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ABSTRACT

It is demonstrated that tearing mode stable diffuse pinch configurations
of the reverse field pinch type exist at zero B for a current carrying column
surrounded by a small vacuum region. The conducting wall plays a vital role
in this stability both to m = 0 and m = 1 modes. The core of the plasma,
which has to satisfy a limiting resistive stability criterion, is of the form
given by Taylor for a minimum energy state but the outer region is quite
different., Values of the pinch configuration parameter © up to 3 are possible
permitting strong ohmic heating with low current densities near the wall,
Such configurations can be stable to ideal hydromagnetic modes for central

values of B of ~ 157.
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I, Introduction

The hydromagnetic stability of the diffuse linear pinch has been discussed
by many authors, [1,2,3,4,5,6]. This has yielded poténtial magnetic configura-—
tions which can be magnetohydrodynamically stéble at significant values of B.
These include the tokamak, [4], the screw pinch [6] and the reverse field
pinch [5].. All these configurations exhibit to some degree kink modes in the
experimental devices even when the conditions for ideal hydromagnetic stability
are satisfied. The finite conductivity kink mode or tearing mode has been dis-
cussed as the explanation for these residual instabilities, [7,8,9]. To a
good approximation the analysis of such modes can be carried out in cylindrical
geometry [4] but there are important stabilising effects from toroidal curva-
ture in the case of a tokamak [10]. Indeed other effects such as radial
flow [11,}2], finite dissipation, for example viscosity [13,14], all have a
stabilising influence on a real plasma in which the magnetic Reynolds number
or Lundquist number = S5 = TU/TH (TG is the field diffusion time and TH the
Alfvén transit time) is finite. Present pinch experiments have values of S (with
respect to the poloidal field) which range between 102 and 106. This number
as well as being related to the growth rate of resistive modes also controls
the degree to which a pinch can relax by field line re-connection [15,16,17,18].
This relaxation can occur via tearing modes which saturate in amplitude [19].
Naturally one would therefore expect that diffuse pinch configurations which
are tearing mode stable to be important. They represent a form of lower energy
state to which a pinch might relax if the practical constraints permitted such
a configuration. A well known example of this is the force-free Bessel function
model configuration for a cylindrical pinch wﬂ}ch“has been shown to be a minimum
energy state by Taylor [16], Such a configuration has the cylindrical tearing
mode driving term F e é%;%) exactly equal to zero (J is the current density
and B the magnetic field)which is unlikely to be true in practice, In the

dJ

cylindrical tokamak this term is approximately 75? and so a uniform current

distribution is required to avoid resistive instabilities and the resultant

relaxation. -1 -



A more realistic constraint on the current distribution is that the
current should be small or zero at some outer surface. In a pinch device this
could arise from

(1) surface phgnomena and impurities giving low temperatures near
the outer surface;

(ii) field line errors which make it possible to maintain only low
temperatures near the outer boundary because of heat conduction
along the field lines to the wall;

(iii)  inability to control the equilibrium precisely enough which
permits 'scrape off' of the outer layers of the plasma;

(iv) the existence of a magnetic aperture, material limiter or a metal
liner.

We therefore conclude that in pinch devices the parallel current gradient

cannot be zero everywhere and so it is important to establish if there are
any tearing mode stable diffus; pinch configurations in this case.

For the tokamak optimised current profiles have been obtained [20].which
do permit stability to all resistive kink modes., In this case only a few

rB

singular surfaces associated with q(r) = ﬁfﬁ = %, (with m, n the poloidal
S

and toroidal mode numbers which are small) are important and tailoring the
current gradient in these regions permits stable current profiles to be obtained
for q(a) ~ 2.5 without a conducting wall., Configurations resembling those of

a screw pinch are obtained for q(a) :-1.5 if a conducting wall is placed close
to the edge of the plasma,

In the diffuse pinch a similar problem has been investigated [21,22] where
m=.1 and m = 0 are fhe dominant modes. In this case the possible singular
surfaces are very closely spaced as q << 1 and the problem is best considered
as a cbntinuum of surfaces for all of which we require stability. The analysis
we shall perform is essentially the analogue of that of Newcomb, as applied
to a diffuse pinch which is slightly resistive [23,24].

We first discuss the basic equations and the limitations imposed by on-axis

criteria in Section II., The method of solution is deseribed in Section III,
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Results for various well known pinch configurations are presented in Section IV.
In Section V we obtain an 'optimised' reverse field pinch configuration and
demonstrate that a small vacuum region outside the pinch can still give stability.
In Section VI brief mention is made of the stability of such configurations

at finite B. Finally we discuss the relevance of the result on tearing mode

stability to reverse field pinches and to a lesser extent to tokamaks and

screw pinches,

IT. Tearing modes in cylindrical geometry and on axis stability criteria

We consider a cylindrically symmetric plasma with axial magnetic field
Bz(r), azimuthal magnetic field Be(r) and scalar plasma pressure p(r). The
equilibrium condition is

dBz Bp

gp 2 o B g -
ar T Bz 4% * 7T & T Bg =0 s ow e K1)

A radial magnetic field perturbation of the form By = bp(r) exp(im® + iKz + Wt)

is considered and for large but finite conductivity satisfies the equation
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except close to the singular surface rg where F = —— + K By = O. In this

region a higher order finite resistivity equation must be used. Here we will
let %B = 0 and thereby remove any pressure driven effects on the tearing modes.

To determine the tearing mode stability we solve equation (2) through the
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singular surface rs with the appropriate boundary condition at r = 0, v= rm
to determine the point at which ¥ = 0. This will represent the position of a
perfectly conducting wall to give marginal stability to the mode under

investigation. The more usual way in which the problem is posed[ 8] is to solve

for the derivative, ¥ on both sides of the singular surface with an assumed
dr

wall position where ¥ = O, and then calculate

al &
I - dr + € dr| -
A = MTS) s s & L5

Finite resistivity analysis[25,26,27] shows that the condition for instability

’ ™ . ' -
is A, ~ o with growth rate given by

o\ 3
W = 0.55 (A ) /5 (Eﬁ)ﬁ (%)2/5 /g y1/5 ce . (W)

r
where M is the resistivity, P the density and g%—is evaluated at the singular

surface. At values of S attainable in many experiments the actual calculated

value of W 13,14] falls short of the asymptotic value given in (4) which is valid
in the limit S + ®., As we have already noted the criterion N is affected
by pressure gradient and toroidal curvature effects[ 10], radial flow[ 11,12],
viscosity[ 14] etc.

Our equation (2) is dominated by the singular term.% do (mE; - KrBe)

dr F
L o 1dJz 1 . , )
which in the tokamak limit (Bz >> BB) becomes rar ' It is this term which

principally determines the tearing mode behaviour of the pinch. It should be
noted that we obtain a solution for ¥ which has a continuous behaviour across
the singular surface. This implies that the plasma displacement €. is singular
at rg however this is possible as the finite resistivity equations applicable
in the region of rg make &y finite. This is the same behaviour as for the
kink mode where r is in a vacuum region. Thus the tearing mode moves over
smoothly into the kink mode at the edge of the plasma.

As the singularity approaches the origin it is possible to obtain a

stability criterion from (2). In addition if the value of K is chosen so that



the value of F is small and positive then (2) is not singular but can give
rise to oscillatory behaviour associated with ideal hydromagnetic instabilities
arising from the curvature of the pitch. As has been shown previously [5,28]

this curvature must satisfy for ideal hydromagnetic stability

4ep <

—

dr2 r—+ 0

or Y>0 (m # o) P % |

ol

¥= 8 + me

- where the appropriate toroidal correction has also been given [28] and P = qR
(for q < 1 the correction is small). As rS -+ 0 equation (2) can be transformed
to a form of the hypergeometric equation for which the product rSA' can be

calculated [29]. This is

rh’ ‘rs ~o0 = =2mh cot m |x| + 2A(§-+ ]%]) « . (6)

2
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where A = l—i—%—, X = % . (%— + A)?, The condition that x be real corresponds to

Y
the criterion given in equation (5). We therefore obtain from (6) the on axis

tearing mode stability criterion

¥ - 4 (m # o) v e B

7 - 2m
Thus for the m = 1 mode to be both stable to hydromagnetic and tearing modes as

r, > 0 requires from (5) and (7)

by, > b ... (8)
3 Y" 5

i.e. the pitch, P, or g must decrease sufficiently rapidly as one moves away
from the axis. This implies directly that the axial curreﬁt must be peaked
on axis for stability (Y = -1 is a flat axial current distribution) however Y
can have either sign. If the current is peaked on axis in a tokamak Y > O and then
(7) ean-only be satisfied if m > 4 with v > 4 for m = 4. As we have nq(o) +m = 0
on axis then q(0) > 3 or gq(0) # 3,2,1.5,-to satisfy (7). If the current
distribution is peaked off axis, ie Yy < O then in principle (7) could be satis-
fied with q(0) < 1. However it should be noted that toroidal curvature effects
markedly influence the hydromagnetic criterion (5) for q(0) 2 1 in a stabilising
direction and also influence criterion (7) [10].

It should be noted that some of the previously given [5] reverse field pinch

configurations which are hydromagnetically stable violate the above tearing mode

stability criterion, 5



ITI. Method of solution of the radial field equation

Initially equation (2) was solved by integrating from r=o to r=rg where %%

has a logarithmic singularity. In this region we obtain by expansion
; 0
™~ A(1-g x 1n | x| ) + B(x - g )

mBz,
do ( r KBo)

dr aF/dr

. o s (9)

where x = r - rg and g = - A and B are constants obtained

s
by fitting equation (9) to the computed solution. By integrating forward from

the other side of the singularity using the values of A and B the marginal
stability position for the conducting wall could be obtained from the position
where ¥ = o. This method was found to be not sufficiently accurate in general.
This was partly associated with difficulties in finding an optimal matching
point for the solution in certain cases and with the behaviour for small rse
In some cases good convergence could not be obtained.

A method for solving equations of the type given in equation (2) was

developed. We start with a comparison equation [30].
2

%+Q(x)U=o ... (10

where Q has the same kind of singularity at the same position as A and has
known solutions uq(x), up(x). Assuming that

Vo= alx) wlx) + B(x) up (x) e oo (17)
the problem then reduces to obtaining the two unknown functions o, B. A
further condition is needed which we take to be

da . 48 -
dx u‘] + ax U.2 = 0 e s @ (12)

From (2), (10), (11) and (12) we obtain the two equations for o and B

da - wix) (@ - A
& Vo s 5 v LT3
dB uwlx) (@ - A
dx : Wo
dup du1

where W, is the Wronskian uq - W3 - Hence the second order equation

dx
in ¥ 1is reduced to two first order equations in o and B and by an appro-

priate choice of Q(x) the singularity in Y is avoided.

s B =



Now A(x) can be expanded in the form

A(x) =

el [

T .. (1)

; x
If we choose uq(x) i Er———

+

-+

3
2 b?‘] .. . (15)

then up(x) = u;(x)L- %- 2 aln [x|+ (a2 + 2b) x + abx

and for all x we have.

—_— = =2 [-'+ (3b - 2a2) + R(x)] u .. e (16)

(x(6a3-16b) A x2(4a4-14b2—2a2b) e x3(8a3b-14ab2) $ x4(4a2b2—6b3))
25\ 2
)

with R(}C) —
(1 + ax + bx

From (16) and (14) we have

_ G dg (mBy - Kr Bg)
8727 " a Tor ar/ar
2,6 8 B
1 _ do dBz dBg 2 (m~ + Kr%)
= 6 1= - L &= Faw v KBg) + o~ - P
(17)
n' o+ 10nPKOr- 3Tt 20 mk <d25 _do 1 do &°F f2 d_F)(mBz _ KrBg)
2 + Kor2)2 2, 22 \g2 drr dra2f a/ %

where G and Gq are evaluated at rg.

By this means we have ensured that Q-A in (13) goes to zero linearly with x
as we approach the singularity at x = o, @ and B can then be obtained to any
degree of accuracy required after specifying the boundary conditions at r = o.
The method has one defect: if a and b are such that uq has a pole in the range
of integration then it is necessary to stop the calculation of a and B before
the pole is reached and by matching values and derivatives at this point
(by high order interpolation) continue the forward integration of equation (2)
in the normal way. The accuracy is not impaired by the presence of a pole
if this is done.

The calculation uses a variable step length until the specified accuracy

in the conducting wall position (e.g. 0.17) is obtained.
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The value of A is easily obtained from the calculation as

‘s G ,+e - a’ -e

) . = w L18)

i #
The value of ¢ is altered at the singularity subject to a specified A" and the

resultant wall position obtained for which ¥ = o.

IV. Application to a variety of diffuse pinch configurations

In the first instance a variety of tokamak current distributions were
investigated including the peaked,rounded and flattened models [8]. This was
to compare the predictions for the wall position required to give marginal
stability with previous results and to compare with the results of growth rate
calculations [13]_of the resistive tearing mode for an incompressible plasma
performed with the help of the code RIP 4A [31]. In the light of these studies
the current distributions were modified to match more closely the inferred
current distributions in a number of devices with the current falling to zero
in a smooth way at a specified edge of the plasma, and with a vacuum region
existing out to a conducting wall. Both skin current distributions, possibly
associated with the formation phase of the plasma, and reverse current distri-—
butions which occur in minor radius compression experiments [32]7were investi-
gated. As an example Fig.l shows the radial field perturbations obtained
from the marginal calculation presented here and that calculated for a growing
mode close to marginal stability. This is for an m = 2 mode with a current
distribution Jz = Jzo(l--ra)2 and the magnetic Reynolds number, S = 104, was
sufficiently large that the resistive layer thickness was only a small fraction
of the radius. The position of the singular surface is indicated. These
growth rate calculations will be reported more fully elsewhere.

Turning now to pinch configurations we first investigate the force-free
paramagnetic model [24,33,34] which compares well with some experiments [35]-
This configuration has a current density which decreases to zero at large
radii. The tearing mode stability of this model was first investigated by

Kadomtsev [24] who calculated that the normalised wall radius for stability
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was 2.8. (The normalised radius used in all the subsequent calculations is
obtained by defining the axial field and current density on axis to be unity,)
Fig.2 shows the marginal stability diagram obtained from our calculations for
the m = 1 mode. Modes with m = O and m 2 2 are stable. The diagram is plotted
in the wavenumber, norﬁalised radius plane and shows the position of the
singular surface F = 0, For this model v = -%-which satisfies equation (8) so
no on axis tearing mode is present, If there is no singular surface (K > - %J
then the position of the conducting wall is as given by the usual hydromagnetic
analysis [35]: For K < - %-when a singularity exists in the plasma the behaviour
of the MHD and tearing modes is quite different as indicated in the diagram.
The MHD curve is obtained using the Newcomb analysis [23]'which in this case
makes the radial field perturbation at the singular surface zero and considers
the plasma as made up of two separate domains, inside and outside the singular
surface. In the tearing mode analysis the singular behaviour associated with

r = 3,16 is removed and the maximum wall radius for stability is Rc = 2,4527.

This radius is related to the pinch configuration parameter, 8, used in experi-

ments where B, (r ) rw
B = —EL—EEELL— and B - J B (r) r dr.
B z0 2 z
z0 rw (0]

This configuration is tearing mode unstable for 6 > 1.08. Fig.3 shows the
value of A’ as a function of radius close to the marginal.radius for K = -0.60
which can be used to caleulate the growth rate in the limit of large S. The
values obtained from equation (4) compare moderately well with results from
resistive growth rate calculations. Fig.4 shows the marginal radial field
perturbation as compared with a perturbation obtained from the growth rate
calculation in which the full resistive set of equations is solved. In this
case S = 200 so that the resistive layer thickness is an appreciable fraction
of the radius and the agreement between the perturbations is not so good.

The tearing mode stability of the Bessel function model can be obtained

analytically [36] as 49 0 and equation (2) is not singular. The results

dr
differ little from the magnetohydrodynamic ones and give tearing mode stability
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for 0 < 1.56. This configuration possesses a reverse field for 6 >1.2 and
is a minimum energy state [16].

In the past a variety of reverse field pinch configurations have been
rB

generated by choosing the quantity P 1;5- to be a simple analytic function

-rz/?\l - 6
- 2 with Al 3 »+ 20. The curvature of the pitch, P,

for example P = 4e

on axis isY= -8/A. For A = 3 the resultant field configuration obtained

is completely stable magnetohydrodynamically for r < 2.31 with a central

value of B of 31% [5]. This configuration violates the on axis tearing mode
criterion, equation (8), for both m = 1 and m = 2 modes. The resultant tearing
mode stability diagram is shown in Fig. 5. The position of the singularity

for m =1 and 2 is shown and that for m = o indicated by an arrow. All three
modes are unstable though the m = o mode is stabilised by moving the conducting
wall in from the position giving ideal magnetohydrodynamic stability. As the
wavenumber approaches the value which gives a singularity on axis so the m = 1, 2
radial field perturbations become progressively localised in this region. A

typical perturbation for m = O, 1 and 2 is shown in Fig. 6. For y = - 8/3 the

behaviour of the m = 1 and m = 2 tearing modes arising from the violation of
the stability criterion influences the full radius of tﬁe pinch, Fig.6. As

Y approaches —4/5 for m = 1 and y = -4/3 for m = 2 so the modes become highly
localised on axis which would presumably not be serious in a real situation,
indeed the growth rate calcUlations show this té be the case.

Our calculation predicts the disappearance of the on-axis mode
form=1as A > 10 i.e. ¥ = —4/5 and furthermore the calculated value of
Fig 2" for small rs 1s in good agreement with equation (6) (for example for
m=1, A = 6 we.obtain rg A" = 6.67 compared with 6.70, for rg = 0.055,

from equation (6)).

V. Tearing mode stable reverse field pinches

Armed with the knowledge about the on axis behaviour and the properties of

the Bessel function model we can then attempt to construct configurations

in which o(r) becomes small or zero in the outer regions of the pinch but

is approximately constant in the central region. This can be achieved by
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expanding P(r) as

8

2 B

r= &L .Z c e s (1
P(I‘)=2(1-—'8-—'x-5 E"') (19)
which has Y = -+ and therefore satisfies the on axis criterion. If A =192

then the configuration matches the Bessel function model to terms of order r .

The procedure is then to vary A, &, € to obtain the maximum radius for stability
for both m = 0, 1 for all values of K. Some examples will illustrate the
general features in attempting to 'optimise' a reverse field pinch. The tearing

mode stability diagram for X, 8, € = ® is given in Fig. 7. This particular
configuration has P « r2 at large radii and thereforé possesses vacuum fields
as r + ©, The diagram is characterised by three unstable regions. An m = 1
region with K < 0 arising from tearing modes originating in the core of the
plasma. An m = O region which is most unstable for K -+ 0, arising from the
field reversal point - marked with a dotted line. The growth rate for the
m = 0 mode is a maximum for K # O and is actually zero for K = 0 (equation (4)).
The third region is for m = 1 with K > O which is a result of tearing modes
and MHD kinks arising in the outer regions of the plasma. In this case for
K < 0.2 the modes are MHD kinks and for K > 0.2 tearing modes. This particular
configuration is most unstable to an internal tearing mode and requires
8 < 1.38 for stability. The axial field is barely reversed at the conducting

wall in this case.

For A = 192, but &, ¢ = « the position is somewhat improved. The internal
tearing mode is now stable and the configuration is unstable to m = 1 tearing
modes arising in the outer regions for § > 2.8 as shown in Fig. 8.

The optimum configuration obtained by varying A appears to be when A = Loo
as shown in Fig. 9. Increasing A still further makes the internal tearing mode
more unstable. Decreasing A makes the external m = O and m = 1 more unstabie.
The configuration is therefore tearing mode stable for 8 < 3,7, and the fields
for this case are shown in Fig.10. The current density at the marginal conducting
wall position in this case is 57 of that on axis. Values of A form=1
K = -0.61 and m = 0,K = 0.3 are shown in Fig. 11. Note that they are one order
of magnitude smaller than those for the paramagnetic model shown in Fig. 3,

indicating the greater stability that this configuration possesses.
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Attempts were then made to modify this configuration so that it possessed
a true vacuum edge region and with the current and current gradient[37 ] going to
zero smoothly at the edge of the plasma. This was initially achieved by
varying 6§ and € in equation (19) but in no case could stability be achieved at
a radius even approaching the vacuum edge of the plasma. It is apparent that
the overall stability is very sensitive to g% and the vacuum edge requires ¢ = 0
at this position so the gradient is increased and this tends to destabilise
the original configuration.

Varying A, 8, € allowed us to search for an optimum and the results for the
near optimum case are shown in Fig. 12. For a vacuum edge R = 3.4 the marginal
stability curve for m = O almost reaches a radius of 3.4. For the edge at
B = 3.6 the m = O mode is unstable. We can therefore conclude that it might be
possible for the current to go to zero at the conducting wall and still
retain stability. One should note that the m = 1 tearing modes arising from
the outer region are affected by the attempt to produce a vacuum edge in that
wave numbers greater than 1.0 are now unstable which is not the case for any
of the previously quoted results (e.g. Fig. 8 or 9).

A somewhat more elaborate attempt to obtain a stable vacuum region was made
by expanding the azimuthal current in the vicinity of the vacuum edge as

Jg = Hxa + vx3 + qu
where x = Ry-r and RV is the vacuum edge, and then matching the fields and
gradients at another radius rp to determine U, v, @ in terms of the previously
calculated fields based upon equation (19). The matching zone size, Rv_rm’ is
then also used as a variable. If the matching zone is too small it creates its own
tearing modes because %% is made too large. For R.v = 4.0 and a zone size of
0.75 complete stability is obtained for radii less than 4.11 representing a
vacuum region of 2.8% of the radius and this is shown in Fig. 13. There are
now four unstable regions produced by the configuration, the new region for
wavenumbers of ~ 0.5 is produced by the matching zone. Optimisation now consists

of varying Ry and rp such that the four unstable regions have their minimum radii

maximised. In practice only two of the zones prove to be troublesome, the one
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associated with m = O and that arising from the matching zone for m ~ 1. 518;14
demonstrates this optimisation for a zone size of 0.9, The m = 0,1 stability
boundaries are shown as a function of Rv and the percentage vacuum obtained.
The result is that complete tearing mode stability is possible with a vacuum
region of < 4% in radius.

VI. The stability of such field configurations at finite B

It has already been established that reverse field pinch configurations
can be magnetohydrodynamically stable at high B. Values of 30% can be readily
obtained [5] and optimisation shows that values of 60% are possible [18]. It
is also known that the Bessel function model modified to include a pressure
gradient can confine a B of 277 with the conducting wall on the plaéma [18].
The method of introducing the pressure gradient in the latter model is not
unique so the value only typifies what is possible.

For these configurations defined by the pitch given in equation (19) we
can generate a pressure gradient locally by permitting it to approach that
value given by the Suydam criterion using the shear associated with the given
pitch but with a muitiplicative factor less than unity. It is then possible to
explore the ideal hydromagnetic B limitations of the tearing mode stable reverse
field pinches by varying this factor, For A = 400, §, € + ® using the Newcomb
analysis we find that the maximum B is 177 for a pinch configura;ion parameter,
0, of 3. The behaviour of B with 6 is shown in Fig.15. For the configuration
with a vacuum region of 47 in radius the maximum value of B is 127 for a pinch
parameter, 6, of 2.5,

To determine the effect of the pressure gradient on the tearing modes we
have used an initial value calculation [13]_t0 obtain the growth rates, This
is always found to be destabilising and the value of B for the configuration
without a vacuum edge is reduced to about 127 and the value of 8 to around 2.0.
It must be noted that such configurations would be unstable to the localised
resistive interchange mode [27,43] though finite larmor radius effects may

stabilise such instabilities,
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We would therefore conclude that the above reverse field pinch configura-
tions can be grossly stable to both ideal and resistive tearing modes at values
of B up to about 127%.

VII. Discussion

We have demonstratea that there exists a class of reverse field pinch
configurations which are tearing mode stable at zero f. These configurations
can possess a small vacuum region between the plasma and conducting wall, The
conducting wall is necessary to give stability to m = O and m = 1 instabilities.

Evidence for tearing modes in tokamaks is now very good and their detailed
structure has been obtained from soft X-ray emission measurements from the
region of the singular surfaces [4O]Aand from magnetic probes [38,39]. Similar
modes may also be present in screw pinches [41l]. Tearing modes are more difficult
to detect in pinches because ordinary MHD kink modes appear under rather similar
conditions. However detailed studies with probes on the high P experiment at
Culham [7] bave revealed the presence of the m = 1 tearing mode which was found
to be in reasonable agreement with the predictions of a growth rate calculation
including not only the resistivity but other dissipative effects.

In slow pinch experiments such as Zeta relatively ;table or quiescent
operation was demonstrated for pinch configuration parameters between 1.2 and
2.5 [42]? Under these conditions a reverse field was present. In this experi-
ment the metal liner acted as a relatively good conducting wall to possible
m = 0 instabilities and the conducting shell was about 107 in radiué away from
the edge of the plasma. These observations would appear to be in reasonable
agreement with the tearing mode stable configurations that we have obtained
here where the stability window for a vacuum edge is 1.2 < 6 < 2,7,

The behaviour of slow pinch experiments can be understood in terms of
resistive instabilities permitting the pinch to relax by field line reconnection
to the minimum energy configuration of Taylor. However the constraints in the
outer regions of the pinch are such as to limit the current flow in that region
and produce significant departures from that state. We have demonstrated that

such a constraint is compatible with a tearing mode stable reverse field pinch.
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VIII.Conclusions

1. Tearing mode stable reverse field pinch configurations have been obtained
which in the central regions of the pinch are of the form given by Taylor
and in the outer regions carry little or no current.

25 Stability at zero B is possible with a small vacuum region outside the
pinch.,

3. The conducting wall plays a vital role in stabilising both the m = O and
m = 1 instabilities which arise in the core and in the outer regions of
the plasma.

4, A stability criterion is obtained for the central regions of a cylindrical
pinch from which it is deduced that the current must be peaked on axis.

5. Stable configurations at zero B exist with a pinch configuration parameter,
B, up to 3.5 which permit strong ohmic heating.

6. Such configurations are stable to ideal hydromagnetic instabilities for

central values of B of € 17%.
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Fig.1 Radiai field perturbations from the marginal stability calculation and for a growing mode near
marginal stability for m =2 and current distribution with J, = J, (1 —r*).
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Fig.2 Marginal stability diagram for the force-free paramagnetic model. The marginal stability
curves for the m=1 tearing mode and MHD kink mode in the wavenumber, K, normalised radius
plane are shown. The position of the singular surface is shown by the F=0 curve.’
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Fig.3 A'as a function of normalised radius for the force-free paramagnetic model for m=1 and K = -0.60.
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Fig4 Radial field perturbations for the force-free paramagnetic model from the marginal stability, —,
and growth rate, - - - -, calculations for m= 1, K=-.60.
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Fig.5 Marginal stability diagram for resistive modes for an MHD stable reverse field pinch configura-
tion with v = —8/3. Unstable regions for m=0, 1, 2 are shown as are the positions of the singular
surfaces F = 0 for m=1 and m=2. The position for the singular surface for m =0 is indicated by the
arrow. The MHD unstable region occurs only for K positive and r > 3.0.
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Fig.6 Radial field perturbations for the MHD stable reverse field pinch form=0,K=-0.5,m=1,
K=-12,and m=2,K=-15. rg, 151, rsy indicate the positions of the singularities form=0, 1
and 2 respectively.
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Fig.7 Resistive marginal stability diagram, for a reverse field pinch with P(r) = 2(1 —r?/8). Unstable regions
for m = 0, 1 are shown together with the positions of the singular surfaces. The maximum value of 8 for
which there can be stability in this case is § = 1.38 as indicated. . The hatched region shows an MHD un-

stable region for K <0, there is also one for m = 1, K < 0.25. The dotted line indicates the radius at which
B, =0.
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Fig.8 Marginal stability diagram for a reverse field pinch with P(r) = 2(1 -r*/8 —r*/192). The
configuration is unstable to the right of marginal stability curves shown form =0, 1. The maximum
value of § in this case is 2.8.
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Fig.9 Marginal stability diagram for a reverse field pinch with P(r) = 2(1 —r* /8 — r* /400) and giving
tearing mode stability for 6 <3.7.
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Fig.10 Axial and azimuthal field components of the reverse field pinch configuration which is tearing mode
stable for # <3.7. The maximum radial position for a conducting wall to give stability is indicated.
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Fig.11 Values of A’ for the reverse field pinch configuration
shown in Fig.9 form=1,K=-0.61andm=0,K=+0.3.
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Fig.12 Stability diagram for the reverse field pinch of Fig.9 modified to have a vacuum edge at a radius of
either Ry = 3.4 or Ry = 3.6. The singular surface for m = 1 in the core does not change for the two
configurations but it does in the outer regions so two curves are shown for K > 0.

-1.0 } m=0
Fs0
~0.5 ;
|
< |
] |
Na] 1
£ :
= i —
= i
I
|
050 :
I
|
|
|
]
1.oL :

Fig.13 Stability diagram for a reverse field configuration based upon Fig.9rbut with a vacuum matching
zone from 3.25 to 4.0 and a vacuum for r > 4.0. The configuration is unstable to the right of the four
marginal stability curves shown form =0, 1.
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Fig.14 Stability boundaries for m = 0 and m = 1 in the vacuum radius — percentage vacuum plane. A
stable region exists to the left of the curves. In this case the matching zone size was 0.9.
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Fig.15 Central value of {8 as a function of 6 for a tearing mode stable reverse field pinch
configuration. The curve on the right is obtained from the Newcomb analysis and the
upper curve from the Suydam criterion. The other two curves gives the conditions
B;=0,J,=0. The hatched region is MHD stable with a small vacuum region.
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