vector equations.
In D.C. fields the longitudinal current density is known and the

artificial boundary conditions are ¥ - 0 at r =0 and r = @ in the

axisymmetric case for example. In A.C. fields, the current demsity is



zero, but we know that V{ =constant on each conductor. The constants
cannot normally be specified a priori but comparison of fg. di = I
around each conductor with the known value of the current allows a cer-

tain amount of scaling of the constants.

In general, therefore,the computation of a two dimensional electric or
magnetic field requires the solution of a self-adjoint variable coefficient

linear elliptic equation

a o 3 d _
a(x,,x,) Bx, b(x;,x,) 5%, + 5;: c(xl,xz)szf =gl q,%5) (8)

; . ; . 0
inside a general two dimensional region on whose boundary either ¢ or Sﬁ

is specified.

The finite difference method has proved adequate for most problems
encountered at Culham. Most geometries are complicated so a variable spacing
rectangular grid is used. The user image of the code POTENT is described

elsewhere, /133/. Here we will give a resumé of the numerical techniques.

Using Gauss' Law, equation (1) can be written as

‘/;Em ds -jpdv (9)

s v

where S 1is a 3 dimensional closed surface with volume V and unit outward
normal n. This formulation leads to a natural treatment of the Neumann

boundary condition %ﬁ = f. 1In two dimensions we replace the surface
integral by a line integral and the volume integral by a surface integral.
Consider the point P in Figure 1. The curve S is made up of the perpen-
dicular bisectors of the grid lines joining P to its 4 neighbours. The
difference equation at P is constructed by approximating (9) on this cell.
The grid lines divide this rectangle into 4 parts and we assume that € is
constant in each of these. This effectively replaces any sloping inter-
face by a step interface coinciding with the grid lines. More sophisti-
cated representations of the interface have not produced any significant
improvement in accuracy. It would appear that finite differences on a
rectangular grid are not well suited to sloping interfaces and an accurate
treatment is only possible with a finite element approach. With this
approximation we evaluate fS ed! exactly and replace 21 by a central

on
difference, taking it as constant along each side. The resulting



difference equation is
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where €. = E(x + ; - y + = HN) etc.

In cylindrical coordinates, the procedure is along the same lines but
we evaluate (9) on the shape in Fig.2 when T, # 0 and on the shape in

Fig. 3 when rp = 0. The resulting difference equations are

N 1 1 ¥g - %p 1.1
TR %W I W S 7y O S s
P -
E P1
+"—H—E—*-5[(r +~—HN) —r2}€NE+[1‘ - p-%HS)2]€SE}
%~ %p1 1 8 1
+ i {[(r + ) -r;]er+[r;—(rp-EHS)2]est
_ L 1 1.2
= - pp 4[(r - HN)2 (rP - 2HS) ](HE o+ Hw) (1L
when r # 0 and
B 9 - %
TH, 7 Hy (HE NE T OBy Sww 2 E
% " %11 _ 1 S
P SLe 1O HN)Z =" % S + B 5 1a HN) (12)

when r = 0.
P

A similar treatment is available for magnetic problems if we consider

Ampere's Law
f%Yxé.d£=fi.§dS (13)

[ S

where S is a 2 dimensional surface with unit outward normal n, bounded by

a curve C with tangent vector /.

In rectangular cartesians (13) can be reduced to
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and approximation of (14) on the shape in Fig.l gives the difference equation
‘;’N'WPL(HEJer)Jr‘y -tlr_l__ +HW)
By 2 \ME M Hy 2 \Mgg Mgy
v _,\I] V —
LE_p1 HN+HS)+\I,W 'p_l_(HN+Hs)
H
E 2\"NE Msg T 2 \Mw P

= - 1y 4(HN + B (H, + H) (15)

In cylindrical coordinates (13) can be reduced to

1 oy
fE it = —ﬁ@ds (16)

If we identify the r and z directions with the x and y directions,

respectively in Fig.l, the difference equation for (16) becomes

; — d -
I (HE . Hw) s % o1 (HE _H_w_)
r 2 ; T 2 -

N p M M By p 2 \Wsr Mgy
- Ir -\ H !
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g (rp + SH e Vs o3 Hw)
- 1 (B, + H.) (H_ + H)
I & Wyt By W+ By (17)
r =0 does not concern us since magnetic field lines cannot cross the axis

P
of a cylindrical system. Hence the line rP = 0 1is always a boundary of the

problem.

When the point P has one or more neighbours outside the region of the

problem, we must modify the difference equation by using the boundary condi-
tions to eliminate the exterior point(s). The modifications and the procedure

for automatically setting up the difference equations are described in /133/.



A comparison of (10), (11), (12), (15) and (17) shows that provided
we have some Dirichlet boundary conditions, the matrix of difference
coefficients is strictly diagonally dominant with 5 entries per row,
the off-diagonal elements non-negative and the diagonal elements nega-
tive. The arbitrary shape of the boundary, the variable mesh in each
direction and the material properties varying in both directions together
all preclude the use of a fast Poisson solver. However iterative methods
are well known to be convergent for these matrices but are of course
appreciably slower than fast Poisson solvers. Since the equations only
have to be solved once in any run, this is no great disadvantage. The
code allows the equation to be solved by one of three iterative methods
- ADI, SOR or SLOR. FExperience with many problems shows that SLOR is

always satisfactory, see /133/.

With the flexibility of a variable mesh we must provide guidelines
for placing the grid if efficient use is to be made of the code. It is
not always possible to keep to these guidelines strictly as the number
of mesh points in each direction is restricted by computer storage.
When adjacent mesh spacings are of different lengths, the local trunca-
tion error is proportional to the difference between the two spacings.
This source of error is reduced if adjacent mesh spacings vary smoothly.
Little /*1/ has arrived at the empirical rules that the ratio between
adjacent mesh spacings in the same direction should never be greater
than 2 : 1 and the ratio between the maximum grid spacing in one direc-
tion and the minimum grid spacing in the other should not be greater
than 10: 1. This gives satisfactory convergence and accuracy, see

Section 6.

The finite difference method has the drawback that it can only
treat interior problems. Hence exterior problems must be turned into
interior problems by introducing artificial boundaries at infinity.
The smaller the area of the artificial boundary, the fewer the number
of grid points which must be placed in the physically uninteresting
parts of the exterior region. Little has demonstrated that the radius
of the artificial boundary need only be 6 times the maximum radius of

the physical boundaries, for acceptable accuracy.



3. THREE DIMENSIONAL ELECTROSTATIC FIELDS

As experiments and equipment have become more sophisticated the need to
go to three dimensions has arisen. Electrostatic fields remain scalar

in three dimensions -and the rectangular cartesian equation is

of_ 2e), o (_ 28e|, 9, 2e)_
8x(€ 8x)+8y(€ 8y)+az(€ Bz) - P (18)

The code THREED /134/ is a completely logical extension of POTENT and

the two user images have been kept as close as possible. The procedure
for deriving the difference equations follows the lines of the two dimen-
sional procedure. Gauss' Law, equation (9) is approximated on the mesh
cell shown in Fig.4 where each side of the cell is the perpendicular

bisecting plane of the grid line joining P to the appropriate neighbour.
fol0
on

constant over each side of the cell and [edS is evaluated exactly.

€ 1is taken as constant in each 'eighth' of the cell, is taken as

The resulting difference equation is
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Boundary conditions are incorporated in a way analogous to the two

dimensional approach, The matrix of difference equations has all the



properties of the matrix occuring in the two dimensional problem, but has
7 entries per row instead of 5. Once again a fast Poisson solver is not
applicable, but SOR and SLOR give acceptable convergence. We have not
considered ADI since it is well known that in three dimensions optimum

parameters are not available even in the simplest case, see /140/.

4. TWO DIMENSIONAL MAGNETIC FLUX DIFFUSION

A time varying magnetic field will induce an electric field in a conduc-
tor. Because of the finite conductivity of the material, the electric
[ield sets up a current which in turn has a magnetic field. The net
result of these magnetic fields is diffusion of the magnetic field into

the conductor. TFormally, we combine

Ohm's Law j = oE
and
Ampere's Law VXH=j
0A
with the relationships E = - —i (displacement currents
B can be neglected)
and pl;1=y><_
to give YRETRA=- g5 (20)
- H=- - ot

; . 0
In rectangular cartesians (x, y, z) with 3, = 0 and ¥ =A we have

ENCY-APEADT QNPT

ox (u ox -+8y K oy T (21

and in cylindrical polars (r, 6, z) with é% =0 and V¥ = tAB we have
5 (.L WY _a_(;ﬂ)_ av '
ra'r(urar Tez\uez) T ot 22)

o is the conductivity of the material and of course is zero outside a
conductor. Hence we have an elliptic equation to solve outside the

conductor and a parabolic equation to solve inside the conductor.

The standard approach is to use the fully implicit finite differ-
ence method, see Richtmyer and Morton /*2/. Hence at a point inside a

conductor, the local equation is (assuming constant Q)
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and at a point outside a conductor, the local equation is

n+l n+l o+l n+l n+l n+1
u__l(ﬂ+ )+L\.]:-P._._.l(ﬂ+ )+‘PE -\llP Lw +u)
HN 2 E HW HS 2 E HW 2 N )
q';;ﬂ' q’lr:ﬂ 1
SIS = 24
G 5 (HN + HS) 0 (24)

Hw

Although the fully implicit method is recognized as cumbersome it has two main
advantages for the flux diffusion problem. Firstly it can be shown that

positivity is preserved by the difference equations. In other words, numeric-
ally computed fluxes are positive when the physical fluxes are positive - this
is not always true with other difference schemes. Secondly we have a uniform

treatment of all points in the grid.

Equation (23) can be manipulated so that all terms on the left-hand side
are at the advanced time. We now have a set of equations to solve at each
time step. The similarity between this set of equations and the equations for
a static magnetic field is immediétely apparent, so we can use all our tech-
niques for setting up equations and for solving them. To complete the
statement of the problem we need initial conditions and boundary condi-
tions. Typically the boundary conditions are at infinity but in some
situations it is necessary to impose the flux variation on a conductor
(sinusoidal or an initial rise which is crowbarred). Imposed flux varia-

tions are analogous to source terms in (20).

Most present experiments are toroidal and a rectangular grid is not very
suitable when the thickness of the copper shell is small compared with its
minor radius. A toroidal polar (r,8) grid is ideal for this problem especially
when the shell has a circular cross-section. The difference equations are

derived from Ampere's law

10
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where R = RO + r cosf, R0 being the distance from the axis of symmetry to
the centre of the cross section of the shell. Evaluating (25) around the -

contour in Fig.5 in the usual manner we have:

LA ]
_NWP—(IP“L%HN)% 1l T+ 1 -
. :Rb+ (rp +3 HN)cos(Bp - 569) Rb+ (rp 5 HN)cos(Bp + —66%
-
¥ SH (rp'%ﬂs)ézg 11 Tt 1 = T
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l!!E - ‘!’ l 1 1 1 i
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r 86 2 5" 2|R 4 (r_ + % H)cos(6 +=56) R+ (r - L 5 )cos(8 + 250
P of Up T2y p T2 ot Y~ 3 s p ¥ 2
voo- &
+269 %(%J“HS)% 1l T~ 11 T
) Ro+ (rp + 5 HN)cos(Bp - 566) Ro+ (rP -5 HS)CDS(ep - 566)-
o, H
= P P ov 1 1 2 _ i 2 26
R°+ rp cos@P atf 2 & [(rp *3 HN) (rp 2 HS) ] £26)

When rP = 0 a special treatment is required. Equation (25) is now approximated

around the contour in Fig.6. We have

V-
Ni p1l. 1 1 1
—_— = -

I T 1 I
RO+ 3 HN cos(GNi - 269) R0+ > HN cos(QNi + 269)

B ;
oy 1 1 1

90" 2 N2 1 1
LRO+ > HN cos(BNi + 266) o)

v 1 1 1 1
+ W = H, ~ + =
30" 2 N 2 1, 1 R,
'Ro+ 5 B cos(BNi + 269) o
o K
- _ppo¥ 11.,
ROEEPZAHNtS@ (27)
Summing all contributions from 6 = 0 for 6 = 27 - 60, the terms involving
g% all cancel and we have
(o]

11
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where Q is the number of angular divisions and the suffix WNi refers to the

ith point on the radius r = HN'

Equations (27} and (28) are now amenable to a treatment similar to that

used previously in this paper.

5. TWO DIMENSIONAL MHD EQUILIBRIA

The computation of two dimensional MHD equilibria is an important aspect
of fusion research for at least two reasons. Firstly we can determine
the plasma position and current distribution and various equilibrium
quantities which measure the efficiency of the confinement and indicate
the local stability. Secondly the equilibrium provides the basis for

MHD stability studies.

Assuming that the plasma is stationary in equilibrium, the force

balance equation is satisfied i.e.

Vp =j xB (29)

where j and B have their usual meanings and p is the plasma pressure.

In addition we have the two Maxwell equations

VXH-=j (30)

TuB=0 (31)

If the system is axisymmetric we can introduce the stream function V,as in
Section 2. Straightforward manipulation of (29) and (30) shows that V¥

satisfies
¢

® or

1 av a2y ’ 2! =
T to,z T FF 4T =0 (32)

where F(= rB ) and p, the pressure are both arbitrary functions of V.
¢
If the system is two dimensional in rectangular cartesians we intro-
duce V¥ and find that it satisfies

24r 2
gTi+g—;l+FF'+p’=O : (33)

where F(= Bz) and p, the pressure are both arbitrary functions of WV,

12



In practice the functions ¥ and p are not arbitrary but are deter-
mined by underlying physical processes. The efficient modelling of these
processes has still to be devised as there are several fundamental diffi-
culties. Hence the standard practice is to choose functions which are
thought to be ‘reasonable'. The choice of boundary conditiom is more
straightforward. For example, if the plasma is surrounded by a perfectly

conducting wall, we can set YW =constant on the wall,

We can identify 4 classes of problem and each requires a different
computational approach. We first consider the situation of the plasma
boundary coinciding with a perfectly conducting wall, cn which the longi-
tudinal current density is non-zero. We note that in (32) rj =FF +r?p’
and in (33) jz=FF' +pr" . Hence at the wall, we have F(‘I’W)F'(?I’w)+r2p'(lllw} #0
in (32) for example, where VY = ww on the boundary and we cannot have
the trivial solution V¥ = *W' The number of non-trivial solutions for
given functions F and p 1is an unsolved area of pure mathematics.

For functions F and p which lead to a linear equation, however, we

do know that the solution is unique if 5%(FF' +r?p’) <0.

The most powerful numerical method which can be used on (32) or (33)
when F and p are reasonable analytic functions is Newton's method.

Symbolically we write our set of difference equations as

AV = G() (34)

where the coefficients of A are derived in the usual manner. Then Newton's

method is s

(A - @MW -y = e -t (35)

Since G(¥) does not involve any derivatives of WV, the matrix on the left
hand side of (35) is A with just its diagonal elements altered. Hence,
provided A - G' (V") is positive definite, we may use an iterative method to
solve equation (35). 1In fact instead of completely inverting the matrix we
only need to perform a few iterations per Newton step. If A - ¢’ (W) is not
positive definite, iterative methods are not applicable. Nevertheless we are
still able to solve a wider class of problems than if we were to use Picard's

method, which is the standard use of Poisson sclvers.

The second class of problems alsc have the plasma boundary coinciding with
a perfectly conducting wall, but the longitudinal current demsity vanishes at

the wall. Hence Y = Qh is a trivial solution to the differential equatiom.

13



There may well be physically interesting (non-trivial) solutions to the equa-
tion, but they will be eigenfunctions corresponding to particular parameter

values. As an example we consider

LY + A G(¥) =0 (36)
where L is either of the differential operators occurring in (32) and (33),
and AG(V) is the appropriate source term. V=0 on the boundary and G(0) =0.
The method of solution was developed by Feneberg and Lackner /*3/ and is
similar teo inverse iteration. The idea is based on the fact that a non-
trivial solution of (36) will have a non-zero total current ie
I = [MOW)G()dS # 0 where H(¥) is some geometric factor. The pro-

cedure is then as follows:

First choose ¥° and A° such that I° = fhPH(¢O)G(¢D)dS # 0 and has
the same sign as I_, a chosen value for this integral. We set

Al = IPAP/IO and tﬁen solve Lyl = - AG(°). A! is scaled and the
process repeats until convergence is achieved. We have again used

iterative methods to invert L.

When G(¥) 1is of a form which allows values of opposite signs the
above iteration has been known to produce physically meaningless answers.
Sykes /*4/ has extended the range of convergence by exploiting the non-
linearity of (36). He uses a form of nonlinear SOR /*5/ in which each
local equation is treated by the secant method. Thomas/*6/ has used
nonlinear SOR in its full form. After several steps the eigen value A
is updated in the above manner. These 2 methods are now standard in our
codes, so a capacitance matrix approach is no longer relevant, although
it would have been if we had continued to use inverse iteration. Our
experience with this type of problem helps to emphasise the fact that
use of the simplest method can sometimes reduce the range of computable

solutions.

In the third class of problem, the plasma is kept away from the
shell by a device called a limiter, and the region between the plasma
and the shell is vacuum. The location of the plasma boundary is a priori
unknown and is part of the solution to the problem. Since the pressure
is constant on a V¥ surface we may pose our plasma vacuum equilibrium

equation as

14
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with ¥ = Ww on the shell and ¢W < wp' Since ww < Wp’ Vo= ww is a
trivial solution to (37) and hence we must again look for eigenvalues in

order to obtain a physically interesting solution.

The treatment of (37) is similar to that of (36) but we now have a
broader choice of parameters to consider as eigenvalues. If we write
the r.h.s. of (36) as - AG(V¥) , there are 3 common choices of eigenvalues
(1) A (2) WP (3) A and wp. In case (1) Wp is fixed and A is varied so

that the integral I converges to its specified value. In case (2) A

is fixed and wp is taken as the value of V¥ at each iteration at some
specified point. This specified point is chosen so that the plasma bound-
ary lies within the limiter. In case (3) procedures (1) and (2) are
applied simultaneously. Several simple rules have been derived for
choosing the fixed point in order to guarantee convergence, see /*3/.
Inverse iteration and nonlinear SOR have both been applied to this
problem at Culham and once again the capacitance matrix approach has not
been applicable. Examples of problems in these 3 classes are given by

Thomas and Haas /137/.

The fourth class of equilibria is applicable to experiments which
do not have a copper shell. We have no natural boundary and no simple
boundary condition. Hence, provided we have some physical principle
which tells us how to construct a boundary condition we have a free
choice of boundary. To allow us to use a fast Poisson solver we have
used a rectangular boundary. The boundary is placed so as to lie in-
side all the conductors and outside the expected plasma boundary. The
boundary conditions are computed from the property that at any point
the vector potential is the sum of the vector potentials due to the
conductor currents and the vector potentials due to the plasma currents.
Constraints are applied as in the above class of equilibria. The deri-
vation of the difference equations is performed by the previously men-
tioned integral technique. It was found by Thomas /135/, that mesh cells
which cross the plasma-vacuum interface have to be modified so that the

integral of the <r.h.s. is performed completely in the plasma. This was

15



necessary to maintain convergence as the mesh size is reduced to zero.
The present version of the Culham code /136/ uses inverse iteration so
we are able to incorporate the Bunemann algorithm provided the number of

. . ; ; ; m
points in each direction is 2 + 1.

In straight geometry the local equation is

- 2 <+ - 2 o A5 .
it1] \ij wi-lj 5 ¢ij+1 ¢ii 4’i1'--1 = o 14J211 (38)
A2 A% Al?
& ¥ y

where Aij is the area of the mesh cell taking account of the interface,

wherever necessary, Hence ordering the points along the rows, the set of

difference equations is

A I xz Y2
I A I x3 Y3
vyl . .
- \ = (39)
Lal *h-2 yn—Z
] Lot ey Vo1

where A 1is the tridiagonal matrix

a1

1Al
"5 P
Y

. 2
/ A T : . , »
=2 1+ Z% and X, = (Wzk, ¢3k, . wn—lk)’ the kth row in the y direction

and yi are vectors of jz" and include the boundary terms. We remark that
the number of rows must be n = 2" + 1 (including top and bottom) but the number
of columns isumimportant since we invert A by the tridiagonal version of Gaussian
elimination.

In axisymmetric geometry the local difference equation may be written as

Az 2A

i ! = ‘!;J \!’.. - ‘p ‘i'.._ "J'.. . B ii
Virts T Vi pz? qi—l' ij éﬂ: ij+l ij . ij t- ij -3, T
———*l——f—‘l AT 2 _ 1 ) Ar ri i 1]

and the set of difference equations is
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- - = = - -
AD xz y?.
DAD X, ¥,
DAD Xn_z yn_2
DA xn-l yn-l
- cxad e - - —

where A is the matrix

— A 2
b, ¢, T with b, =- = - : ® 11 Z%z
x s Tty T - 5 Ar
a, b, ¢,
. )
a 2 b 2 c 9 and c, = 1AZ
n- n-= n-= & (r + 5 Ar) Ar?
a b

n-1 n-1

and D is the matrix

with di = éL
d i
This system of equations is easily transformed to the form (39.) as

required by the Bunemann algorithm by setting

B Lk
A=D%AD"*
L
x. = D* %,
=L, g
L
=D * G .

I; Li

An example of this last class of equilibria is given in Section 6.

‘6, FXAMPLES

In this section we give 2 examples of the efficiency and accuracy of the

methods described above.

Example 1 is the computation of the axisymmetric magnetic field in
Fig.7. The field is produced by direct current in the conductors and
enhanced by the iron core. The permeability of the iron is given a con-
stant value (u/po = 100). This is only approximate since physically

L varies with ]g[. In the experimental situation the iron core is not
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axisymmetric. Fig.7 shows the configuration at 6 = 0° and 6 = 180°
only. A 35 X 50 variable meshwas placed carefully across the iron-air
interface and the conductor boundaries. SLOR was used with w = 1.855
and convergence to 4 figures was obtained in 200 iterations. The

total time for the rﬁn was 3 mins 44 secs on an ICL 4/70, store cycle
time 1.4 psec. This is the time to read inand check the data, set up
and solve the difference equations, compute the field components, plot
the field lines and perform various line integrals along them. The
acceptable accuracy of the solution, bearing in mind the above approxi-

mations, is demonstrated in Fig. 8.

Example 2 is a theoretical study of the equilibrium of a straight
constant current demsity plasma in a quadrupole field as shown in Fig. 9.
Strauss /*7/ has shown that for a fixed plasma height and external field
data, the height to width ratio of the plasma is a particular function
of the value of the current demnsity. We have run our code /136/ on this

problem and the results for a 33 X 33 grid and a 65 X 65 grid are shown
in Fig.l0. The convergence as the mesh size = 0 is clear. For the

33 X 33 grid typical number of iterations are 1l and typical timings
are 89 secs. For the 65 X 65 grid the numbers are 11 iterations and
432 secs respectively., The timings include up-dating the boundary

values twice and plotting the field lines.
CONCLUSION

We have indicated how elliptic equations occur in fusion research. These
examples are by no means all the elliptic equations in this field, but
are typical of those equations which have been solved numerically at

Culham Laboratory.

In the main the finite difference method and iterative methods of
solution have proved adequate for the situations where fastPoisson solvers
are not applicable. Field problems with sloping interfaces are solved
with reasonable accuracy in the potential but the accuracy in the fields
is somewhat worse. This is clearly an area where finite elements come
into their own. Iterative methods have.also proved adequate where non-
linear problems are concerned. Nonlinear SOR has a wider range of con-
vergence than Picard's method, but problems with non positive definite

matrices are not solvable by either method.
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Fig.5 Mesh cell for difference equation in toroidal
polar coordinates (r # 0).
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Fig.4 Mesh cell for difference equation in three

dimensions.
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Fig.6 Mesh cell for difference equation in toroidal
polar coordinates (r = 0).
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Fig.7 Example of a vacuum magnetic field produced by direct current and enhanced by an
iron core. The dotted curve is the expected position the plasma would take up. Dimensions
are 108 cms in the z direction and 162 cms in the r direction. The flux is given a constant
value of zero along the outer iron boundary.
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Fig.8 Comparison between computed and experimental values of the vertical field in the region of
the plasma in Fig.7.
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Fig.9 Solution of the equilibrium of a straight constant current density
elliptic plasma in a quadrupole field. The plasma lies inside the broken
line. The quadrupole conductors lie within the closed surfaces outside
the plasma. The conductors above and below the plasma carry current
in the same direction as the plasma current.
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Fig.10 Plot of height to width ratio against current density of the
plasma in Fig.9. This curve is obtained by keeping the external
field data fixed and varying the total plasma current.















