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ABSTRACT

We consider the growth of the melt pool in natural bed rock or chosen sacrificial
material if heat producing core debris penetrates the bottom of the reactor vessel following
a hypothetical core meltdown in a fission reactor. We concentrate on the case where the
molten pool and material are miscible.

The growth of the pool has been examined in a first approximation by assuming radial
growth using a mean heat transfer coefficient, During the early stages the heat delivered
to the melting front is mainly used to advance the front, little escaping permanently into
the surrounding material. The code BASALT follows the development of the pool in this
stage and indicates that after a day the progress of the pool is not very sensitive to
initial conditions. At longer times conduction will restrict the growth of the pool and an
approximation to the maximum radius is derived. This stage has been examined in more detail
using the ISOTHM code in which the heat conduction equation with the moving boundary is
solved using the isotherm migration method. These results are used to discuss the
constraints on external cooling of the pool to restrict its development.

Computer studies have also been undertaken using more realistic models of the
distribution of heat flux at the pool boundary. The PAMPUR codes deal with (I) a cylindrical
molten pool, (II) the growth of hemispheroidal pools, in which the vertical cross-section
is elliptical, and (III) a model which is similar to II but includes conduction into the
bed. 1In all cases the aspect ratio changes as the melting front advances, depending on the
calculated heat transfer rates to the sides and to the bottom. Elongated pools are predicted
if cooling of the upper surface of the pool is efficient, particularly when conduction into
the bed is included; however agitation of the pool by decomposition gases may result in the
pool growth being closer to radial than these calculations imply.

Several candidate sacrificial bed materials have been considered for insertion in a
cavity; the most promising configuration consists of a low melting point rock surrounded
by a more refractory insulator, provided that cooling of the upper surface of the pool can
be relied upon.

(Paper presented at the Third Post Accident Heat Removal
Conference, Argonne National Laboratory, Chicago,
4 November 1977)
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1. INTRODUCTION

If after a hypothetical reactor core meltdown debris penetrates through the bottom of
the reactor vessel it will begin to melt into the material beneath. This may be natural bed
rock or a bed of 'sacrificial material' placed there against this eventuality [1,2]. 1In
either case it is necessary to estimate how large a molten pool of material will grow. We
concentrate here on the case where the molten debris and the sacrificial material are miscible

and consider both radially growing and axisymmetric pools.

The amount of heat available for melting the bed consists of the initial heat content
of the debris and the integrated fission product decay heat. For a 3 GW(th) reactor the heat
content of the debris is around 20 GJ which corresponds to ~ 5 minutes of decay heat. The
decay heat generated within the first three years of shutdown (v 7 x 109 GJ) corresponds to
about 6 hours of full reactor power (see [3]), so shortly after the formation of a melt-pool
its development is essentially independent of the assumed initial conditions.

2w HEMISPHERICAL POOLS

The primary question concerns the volume of the melt-pool. This can be examined in a
first approximation by assuming the pool grows radially using a mean heat transfer coeffi-
cient from the turbulently convecting molten pool. In the BASALT model an insulated 1id is
assumed so all the decay heat is used either to raise the pool temperature oT melt new
material. In the early stage very little heat escapes permanently into the bed and this is
not included in the BASALT model. The growing pool engulfs the melted sacrificial material
and forms a well-mixed turbulent pool of uniform temperature save close to the melting front
where a boundary layer is present. These considerations lead to the equation obtained by

Whipple:
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@R~ 3 _ 0 66,76, ] )
where y is a function only of material properties, § depends on the flow of heat to the phase
boundary and H is a modified initial radius. This non-linear differential equation with the
necessary associated equations is solved in BASALT. Fig. | shows a typical evolution of mean
pool temperature with time, and equivalently with radius for debris from a 672 MW(th) core
with a | year irradiation time. In this example the maximum temperature 1s reached after

15 minutes after which the pool gradually cools.

A characteristic dimension of the pool is RS = (3Q TD/(anZL *))]/3 where 1_ 1is a
number of equivalent seconds of full power produced by the decay %eating: it is taken here
to be 1 hour. A typical value of (=) for fuel irradiation of one year is 6 x 104 secs, so
that the maximum radius a hemisphere could reach when no heat is allowed to escape is
~ 2.5 R*. Table 2 gives R* for some sacrificial materials of interest; the ranking of
materials by R® is the same as that given by Gluekler [4].

At early times the pool temperature varies considerably as calculated by the Whipple

equation, but as the pool temperature falls towards its solidification temperature so the
assumption that all the decay heat generated is used to melt new material or is conducted

away becomes increasingly valid.

This latter assumption is used in the ISOTHM code in which conduction into the bed-
rock is included. At early times the approximate temperature profile is [5]

go= B, * (Bm - 90) exp[- u(r = R)/«] ; r >R (2)

where u = 8/pL" = Q(t)/(ZFRsz*). (3)

in ISOTHM until k/uR reaches 0.05 after which the radial thermal diffusion
y=2 - 2/r], is solved numerically by

Typical results are

This is used
equation, which may be written in the form r . = klrgg(r

the particularly appropriate isotherm migration method ?IMM) [6].
shown in Fig.2.



In table 3 are results for sacrificial beds of basalt, alumina, uranium dioxide and
magnesia using the Phillips CFR decay heat data [3] (see table 1 for assumed material
properties). At short times the pool radii scale as R*, so the volumes of pools in Al,04q or
U0y are similar and about one-third of that for a basalt bed; whereas in magnesia, the pool
volume is only one quarter. At later times conductivity becomes an important parameter in
restricting the size of the melt-pool; this may be seen by comparing the data for U057 and
Alp03 where radii are similar at short times but at maximum the pool radius for U0, is 15%
larger than for Al703. The maximum volume of a pool of MgO is only 9% of the basalt value so
without external cooling considerable savings in volume are possible by using a highly
conducting dense oxide.

The calculations reported so far have assumed a semi-infinite bed of material, which in
reality will be limited by the size of the reactor cavity. Even for the best material
investigated the maximum radius of the melt-pool for a large reactor is over 7m and lower
temperature isotherms propogate much greater distances into the material. The ISOTHM code
may be used to estimate the demands on a cooling system which may either (a) stop the spread
of the pool should it approach the sides or (b) remove heat conducted to the sides when the
pool itself does not reach them. As the thermal front is thin until maximum radius is
approached the cooling system to begin with (for a day or more) will not remove an appreciable
amount of heat. The demands on a cooling system at fixed radii are summarized in Table &4 and
an example shown in Fig. 3. :

In applying these results to melt-pools in which cooling of the top surface is signifi-
cant it should be recognised that although the downward growth will be slower than that
suggested here the radial growth is likely to be similar since the lateral heat flux density
will be comparable with that through the top. Thus if efficient cooling cannot be
guaranteed it seems that a large radius bed is required unless the pool can be restricted by
a more refractory barrier (see below) and the heat forced upwards.

An approximate expression for the radius of the hemispherical melt-pool is R(t) = S(t) -
(k(Bm - Bu)l(u(t)pL*), where 5(t) = fu(t)dt from (3) ignores thermal leakage. The second
term is a correction taking into account the heat content of the thermal front calculated
from (2). Differentiation leads to an equation for the time (tg) at which the maximum radius
is reached:

QOZ/B[ZT‘TDL*/BJ]/S - ﬁﬁk(em — BO)F(ES)

where F(t) = £ 2 t*/3[2/3¢£/1)~ (df/dr)/£].

This may be solved for t_ or more readily for Q, given several values of t_, and the

maximum radius of the meft—pool evaluated. Specimen results are compared with ISOTHM data

in Fig. 4. For Q = 1089 the maximum radius is underestimated by 30% while for Q, = 3 x 109w
it is 107 below the ISOTHM value.

3. POOL GROWTH USING PAMPUR

In BASALT and ISOTHM a hemispherical pool with an insulated 1id is assumed. In the
PAMPUR computer code, the pool shape is allowed to evolve and efficient (sodium) top cooling
is incorporated. The original model, PAMPURI, consists of a disc-shaped pool whose aspect
ratio changes with time. A two sub-layer model based on the heat content of the pool, with
pure conduction downwards (c.f. [7]) is used to calculate the vertical heat transfer at
each time step; the lateral heat flux density is taken to be a fraction « of that upwards
where computer simulations [8,9] suggest that 0.5 < o < 1.0. Like BASALT, the pool growth
in PAMPURI is calculated assuming no thermal conduction leakage into the bed.

Results for the complete meltdown of a 3.2 GWt core onto a basalt bed are shown in
Fig. 5. After a day the pool has a large aspect ratio and its temperature is typically 160 K
above the melting point of the bed. Other sacrificial materials give similar behaviour;
after 10° seconds the downward penetration in either an alumina or a depleted U009 ted is
typically 1 m and the pool radius v~ 7.5 m, resulting in a pool volume about one third of that
predicted for a basalt bed. With PAMPURI, 75-85% of the decay heat generated is rejected to
the sodium, giving appropriately smaller volumes than for insulated 1id calculations.

Experiments with wax [10] show that in some circumstances a hemispheroid is a more
realistic shape than a disc for a melt-pool; essentially PAMPUR? differs from PAMPURI only
in that the vertical section of the melting front is elliptic, with variable ellipticity.
As table 5 illustrates, the results for disc shaped and ellipsoidal pools differ typically



by up to 10%, and such small Gifferences are explicable in terms of varying volume to surface
ratios. Thus the general characteristics of a pool are not very sensitive to shape assump—
tions.

The thermal conduction leakage into the sacrificial material must be included in the
modelling to calculate the maximum extent of molten pool. In the computer code PAMPUR3 this
is done on the assumption that the isotherms, including the melting front, are
ellipsoidal and so completely determined by the lengths of the semi-major and semi-minor axes -
r(®) and D(B). The isotherm migration method (cf ISOTHM) is used here to solve the diffusion
equation along the vertical axis of the sphercid for D(8,t) and at the pool surface periphery
for r(8,t). Specimen results are given in table 5 for conduction into a basalt bed
(k = 2wm~JK~1). After 10 hours conduction begins to restrict the downward growth of the pool,
and after three days this amounts to a 20% reduction in pool volume. Conduction at the sides
near the pool is not well treated by the ellipsoidal assumption, however, the restriction in
depth depends little on pool shape, and is a genuine effect. Given the assumption of a
quiescent conduction layer a maximum pool depth of about 1 m is expected.

In 57 the restriction of hemispherical melt-pools by means of additional cooling was
considered. Above it was shown that the downward penetration would halt at quite shallow
depths if the lower part of the molten pool is quiescent. It might also be desirable to
arrest the lateral growth, and a highly refractory insulator would provide an appropriate
barrier [1]; its melting point should be well above that of the pool when the pool has
reached the radius of the barrier. Such a wall can be modelled in PAMPUR] by setting o to
zero when the pool reaches the specified radius. Results for a basalt bed and an initial
pool depth of 0.3 m are given in table 6. In these circumstances a 4 m radius wall would
need to withstand 1600°C; a 6 m one only 1250°C. The pool depths are increased somewhat by
the presence of the refractory wall, but substantially decreased volumes are predicted.

4. DISCUSSION/CONCLUSIONS

The purpose of the work described has been to consider various idealizations of the
problem rather than to put all the possible effects, many of which are still rather uncertain,
into one model. Although there may be many provisos necessary before applying our work to a
specific problem it does allow fairly general conclusions to be drawn. We discuss here the
main simplifications employed:

(i) a single phase model is used throughout. It is assumed that the steel phase and its
associated fission products do not settle at the bottom of the pool. If they do then
the shape of the pool may be distorted although its volume will be less than that
found in the BASALT and ISOTHM codes (but greater than that given by PAMPUR) .

(ii) the agitation of gas released from the sacrificial material and by the molten
sacrificial material bubbling through the bed have not been specifically included.
In the PAMPUR model this agitation would lead to increased downward penetration,
larger pool volumes and somewhat lower pool temperatures. The BASALT and ISOTHM
models solve the limiting case of sufficient agitaticn to provide a uniform
Nusselt number at the pool edges.

(i:i) the formation of crusts on the top of the pool are not considered in detail. It is
likely that some crust or slag will form between the pool and the sodium covering
although its composition and stability have not been investigated. In PAMPUR it is
assumed that the upper boundary temperature of the pool is the melting (solidifica-
tion) point of the sacrificial material and a crust thickness is calculated by
requiring that the upwards heat flux from the pool should be removed. The
predicted thickness of the crust is small for times less than a day. The BASALT
and ISOTHM models use an insulated 1id (no top-cooling) which is certainly
conservative.

(iv) the heat transfer model at early times is unrealistic. BASALT and PAMPUR both use
quasi-equilibrium models for the heat transfer; when temperatures and dimensions
are changing rapidly these will be suspect particularly in the PAMPUR model where
a lower conduction layer ~ 5-10% of the depth is predicted. Additional heat
transfer may occur because of vaporization of either fuel or sacrificial material,
and in the BASALT case radiative cooling of the upper surface. The effect of all
these mechanisms is to lower the temperature of the pool; the PAMPUR model may
also underestimate downward penetration at this stage.



(v) there are many chemical uncertainties which have been ignored. Provided that the
necessary solubilities occur and that heats of reaction are small compared with the
decay heating rate this omission is acceptable.

Restriction of pool growth by a refractory insulator looks promising. For example
provided there are no problems with low melting point eutectics, a basalt bed with alumina
walls might be acceptable. The choice of insulator, which could be subject to severe thermal
shock, may be eased if the original sacrificial material has a relatively low melting point
(v 1000°C) . Downward growth may also be restricted by an insulator at a later stage thus
forcing almost all the decay heat back up into the sodium.
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NOMENCLATURE
C specific heat ty time at which most cooling is required
D depth of pool; vertical co-ordinate tg time at maximum extent of pool
f(t) = Q(t)/QQ u velocity of meltfront when thermal leakage
F defined in text is negligible
H modified initial radius o lateral convection parameter
k thermal conductivity B,y parameters in equation (1)
L latent heat Gl temperature
1.* =L + C(oy ~ 85) 80 ambient temperature
Q(t) rate of decay heating 9, melting point of bed
Q, thermal power of reactor on-stream 8, pgol temperature
R radius of meltpool
R* characteristicpradius defined in text T(t)_fo £(t)de
r radial co-ordinate To = (3600 seconds)
s separation of meltpool from cooling K thermal diffusivity
pipes p density
t time since meltdown (shutdown of @ heat flux density

chain reaction)

Subscripts

2 = property of bed
t,8 = partial derivatives with respect to these variables.



TABLE 1

Assumed Thermal Properties

PROPERTY UNITS CORIUM | BASALT | ALUMINA U0, MgO

Melting point oC - 1100 2047 2796 2852
Density (solid & liquid) kg m™3 ox103 |2.2x103 [3.79x103 |9.73x103 |3.5x103
Specific heat J kg=!1 k71 340 1590 1150 340 1310
Latent heat J kg~! - 3.88x10° [10.67x10° | 2.75x10° |17.9x10
Solid thermal conductivity wWm— 1 K-l 2 2 5.5 2 6.5
Liquid thermal conductivity

(PAMPUR) wm™! k™1 2 3 2 2 2
Liquid volume coefficient -1 -5 s -5 s

of expansion K 3.2x10 3.2x10 3.2x10 3.2x10 =
Kinematic viscosity m? s 10-6 106 1076 106 -

31
E | I's) * *
(pyLy) (EEE;E?) R R, (ISOTHM) R, /R
Q 670 MW 3.2 GW | 670 MW 3.2 GW 670 Md 3.2 GW
m3 J_] m3 J-l m m - m m

BASALT | 23.0 x 10°'!| 3.95 x 1077 6.4  10.8 7.6 15.3 1.19 1.4

U0, 8.3 x 10711 | 1.43 x 107/ 4.6 7.7 4.6 9.8 1.00 1.27

A1204 7.6 x 10711 | 1.32 x 1077 4.4 7.5 4.0 8.7 0.90 1.16

MgO 5.3 x 10711 | 0.91 x 1077 4.0 6.6 3.2 7.0 0.81 1.05

TABLE 2: The characteristic length R* for various materials. The maximum radius of the melt-
pool in these materials Rp is taken from the ISOTHM calculations and the ratio
szR* evaluated.

g POOL RADIUS (metres) AFTER MAX TIME TO
(Gﬁ MATERIAL 1 day 3 days| 10 days 29 days| 100 days 1 year 3 years RADIUS | REACH MAX.
(m) RAD. (s)
0.672 | BASALT 3.4 | 4.5 5.7 6.6 7.4 7.0 3.3 7.6 1.7 x 1og
U0, 2.4 | 3.1 3.8 A 4.6 3.7 - 4.6 7 x 10
ALUMINA 2.4 | 3.0 3.7 4.0 3.8 2.1 - 4.0 [3.5x 10
MAGNESIA 2.0 | 2.6 3.1 3.2 L - - 3.2 2 x 10
3.223 | BASALT 5.9 | 7.7 9.8 11.7 13.9 15.2 12,2 15.3 | 2.5 x 107
U0y 4.1 | 5.3 6.7 8.0 9.3 9.5 5.8 9.8 2 x 107
ALUMINA 4.1 | 5.3 6.7 7.8 8.6 7.9 2.7 8.7 1.3 x 10/
MAGNESIA | 3.6 | 4.6 5.7 6.6 7.0 5.7 - 7.0 8 x 10°
TABLE 3

Results of ISOTHM for Phillips (CFR) decay heating rate




Q, = 3.223 GW. Qo = 0.672 GW
MATERTAL A = =
rc(m) tr(s) ®(ty) (kWm 2) s(m) |ro(m) te(s) ?(ty) (kWm 2) s(m)
BASALT 10 " 8 x 10° 11 0.20 8 6 x 100 1.2 )
8 3 x 10° 28 0.08| 6 1 x 106 5.6 0.4
6 9 x 104 75 0.03| 5 |3.5x 10° 14 0.15
4 [1.5 x 100 30 0.07
w0, 8 2 x 10° 10 0.55 | 5 3x ]Dg 4.7 Ll
6 4 x 102 43 0.13 | 4 8 x 10 14 0.4
5 |1.8x 10 87 0.06
ALUMINA 8 |1.8x 102 11 1.0 5 3 x 102 47 2
6 4 x 107 43 0.26 | 4 8 x 10 14 0.8
5 |1.8x 10 87 0.13
MAGNESIA | 8 5 % 102 6.6 D 4 3 = 10° 3 ol
6 8 x 107 3] 0.6
5 3 x 10 71 0.26
TABLE 4: COOLING REQUIRED TO RESTRICT

THE GROWTH OF A HEMISPHERICAL MELT-POOL

The cooling is at radius r .

occurs at

t

cooling system.

seconds after the accident.

The maximum heat flux density to be removed is ¢(t_) and

At shorter times little heat reaches the
The closest approach to the cooled walls is s;
approximate when s is a significant fraction of r

c

the values are only

. Phillips decay heating formulae

were used.
UNRESTRICTED Ry = 6m R, = 5Sm R = &m
t T D v 0, D v 0, D v 8 b v 0,
103 1.38 0.30 1.8 | 3332 Wall Wall Wall
3x103| 2.20 0.42 6.4 | 2379 reached reached reached
104 | 3.17 0.56| 18 1709 1.1x105° 5x10%sec 2x10%sec
3x104| 4.34 0.72| 43 1402 sec. 0.73 37 1492
109 5.83 0.93| 99 1253 0.96 75 1320 | 1.08 54 1415
3x10°| 7.71 1.18] 221 1177 |1.28 145 1229 |1.44 113 1274 | 1.74 87 1352
109 | 10.1 1.50| 480 1138 |1.97 222 1200 |2.32 182 1235 | 2.93 | 148 1296
TABLE 5: The effect of an insulating wall at a fixed radius. Results for basalt with a = 0.6
TIME DISC - NO CONDUCTION ELLIPSOID - NO CONDUCTION [ ELLIPSOID - CONDUCTION
t 6] D r ') 91 D v Bl D r \
1033 3332 0.30] 1.38 1.80| 3338| 0.30| 1.69 1.80 | 3306 | 0.30 | 1.69 1.80
3x10° | 2379 0.42| 2.20 6.4 | 2493| 0.43| 2.58 6.0 | 2437 | 0.43 | 2.63 6.2
104 | 1709 0.56( 3.17 18 1774| 0.58| 3.68| 16 1748 | 0.56 | 3.75 16
3x10% | 1402 0.72| 4.34 43 1437]| 0.76 | 5.02| 40 1421 | 0.68 | 5.15 37
1055 1253 0.93] 5.83 99 1270| 0.98| 6.72| 93 1261 | 0.80 { 6.90 80
3x10° | 1177 1.18| 7.71 | 221 1168} 1.26 | 8.88| 209 1193%| 0.89%| 8.63% | 138%*
106 | 1138 1.50(10.1° | 480 1143] 1.61| 11.6 | 456
*Values at 2.5 x 105 seconds.

TABLE 6:

(ellipsoid) pool in basalt, with and without conduction.

a = 0.6.

Comparison of results for growth of a disc-shaped pool and a hemispheroidal
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FIG. 5. Results from PAMPUR 1 for meltdown of a 3.2 GW(th) core onto a basalt bed. Initial
debris volume = 1.8 m3.
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