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ABSTRACT

A procedure which reconciles long parallel wave-length, and
short perpendicular wave-length, characteristic of plasma
instabilities, with periodicity in a sheared toroidal magnetic
field is described. Applied to the problem of high-n ballooning-
modes in tokamaks it makes possible a full minimisation of GW.

and shows that previous calculations overestimated stability.
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In many investigations of plasma stabilityl’z’S, in both fluid and
kinetic theories, the principal difficulty is that of reconciling the
characteristics of unstable oscillations - such as long parallel wave-
length and short perpendicular wave-length - with the constraints imposed
by periodicity in a sheared toroidal magnetic field. An important problem
of current interestl’2 in which the balance between these conflicting
factors plays a crucial role is the calculation of the stability limit for
ballooning modes - which in turn determines the maximum £ attainable in a

tokamak.

In our discussion we employ standard4 orthogonal coordinates (V¥,x,t)
in which V¥ labels the magnetic surfaces, ¥ is a poloidal angle-like
variable and ¢ is the toroidal angle. The magnetic field is

B= V¥ x V{+ £f(¥) VL and the metric
(ds)? = (dW/RB )2 + (JB_dp)? + (RAL)?

with J the Jacobian, R the radius and BP the poloidal field
[R7¢ X V¢ I. We also define v = fJ/R? so that d¢vdy = 27q where q

is the "safety factor".

The conventional representation of waves with short perpendicular, and

long parallel, wave-length is in the eikonal form

X
(¥, x) exp (in[¢ - [wdx]) (1)
with n » 1 . (The phase is constant along B but varies rapidly per-

pendicular to B .) However it is easily seen5 that in a magnetic field

with shear (dq/dV # 0), this form is incompatible with periodicity in ¥ ,
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Recent work on ballooning modesl’2 attempted to overcome this
difficulty by imposing an artificial constraint that @ = 0 at the ends of
the basic interval in x . However, as we shall show, one does not then
obtain the most unstable mode so that such calculations overestimate the
stability of the system. Other authors3 have attempted to circumvent the
problem by introducing discontinuous jumps in @ at the ends of the basic
interval in x - but this is incompatible with the assumption that the
amplitude ¢(¥,x) varies slowly compared to the phase. An alternative
approachS’2 is to modify the eikonal by an arbitrary function G such that
¢#(v + G)dx = 2m/m on all surfaces - but no satisfactory method for deter-

mining G has been given,

6
These difficulties can be overcome as follows . 1In any axisymmetric
system the determination of stability can be reduced to a two-dimensional

eigenvalue problem
£ (8,x) o(e,z) = rp(B,x) _ (2)

where © represents the poloidal angle and z the flux surface coordinate.
The operator & is periodic in 6 and ©(8,r) must also be periodic in

® and bounded in x . If we express ¢ in the form

— e ~ Q0

p(0,r) = k—im@/ g 9 (n,z) dn (3)

m -

then periodicity of ¢(®8,z) in © is automatically ensured. Furthermore,

¢ will satisfy Eq. (2) if ¢(n,x) itself satisfies the equation
£(n,x) §(n,x) = A§(n,x) (4)

but now in the infinite domain -®©<n<® . The function § need not be

periodic and can be calculated in the eikonal form (1). Of course, @(n,z)



is not the actual plasma perturbation, but the real, periodic, perturbation

can be constructed from it.
We now apply this technique to the topical problem of high mode number

’” in tokamaks. Stability of these modes can be determined

ballooning modes
by minimising the potential energy functional &W(E,£) . The perturbation
is decomposed into modes ~ exp in{ and, provided shear is non-vanishing,
6W is minimised by displacements which are divergence free; then 6W can
be expressed in terms of the components of £ perpendicular to B . For
small values of n further minimisation of &W has been done numeri-
ca11y7’8, but this fails for large n. However in this limit the
minimisation can be performed analytically. When n » 1, 6W will be
positive unless the perpendicular gradients of the perturbation are of
order n but the parallel gradients remain of order unity (i.e. unless the
mode varies rapidly perpendicular to B but slowly parallel to B ). The
divergence (V.EL) must also be of order unity. A further minimisation can
be carried out and 6W then depends only on the normal displacement

through X = RBpgw . Thus, in an expansion in 1/n , the dominant contri-

bution to &8W is

3 ifB "

N [ B2 2 L, , |1 8 ap [ fn L2 M xax®
&, = ”/ Jdxd¥ R75 2 [k X| +R*B |0 57 kX v \m XI-57 %35y }
(5)

where Ko and k, are the normal and geodesic components of the curvature

k =-B X [Bx V(p+ B2/2)] B™* and

v I fE
J.k” =78 (3X+ :|.nv>

Eq. (5) represents the starting point for the investigation of high-n

ballooning modes.



The Euler equation, obtained by minimising (5) over all functions

X(¥,%x) which are periodic in y , is

&5 RZB 2.2 kK X lK fB
B > | B2 dp [ “n X
] el +2E < 0 _ e
Bku{ Rzsz '\1 ( nB / a\!ﬂJ kilx} 2 dy { RBP an \i’l )

We now introduce the transformation discussed earlier, namely,

+e0

X (U, x) Zaxp\'zwlm’()] exp (—555—-2> X (,y) dy (7)

m
then X(V,x) will be periodic in x and ﬁill satisfy the Euler Eq. (6)
provided X satisfies the same equation in the infinite domain -o<y<w.
The solution of Eq. (6) in the infinite domain may be obtained by writing

9

X in the form of a (non-periodic) '"quasi-mode"
R y
X(W,x) = F(¥,y) exp (-in [ vdy) (8)

where the exponential factor contains all the rapid cross field variation
and where F satisfies the ordinary differential equation

2

y

- R2B 2 ¢
14d 1 v dF 1
T3y {mzs; (52 Be) | 2]

y
£RB 2
_2_ dp P | v =
v dw{ - Ksj wdy}F 0 (9)

in which V¥ appears only as a parameter. Eq. (9) can readily be solved
for any prescribed equilibrium and determines its stability against high-n
ballooning modes. (In this lowest order calculation the slow V¥ variation
of F 1is not determined; it‘can be obtained from higher orders of the 1/n

. b
expansion .)

We see, therefore, that the simultaneous application of the trans-

formation (7) and the quasi-mode form (8) decouples the stability analysis



from surface to surface and provides a complete minimisation of &W at
large n. If the quasi-mode form were introduced directly, as in Ref. (1),
one obtains Eq. (9) but an additional constraint, such as F = 0 at
X =% % ¢ dx , must be introduced to make the solution periodic. One does
not then obtain the full minimisation of &W .

As a specific example we have considered a model problem representing
a large aspect ratio tokamak with circular flux surfaces. In this model

the magnetic field is uniform over the magnetic surface but the shear is

non-uniform. Eq. (9) becomes

é% [1 + (sn - @ sin n)?] g% + a[cos n + sin n(sn - @ sin n)]F = 0 (10)

where

_dng) _ =-2Rq? dp
s T d(4nr) WS B2 dr

are measures of the mean shear and pressure gradient respectively.

Eq. (10) has been integrated numerically with the boundary condition
F-0 as |n| » o . The boundary between stability and instability is
shown in Fig. 1, which indicates that, for this model, the critical
pressure gradient for ballooning modes is rather insensitive to shear.

Over most of the range it is roughly (dp/dr) ~ 0.25 B;/qu. Also shown in
Fig. 1 (dotted line) is the stability boundary obtained by imposing the
boundary condition F(+ #) = O used by Dobrott et all. This overestimates
the stability of the system and produces a higher threshold value of
(dp/dr). This overestimate becomes more marked at low shear because, as
shown in Fig. 2, the eigenfunction F(n) then extends considerably beyond

= 7 .



In conclusion, we have shown that a complete minimisation of &W in
the limit n - © can be obtained by the transformation (7) together with
the quasi-mode form (8). This reduces the problem to an ordinary differ-
ential equation which can readily be solved to determine the stability of
any prescribed equilibrium. Incidentally analysis of the asymptotic
behaviour of this equation yields a necessary criterion for stability -

. 4 . .
none other than the well-known Mercier criterion.

We are grateful to Marion Turner for the computation of Eq. (10).
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Fig.1 Maximum stable pressure « as a function
of shear s.
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Fig.2 Marginally stable Eigenfunctions. A, low shear s = 0.1;
B, high shear s =0.7.
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