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ABSTRACT

The gravitational resistive instability analysed by Furth, Killeen and
Roaenbluth(') and subsequent authors(z)(s) is examined from a different point
of view, which brings out the connection with ordinary Rayleigh-Taylor insta-
bility and thermal convection. In contrast to the modes found by these authors,
which are either sharply localized in the vertical direction or require a bound-
ary layer, it is shown that coherent motions of arbitrary vertical extent can
occur. We are led to these new modes by first considering a simpler but related
model in which resistivity is concentrated at the ends of a system of finite
length. This shows that such systems may be unstable even if they satisfy the
Newtomb(G) criterion, The new resistive modes do not have the usual periodic
dependence exp(ikzz) along the horizontal direction of the main field, but have
finite length, They represent convective rolls(7) which are twisted so that
they conform to the field lines, The relation of these new modes to the orig-
inal periodic localized modes is examined and it is shown that there is a
duality relation between them. The possibility of having two entirely diff-
erent forms of normal mode arises from the near degeneracy of the original

model .
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I. INTRODUCTION

The analysis of resistive instabilities in a fluid supported by a sheared magnetic
field, initiated by Furth, Killeen and Rosenbluth(1) (FKR), leads to a type of normal mode
in which the influence of resistivity is concentrated in a thin region about the singular
magnetic surface I at which 5.20 = 0, (where k is the component of the wave-vector
normal to the direction of shear), This thin region plays a role similar to that of a
boundary layer in hydrodynamics. In this paper we show that by adopting a different view-
point one is led to consider a new class of unstable modes in which the influence of

resistivity is not localized, and which do not have this 'boundary-layer' characteristic,

The model investigated by FKR was a plane slab of incompressible fluid, in which the
destabilizing effect of field curvature was represented by a fictitious gravity, and this
leads to three types of instability, called the rippling, tearing and gravitational modes.
The gravitational or G-mode, which is the only one studied in this paper, was examined in
more detail by Johnson, Greene and COppi(Q), and again by Coppi(s), who showed that in a
limit which corresponds to P -+ O a set of G-modes exists for which the perturbations
effectively vanish outside the resistive layer. (In the case of zero resistivity, insta-

(4)

bilities concentrated near the singular surface I had been found previously by Suydam

and Rosenbluth(S)).

Following FKR we will consider an equilibrium situation in which the magnetic field
lies in the (y,z) plane, i.e. B = (0, s x Bo’ Bo), and there is a gravitational field
g in the negative x-direction. To simplify the model we choose s, B0 and the resis-
tivity n to be uniform and set s x « 1, Rippling and tearing modes are therefore
excluded from our analysis and the discussion is confined to gravitationally driven modes

in a system with weak shear, such as the Stellarator. The low [ approximation is also

frequently used.

Because the equilibrium is independent of y and =z, it has been customary in sta-
bility theory to look for normal modes of the form f(x)-exp(i(kyy + kzz)). The new
approach introduced in this paper is to discard this assumption and to adopt a more general
form f(x,z)-exp(i kyy); that is we do not Fourier analyse in z, the direction of the
main field, With this changed viewpoint, modes are found which are neither localized near
a particular horizontal surface £, nor have a 'boundary layer' character. Looked at in
this way the localization of the instabilities found in sheared fields by Suydam(4),

FKR(i) and others(z) (3) (5) seems to be a property, not so much of the physical



disturbances themselves, as of their Fourier transforms. An important advantage of our
approach is that it immediately brings out the connection between resistive instabilities
and convective cells in hydrodynamics. The mathematics is also simplified, there being no

1)

- (
need to introduce boundary layers or to match internal and external solutions ',

To justify and illustrate this more general type of mode we will approach the full
problem of resistive instability in a sheared magnetic field through a series of simpler
but related problems., In Sec, III we first consider the gravitational instability of a

perfectly-conducting incompressible fluid in a sheared magnetic field, contained between

conducting endplates which, however, are coated with a thin insulating layer so that the
field lines are not tied. 1In the limit Bo + =, exact solutions are found which do not
have the form exp(ikzz) and which therefore do not fit within the (ramework of the sta-
bility analysis of Suydam(4) and Newcomb(ﬁ). These modes may be unstable even if the
system satisfies the Newcomb stability criterion which strictly applies only to an infi~
nite system, These new modes represent twisted interchange motions in which fluid
filaments or 'flux tubes' move as rigid bodies. As each filament rises or falls it rotates
about a vertical axis to keep aligned with the local magnetic field at each height x and
so avoid distortion of the field. These modes, which exist in finite systems but have no
analogue in infinite systems, may be important in experiments but it is difficult to decide
this as the real boundary conditions are much more complex than in our model, The impor-~
tance of these modes in the present context is that they are due to resistive layers at

the ends, and so provide a prototype for the true resistive instabilities which are exa-

mined in Secs. IV=VI,

We begin the discussion of resistive instabilities proper with the gravitational ista-—
bility of a resistive fluid in a magnetic field without shear but with the field lines
tied to conducting end plates (Sec. IV), and then examine what happens to these motions
when a weak shear is imposed (Sec. V). When the shear is zero, but the field lines are
tied at the ends, resistive gravitational modes occur which take the form of a 'slicing'
motion, in which alternate vertical sheets of fluid move up and down. The sheets are par-
allel to the unperturbed magnetic field and the most dangerous modes have small
longitudinal wave-number kz (so that the field is only slightly distorted), small verti-
cal wave-number kx’ and large transverse wave-number kyo This corresponds to long thin
convective cells ('slices') which extend the full height of the fluid. Such modes might

(9)

occur in the unstable sectors of 'J/d¢/B stable' devices ' °, They form a special case of

(7)

convective rolls y modes which have been identified by Danielson with the penumbral



filaments observed in sunspots(lo).

If now a weak shear 1s imposed on the magnetic field in this system, one finds very
similar motions still to be possible, but with the convective cells twisted so that their
surfaces remain everywhere approximately parallel to the field lines, This 'twisted slic-

ing' motion is illustrated in Fig.1. As a fluid filament rises or falls it must now

i, Y, o}

CLM-P52 Fig 1
Twisted slicing motion

rotate about a vertical axis, (just as in the model problem with resistance confined to
layers at each end), in such a way that it always lies along the local direction of B,
since this minimizes the field distortion. There is no reason for such a motion to be con-
fined to a thin layer in the vertical direction, or to possess a boundary layer like the
modes found by FKR, Once a filament has begun to rise it continues moving until it reaches

the upper boundary, just as for a non-sheared field,

Finally we consider what happens as the length of the system is increased indefinitely,
In the non-sheared case, tying at the ends becomes ineffective and the most dangerous modes
have kZ + 0, i.e. they represent interchange motion of infinitely long filaments, and the
growth rate is independent of B and 7. When shear is present the filaments cannot be-

come infinitely long, since they are constrained by the field to rotate as they rise or



fall and the rotational kinetic energy would increase without limit if the mode length

ad justed itself to the length of the system, We therefore expect the mode to settle down
to a finite length, In fact the mode length £ automatically adjusts itself to give a
balance between the rotational kinetic energy and the dissipative loss due to motion across
the field, The growth rate is then the same, apart from a numerical factor of order unity,

=
as that for a system with no shear and finite length A = £, It turns out that £ ~ 7 s

1
so that the growth rate p ~ né in agreement with FKR,

By the chain of argument cutlined above we are led to discover unstable modes of a
resistive fluid in a sheared magnetic field which are of quite a different character to
the localized modes found hitherto. It is natural to ask how these 'twisted slicing'
modes, with finite length £ and arbitrary height, are related to the G-modes of FKR and
others, which have finite height h and unlimited length, and this question is examined
in Sec, VI, It is found that the two types of mode have the same growth rate and there
is @ duality relation connecting the height h of the G-mode with the length £ of our
mode. Each of our twisted slicing modes is in fact a linear superposition of the localized
G-modes introduced by Coppi(S), one for every value of X, This superposition is possible
because a system with weak shear is almost degenerate, so that localized G-modes centred
at different heights have almost identical growth rates. If the degeneracy were exact
there would be no unique normal mode, and any combination of degenerate modes would be a

mode with identical growth rate. In the present case the growth rate of the G-modes cen-—

tred at points x varies only as
p(x) = p(0) (1 + £ (sx)?) (1.1)

-3 . ;
where (Sx)gmax may be extremely small, e.g. ~ 10 for a typical Stellarator field,
The individual components in any combination of these modes will therefore not increase at
precisely the same rate - and for this reason we shall use the term 'quasi-mode' - but it

will take many e-Tolding periods for a significant discrepancy to occur, and by this time

the instability should be out of the linear phase,

Quasi-modes may be compéred to unstable states in quantum mechanics, e.g. compound or
radioactive nuclei, which do not have precise energy levels, The exact energy eigenstates
of the problem are scattering or reaction states, but from a physical point of view it
would be inconvenient if the concept of unstable levels had therefore not been introduced.
In the same way it is not always convenient in stability theory to demand that a mode has

a precise growth rate, It is sufficient if its growth rate is defined to within Ap



where Ap <« p.

II. THE GRAVITATIONAL MODEL

The plane incompressible T'luid model used in this paper is intended to describe pure
gravitational or G-modes:; we eliminate rippling and tearing modes(l) by assuming the
resistivity m and the shear s to be uniform. A uniform gravitational field g is
directed downwards, and the unperturbed density distribution is Rayleigh-Taylor unstable,
increasing linearly with height x acording to

EEQ = ap, (2.1)
0x
There is a uniform horizontal magnetic field (O’O’Bo)’ together with a transverse field
B = sto (where s = constant), so that the field direction changes with height.
(We take s = 0 for the un-sheared model studied in Sec,IV), The fluid is contained

between perfectly-conducting rigid walls at x = * H, where the boundary conditions for

perturbed variables are v_ = B

X e = Ez = E =0, and is unbounded in the y-direction.

y
The shear is assumed to be weak, so that sH « 1. In Secs. III and IV we impose boundary
conditions at z = * L, which will be discussed later; elsewhere the system is assumed

to be infinitely long.

The linearised equations are

(v x EO) x B+ pg (2.2)

3B
e 2 L. 78 = (B s - (v I y=
se=Yx (X xB)+7-VB= (B0 y=- (v¥) B + 3- VB, (2.3)
gE-:— . = - ¥
3t (0T py == V8P, 9 (2.4)
V'B=0, ¥y=0, (2.5)

where Eo = (o, sto, BO). In equilibrium the weight of the fluid and the force

L (z x B ) x 20 are balanced hy'the fluid pressure Po' We shall treat Po as uniform

4% ~0
in the inertial temm of (2.2), (Boussinesq approximation) and also in (2.4).

We shall be interested in applying the gravitational model to plasma devices with
low P and weak shear, such as the Stellarator., If Rb’ r, are the major and minor

radii of the Stellarator; g, P the plasma density and pressure; ¥ the sound speed;



and t(r) the rotational transform with L(Po) = 0(1), then we assume a correspondence

b O~ VSI‘O |3 = g-ﬂ—p. ~ E..Yﬁ
o ? ~ a = o ¥
RO BZ BZ
BQRO -1
P = o ] a =T ] (2¢6)
i"o (o]
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]
-
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In Secs. ITI and IV we deal with the full set of equations (2.2) - (2.5) while the
principal approximation which we shall make in Secs. V and VI is to neglect the term
3B/ot in (2.3), which can be shown to be of order B (for the modes discussed in this
paper), compared to the term nV*B/4m. Equations (2.2) - (2.5) can then be combined to

give an equation for the vertical velocity Vyi

"

=2

o, Sz, - 3 a =
(55 + sx ay) V. = 98N (ayz + v =0 (2.7)

21

p“ponV Vo £ pBO

where we have assumed a time dependence -~ exp(pt}.
As previously remarked, we shall solve (2.7) without making a Fourier analysis in
the z direction. Suppose however that one does assume a dependence
X, = (x) exp(pt + 1kyy + lkZZ),

and sets

~

k® = k? + k?; k_ + sxk_ = sXk ,
y 'z Tz y y

then (2.7) becomes

{a 2 Bostky ~2 (@8 }
- — X2 4+ k? -1 =0 2,8
ax pT]PO k (p a ) vx ] ( )

which is Weber's equation in the vertical coordinate X; and, as shown in Sec. VI, leads
to a set of G-modes localized near the point X = 0, in temms of which the quasi-modes
of Sec. V may be expanded. These localized G-modes are related to the G-modes originally
found by FKR - for example the growth rates and characteristic widths are the same - but
they are not identical, in fact they are the modes investigated by Coppi(s). The distinc-
tion may be explained as follows, Consider the full set of equations (2.2) - (2,5),
without the approximation 2B i % 7V°B and assume a dependence ~ exp(ikzz)o The equa-
tions are then of fourth order in a/éx and symmetric about x = 0. Because of this



symmetry each eigenvalue is doubly degenerate, and so to each eigenvalue P of the
growth rate p there is an eigenfunction Sn in which v 1is symmetric, and another Ah
in which v 1is antisymmetric. The full set of eigenfunctions may then be grouped into
two sequencés in order of decreasing growth rate, sequence I containing (So’Al’Sz’AS""')’

while II contains (AO,Si,Az,SS, veeele

(3)

As p - 0, the eigenfunctions of sequence I become localized within the resistive
layer near X = 0, and the external part of the solution vanishes; these are the eigen-
functions for which the approximation ag/ét % 0 is valid and which are given by (2.8).
On the other hand FKR made the assumption Bx ~ constant within the resistive layer,

(y ~ constant in their notation); this ruled out all S-modes (for which B is anti-
symmetric) and all localized modes of sequence I, since these have Bx varying rapidly
over the layer. The sequence of modes which FKR found accordingly contained only

A ), with growth rates corresponding to alternate modes of sequence I,

(AO,A 4, as e

2!

ITI. RAYLEIGH-TAYLOR INSTABILITY OF AN IDEAL FLUID IN A
SHEARED FIELD

In this section we demonstrate, by means of a simple example, that interchange modes
exist in a sheared system of finite length which are not of the form exp(ikzz). Although
the conductivity is assumed here to be perfect, this type of interchange may be regarded
as a prototype of the twisted slicing mode in a resistive fluid (to be discussed in Sec,

V), and it shows some analogies with more general types of instability in sheared systems

with both finite and zero .

As a preliminary, consider a system without shear, that is to say one with uniform
field, zero resistivity, and perfectly-conducting rigid endplates at z = * L., However
the endplates are imagined to be coated with a thin perfectly-insulating layer, so that
the lines of force are not tied and interchanges can occur. These motions are, in fact,
resistive instabilities but the resistivity is here concentrated at the endplates instead

of being uniformly distributed. The boundary conditions to be applicd at z=* L are

B,=v, = (TxB) =0. (3.1)

We consider normal modes with kz = 0, for which equations (2.2) - (2.5) show that all
components of B, together with v,y are everywhere zero and (3.1) is satisfied identi-

cally. The magnetic field has no effect on these motions, and arbitrary two-dimensional

= 7



interchanges can occur with

Vx (X,.Y,Z) VK (x,ylo)!

% (x,y,2) Vo (x,y,0), (3.2)

The growth rate of a normal mode is

Ik
(ag)‘é .—lLl_r

(k2 + k;)é

ke
It

It may now be conjectured that the imposition of shear on this system, by introducing
an extra transverse component Byo(x], would not prevent instability, since the volume of
each flux tube mf'df’/'B =J'dz/B remains unaltered. Interchange motions should still occur
freely, but the flux tubes mugt twist during the interchange to follow the local field
whose direction changes with height. In the limit B0 - = the motion again becomes two-
dimensional,; and may be defined by the values of L vy on the midplane. The gravita—
tional energy released by any interchange depends only on Ve and is unaffected by the
shear, but the kinetic energy increases with the length of the system L because of the
transverse velocity due to twisting, Therefore we must expect p to be decreased by
increased length, or increased shear, but we certainly should not expect shear to stabi-

lise the system. In the remainder of this section we show that these conjectures are

correct,

As in Sec. II we assume B i stoo The unperturbed current 40 is in the z-
direction and is uniform, the force io X Eo being balanced by pressure. Some further
Justification of the boundary conditions is needed, since io has to pass to the conduct-
ing endplates across a layer which we have assumed to be an insulator. However it is
consistent to assume a very large voltage drop across this layer in the unperturbed state,
i.e. its conductivity may be made so small that it can be treated as an insulator so far

as the perturbed variables are concerned, while still permitting the equilibrium joo

The component u = Vo satisfies a fourth-order equation derived from (2.2) - (2.5)

namely;
2 aa =
2, g3y = 2 (& 9y gy (2 A, g
pAp Vi = 2= (az + 8X ay) v (az + sx ay) u + agp, (ay“ + azg) u (3.3)

This equation can be solved in the limit BO = » by expanding u in powers of 1/33.



That is we write u = u, +u, + sassen Then

Do u0 = 0, DO Uy = Dy uo, % i

ete, where

= p& (o Sy vr (o A
D0 = B0 (az + sx ay) v (az + sX a.Y) § (3.4)
and
= Sy2 fold 3=
D: = p, { PV* - ag (5= + 3;;)] , (3.5)

are self adjoint operators. We also introduce a twisted coordinate system adapted to the

unperturbed magnetic field,

E =Xy, X =y - sX2y & = 2,

then
3 5 @
oz T X oy Tz

and £, X are constant along the lines of force., Any function T(Z,X) which is indepen—

dent of Z 1is then a solution of D0 u0 =0,

Now the next equation in the sequence, D0 u, = D, uo, can posses a solution u, only
if D. u, is orthogonal to all solutions of DO u, = 0. This imposes a further constraint

on u, which must therefore satisfy the equations

L
Du =0, j[ D, u  dz = 0. (3.6)
~L

Solutions of the pair of equations (3.6) exist of the form

ug = u () exp(ikx), (3.7)
if )
d®u i
aggg- + (AZ® + B) u, = 0, (3.8)
where

(3.9)

B=k® (2F-1- 2 s57) .



In order to fit the boundary conditions u, = 0 at x =t H, the quantity
1 a%u
= Egg— must be negative in some range, which means that
o]

1 =y 2
(%%— 1) >Tﬁ%ﬁ- ; (3. 10)

therefore A > 0 and by a real transformation (3.8) can be reduced to a form of Weber's
equation,
d®u
0

o (% w? - a) u, =0. (3.11)

(11)

The solutions of this equation are tabulated but it is unnecessary to solve it in
detail; we simply remark that for any finite values of s,k,H,L it is possible to find a
real positive value of pg/;g such that the solution of (3.11) satisfies the boundary
conditions. In other words the system is always unstable for ag > O, as was physically
obvious from the argument with which we introduced this section. In the limit Bo > o0
the function u, represents the complete solution (since u; - 0), and the growth rate

is independent of the magnitude of the field, depending only on its form. For finite B0

there would be a complicated correction due to bending of the field lines by the moving

fluid.

We observe, then, that in a system of finite length with perfect conductivity but in
which lines of force are not tied at the ends, there are instabilities even when the shear
is sufficient to stabilize the corresponding infinitely-long system, i.e. even when the

(6)

Newcomb criterion is satisfied. The effect of field shear on these modes is to intro-
duce a constraint which determines the shape of the fluid motion. The growth fate is
lowered because this constraint induces rotational kinetic energy, but the stability cri-
terion is unaltered and there is no tendency for the convective motions to be localized
vertically. These modes, which exist in finite systems but have no analogue in infinite
systems, may be of experimental importance but the boundary conditions are in reality much
more complicated than those used in this section. Their importance to this paper is that
they can be regarded as due to the presence of resistive layers at the ends, and one can
therefore expect similar motions to be possible when the resistivity is spread throughout
the system. We specifically look for such motions in resistive fluids in Sec. V, but

first in Sec. IV we obtain further guidance by examining the motions possible in a resis-

tive fluid in which the lines of force are tied to endplates.

- 10 -



IV, RESISTIVE INSTABILITY IN UNIFORM FIELD

In the perfect conductivity example discussed in Sec. III the introduction of shear
did not altér the fundamental character of the Rayleigh-Taylor interchange modes; it
simply twisted them to conform to the field lines and so slowed down their growth rate
because of the rotational kinetic energy induced by this 'twisting'. We expect shear to
produce a qualitatively similar behaviour when the resistivity is distributed uniformly
throughout the system instead of being concentrated into thin layers at the ends., Accord-
ingly we Tirst consider interchange-like motions in a resistive system with zero shear, but

with perfectly-conducting endplates at z = * L, Some care must be taken with the boundary

conditions, since the equations are of fourth order in d/hz and will therefore not have
sinusoidal solutions in a bounded region in general. We choose Bz = My = vy =0 at
Z = * L but place no restriction on Ve These conditions are equivalent to tying the

tubes of force at the ends, and also preventing any transverse fluid displacement there.

It can be shown that Vs is any case very small at z = + L, so that the precise

choice of boundary conditions should have little effect. Solutions then have the form

v_ ~ Cos ZEZ (g 42X Cos kyy " (4.1)
X 2L 2H ;
Sin kyy

and correspondingly for other components, but we shall assume a dependence
exp(pt + ikx + ikyy + ikzz) and represent the influence of the ends by the requirement

kz > “/EL' In particular the case kz = 0 1is now forbidden, The finite height is repre-

= 3 _ 2 2 o Ty o a - s . _
sented by k 3> /ZH’ and we set k* =k * + ky + kz , k¥ = ky + kz . Equations (2.2)

(2.5) then yield;

2.8 Bak; rE -
p“+3§-ﬂ2 +(° —ugfz)p—“—Sm:O-  (4.2)

It can be proved that no overstable modes exist, so we need only consider instabili-
ties with real p. Also since the fluid is to be stable for 7m = O we must assume
B %k ’/ﬁﬂpo > ag, which for a real plasma is a condition on the ratio B of particle to
magnetic pressure. We shall suppose f « 1 and therefore drop the second term in the
bracket, Finally, the first term of (4.2) must be negligible if p < CAkZ’ where

T ’
c, = Bo/(4ﬂpo)4 is the Alfven speed, i.e, if the growth rate is less than the frequency of

an Alfvén wave of wavelength = L, Then the approximate dispersion relation is

-1 =



B3k 3 o
p? + —QTEE = ZEET .. @ (4.3)
e, | K

When p is small one root of this equation is

agp - age L% ~
v [ng? } T { o3 } e e
oz 0

and to apply this to a real plasma we identify g 4in terms of pressure Po and radius of

curvature RC by g~ 2Po/P R so that
oc

~ o [ Bok

where A\ = SQLQ/ﬂzRC and so is a purely geometric factor of order unity. We can assume
kx,kz &« ky’ then the growth rate is almost independent of kx and is proportional to

kyz. The pattern of this instability is that of a 'slicing' motion in which alternate thin
vertical layers, parallel to the magnetic field, are moving up and down. The growth rate

p increases as the transverse thickness of the slices becomes smaller, but eventually it is

1
necessary to include the first term of (4.3), and p - (ag)é as ky > oo,

The physical reason why fluid can move across the field in this way is the following.
Imagine two vertical layers = kyn1 apart, with the fluid moving up in one and down in the
other, and suppose that the density perturbation has reached an amplitude A Cos nz/2L,
so that the vertical fluid displacement g = A/a. At each stage equilibrium would be main-
tained if the field lines were displaced by a distance
Agp,,

6 = TE"ZT 2
Bokz

so that the weight of the fluid would be balanced by tension in the field. This generates
a transverse field Bx ~ Sin 7nz/2L with opposite sign in the two layers. Within a time
= (nky“)_I this Bx field disappears by transverse resistive diffusion so that the motion

can proceed; the growth rate is therefore

l 1.5- = a.gpo k 2
e dt ng;5 N

in agreement with (4.4).

It is worth noting that while the fluid motion is vertical, the field diffusion is

- 12 =



horizontal and can be made arbitrarily fasﬁ by choosing a large FY (i.e. thin 'slices'),
This mode could be particularly dangerous because there is no relation between the large
scale length (kqu) “of the fluid motion and the small scale length (ky"l) over which
the field ﬁirfusion occurs., One can thus retain large-scale eddies in the x direction
while allowing ky *w i In this limit the field has no influence on the motion at all,
(In practice the rapid short-wavelength slicing motion would be limited by viscosity or

some non—fluid effect such as finite Larmor radius).

In this simple model no instabilities have been found in which p__depends on frac-

tional powers of n, as in the modes obtained by FKR and others(2) (3). Nevertheless we
1,
assert that G-modes with p ~ ﬂg are generically the same as the slicing mode discussed

in this section, which has P ~ 1. The reason for this, as will be shown in Sec. V, is

that in a sheared field the slicing mode becomes twisted and as a result it automatically
.

takes up a length which is proportional to 7 6. It can be seen fram (4.4) that if we put

- 1
L~n s then we do indeed get a growth rate p~ qé as found by FKR and others,
V. TWISTED SLICING MODES

In this section we examine the final model, that is a plasma slab of infinite extent
in the 2z direction, with finite resistivity and finite shear. Guided by the simpler
situations discussed in the previous sections we are led to look for modes which have the
form of 'twisted slicing motions', that is modes which are similar to those of Sec. IV
but twisted to follow field lines like those of Sec. III, We first give a simple direct
derivation of such modes and later show how they can be obtained from the work of FKR(I)

and Coppi(3).

Since the presence of shear will not increase the growth rate, p « nk* as in Sec,
IV, and the aE;%t term can be omitted. We can therefore start from equation (2,7), To
investigate modes which are similar to those in Sec. IV but twisted to follow the field

lines, it is natural to introduce the twisted coordinate system used in Sec, IIT

E=Xy, X =y =38xz, L =2,

then
3 3 _ 3
T + sXx ay = a'z-l" ) (5-1)

and the coordinates £,X are constant along a field line, We transform equation (2,7)
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into these new coordinates and look for solutions of the form

v, = v(z) exp(ikxg + ikyx) ,

(5.2)
then equation (2.7) gives
Vo L v L
(1 + e%q)- ag 2¢2qisE k 57 e= [: (1 + s"E®) + s ;-J
e®p*® k; ky
- v (F—-2S§k—'>v=0, (5.3)
Yy Y
where
E =-‘_ﬁpBo ] q=CLg_1 ‘ (5'4)

Now the results of the earlier sections, particularly Sec. IV equation (4.4), lead us
to expect a 'twisted slicing' mode for which

B - k 2 I_.‘.:l ? (5-5)
o y

where L is the length of the mode in the z, or Z, direction, For such a mode

& = kAL® ?
y
" and in the limit kyL » 1 and ke €1 equation (5.3) reduces to
Y
PFoN ) ek,
div _Zol (ek )ty 4+ —2p L (-1 )v=0, (5.6)
dz B0 y B0 p

which can again be transformed into Weber's equation

2 2
(g—wﬁ —%+a>v=0, (5.7)

(but note that this is now an equation for the dependence along the field), with

_ (oY _1__
G0 b= (2 ) Tt . BB

and

1
(Pp,n)

Qa,
= - 1
2a =, k, ( 5%

(5.9)
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In a long system equation (5.7) has eigenvalues and cigenfunctions

a=n+5%, {5.10)
Dn (w) = Hn (w) exp(- w"/4) , (5.11)
where }% are the Hermite polynomials
n dn
H (w) = (- 1) exp(w®/2) o exp(- w'/2). (5.12)

The corresponding solutions of (5.6) are

vev () = exp(~ 2"/24%) B J2/8) , (5.13)

and the growth rate of this mode is (for ag » p® as in Sec, III)

T]k; 4, 2/ 471:[’ i/ 2
= e /a 3 s 3 (o ~3/s
P, <4ﬂ> (ag) (BSS,> (2n + 1) ’ (5. 14)
which is the same as that found by FKR for G-modes, (As Ey + o0 we also find that
1
p - (c:l,g;)’ﬁ as before). The half width of the disturbance in Z or z, i.e. the length

of the mode along the field, is

an_\1/ B¥ \1/ .
(B (% 3 e
noATy (ag)™/e  \mp, - (2n + 1) 72 . (5.15)

The vertical wave number kx has no effect on the growth rate or the length A of the
mode, provided only that kx « kyo Hence we can replace the x dependence of our modes
by any arbitrary dependence g(x) so long as this is slowly varying campared to the width

of the slices (gy—1). We thus obtain modes of the form
vx(x,y,z) = g(x) vn(z) exp [iky(y - sxz)] , (5.16)

where vn(z) is the appropriate Hermite function (5.13) with growth rate given by (5.14).

These modes represent a 'twisted slicing' motion (Fig. 1) of the expected form. The
motion is specified at one plane z = const. by the function g(x) (wﬁich is arbitrary
provided it is slowly varying and vanishes at x = * H). The motion in this plane takes
the form of ‘'convective rolls' as in ordinary hydrodynamics, and its form at any other

value of 2z is determined by the fact that the Tlow pattern is almost constant along any
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field line (y - sxz = constant). The rolls tﬁus get twisted as one moves along 2z  but
at the same time the flow velocity also decays slowly away in 2z because of the term
vn(z). For the fastest growing mode, vo(z) is a simple gaussian curve with characteristic
width A. We seé from (5.15) that A ~ n_% so that the length (in z) of the twisted

slices increases indefinitely as n = O. Higher modes have an oscillatory z-dependence,

The relation of this twisted slicing mode to those found in Sec. IV is now apparent,
In Sec., IV the length L of the slices was set by the position of the endplates; in an
infinitely long resistive plasma such as we consider in this section the length is set by
the resistivity according to (5.15) and if we identify the length L of Sec. IV with the
'natural' length A then we do indeed find that the growth rate of the two types of slic-

ing modes are in agreement.

Physically the natural length A is set by a compromise between (a) rate of release
of gravitational potential energy, (b) rate of resistive dissipation and (c) rate of
increase of kinetic energy. A feature of the twisted slicing motion is that in order to
reduce (b) the fluid motion must follow the field lines which means that the fluid elements
must rotate about a vertical axis as they rise or fall; most of the kinetic energy (c) is
in this rotation and it is in order to keep this energy finite that the modes must have
finite length in z. They achieve this finite length at the expense of some increase in

(b), hence the length increases as m = O.

VI. DECOMPOSITION INTO SPATIALLY PERIODIC NORMAL MODES

We have established in the previous sections the existence of twisted slicing modes
in a resistive fluid supported by a sheared magnetic field. These modes are of quite a

(1) . (3)

different character to the G-modes found by FKR and Coppi for the same problem and

one naturally asks what is the relation of our twisted slicing modes to the G-modes.

To determine this we first re-examine the G-modes. These are spatially periodic in

z (unlike our modes which have a definite length A) and are of the form
vy = vg(x) exp (pt + lkyy + Lkzz) 5

where vg(X) satisfies equation (2.8} i.e.

ag Bgszk-2 = 0—‘§
< - X% 4+ k2 -1 X)=0 6.1
- i TR )] v =0, (6.1)
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with

k* = k* + k%, sXk = sxk + k ,
Zz Y Zz
If we put
%
5 2 Ityly )
w® X _ o
7z =0 %= (Bosky a7 (6:2)

this can be again reduced to Weber's equation and leads to eigenfunctions
vg (X) = u (X) = exp(- X%/26%) H (Xv2/6) , (6.3)

and eigenvalues P, satisfying

B sk
i - Q. _ (o]
K <E§-1>-(pnnpo,§ (2n + 1) . (6.4)

These are G-modes which are highly localized around X =0 i.e, around X = dkz/sk ; they

y
have a half width in the x direction of order &, and & -0 as mn -+ 0. Thus these
G-modes shrink in x as the twisted slices grow in 2z. As we pointed out in Sec, II these
particular G-modes form a sub-set of the complete set of modes for the problem, and are

related to, but not identical with, the original modes of FKR“).

Although these G-modes are so completely different in character to our twisted slicing
‘modes, their growth rates p are almost exactly the same; the only difference is that in
(6.4) the term Kk? = kys + kzg replaces the terms ky":' in (5.14), This means that G-modes
which have the same ky, but are localized at different heights x by reason of having
different kz, will.also have different growth rates. However if the shear is small this
difference in growth rate is also small; in fact two G-modes of the same ky, but with
their kz chosen so that they are localized at heights X, apart, have growth rates which
differ only by

(sx )= (6.5)

6]

ép_ 2
p 3

-
L) LJN?To
I
[N

r

For a Stellarator (sxo)2 is to be identified with (§E ﬁg)a where t is the rotational
: o

transform and rys R0 are the minor and major radii; this is typically of order 10_3.

This means that all G-modes with the same EY but varying X have almost identical growth
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rates. (It also follows from (6.4) that

2 agp " - '
I%f’- = E.-S_g (zn + 17" % p2n + 1) t, (6.6)
o

which justifies our neglect of the term agyst if we assume V? -~ 6-2).

Now let us consider a combination of periodic G-modes, all having the same value of
ky and n =0, but centred at different heights Xqe This can be achieved by taking a
spread of values of kz and leads to

ulx,y,z,t) = exp(ikyy) /.f(kz)dkZ exp[ikzz - (x - xo)2/28;] exp(pt), (6.7)

where f(kz) is the weight function which we take to be slowly varying. The centre of
each constituent mode x  is related to k, by x = _kz/sk , and p also depends on
k, but is again slowly varying. To evaluate (6.7) we note tiat the integrand is of the
form of a highly localized function exp(-x - xo)2/2602), multiplied by slowly varying func-

tions which can therefore be replaced by their values at X = Xge Then if

f(kz)dz = - g(xo)dxo,

u(x,y,z,t) = 82 glx) exp{iky(y - sxz) - (skyzﬁo)g/Q + plo) (1 +'§(sx}2)t], (6.8)

which has the form of the twisted slicing mode studied in Sec. V, except for the weak
dependence of growth rate on x. The arbitrary function g(x) may be chosen to fit the

boundary conditions,

The expression (6.8) does not therefore represent an exact normal mode, because it

has no precise time dependence. Nevertheless, because sx is small it will behave like a
normal mode for all practical purposes and we shall call it a guasi-mode. With Ap/p ~ 10_3
as in a Stellarator, the different components would keep in step for 1000 e-folding times,
an enormously long period, Probably even Ap/p ~ 10-1 would allow components to hold to-
gether until the disturbance was out of the linear regime. As we have indicated earlier
there is a slight indeterminacy of the growth rate of each quasi-mode, but this should not
detract from its physical significance, any more than the slight indeterminacy of the
energy of a cumpound.nucleus detracts from the usefulness of that concept. The essential

point of our argument is that the localized G-modes are almost degenerate so that any

combination of them is itself ‘'almost' a true mode, and for weakly sheared systems such as
the Stellarator the distinction between a true mode and a quasi-mode is imperceptible for

many hundreds of e-folding periods.
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There is a duality relation between the length of quasi-modes and the width of the

G-modes, which is expressed by

SA = —— (6.9)

where & is the width of a G-mode and A 1is the length of a twisted slicing quasi-mode.
It should be noticed that this duality relation does not refer to the shape of the quasi—~
mode itself in the x-direction; that is, there is no relation between the length A of
a quasi-mode and its localization g(x), indeed g(x) is assumed to vary by a negligible
amount over a distance &. The duality is between the length of a quasi-mode in 2z and

the height of a G-mode in x.

A quasi-mode may be centered at any arbitrary z-plane z = z, by using the weight

function

f{kz) exp (- ikzzo) ’

instead of the function f(kz}. Slicing modes may also be constructed from periodic modes

with n > 0, by settlng
. 5 o I x 2
v, (6y52,t) = exp(lkyy) f ik, )dk, explik z - X5/26%) HR(JBC) exp(pt), (6.10)

which leads to
2, (x,¥,2,t) = /2% I g(x) exp[iky (y = sxz) - (sgyzﬁn)?/z

2 ()8
+ pn(O) (1 + 5 (sx)?)t] H {skyzén\/i) " (6.11)
and corresponds to slicing modes of higher n-value (5.13),

VII. CONCLUSIONS

The problem of the resistive instability of a conducting fluid supported by a sheared

magnetic field has been examined from a new point of view,

First we considered the simpler problem of a perfectly conducting fluid with resistive
layers at its ends and so discovered some modes which are present in a finite length system
but have no analogue in one of infinite length, thus lying outside the conventional stabil-
ity analysis of Newcomb and Suydam. These modes may actually exist, but whether this is

so or not, they form the prototype of instabilities in a resistive fluid supported by
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sheared field and in Sec. V we did indeed find similar modes in this case. These take the
form of twisted slicing motions or twisted convective cells and as such are clearly related
to the well known instability occurring in ordinary convection. These modified convective
cells have finife length in the direction of the field but may extend arbitrarily in the
vertical direction. As fluid rises and falls the fluid filaments or 'flux tubes' rotate
about a vertical axis and the finite length is a result of compromise between the rota-
tional kinetic energy so induced and the resistive dissipation. The length therefore

increases without limit as n = O.

Such modes as these are of a totally different character to the modes found by FKR
and others which are periodic in the field direction and localized in the vertical direc-
tion. However, we have also shown that our new modes can be constructed fram a sub-set of
the totality of spatially periodic modes, Looked at in this way the localization of the
resistive modes found by FKR and others is a feature not of any physical motion but only
of its Fourier transform., In a real system a convective roll type of motion is far more

likely to occur than a motion localized in one direction and periodic in the other.

The possibility of having two such dissimilar types of normal mode is a result of the
near degeneracy of a system with weak shear. The relation between the 'twisted slicing'
quasi-modes and the periodic modes is analogous to the relation between compound nucleus
states and scattering states, or between a wave-packet in a slightly dispersive medium and
" infinite periodic waves. Although the scattering states or the periodic waves may be
mathematically a more exact description than the compound nucleus or the wave-packet, the
latter may be more useful in practice. In the case of instabilities such as we are discus—
sing it is especially unrealistic to ask for precise normal modes; any mode which
preserves its form for many growth periods is permissible since after many periods the
system is in any case out of the linear phase. In this respect the fact that the concept
of convective cells retains its usefulness in the non-linear phase of ordinary convective
instability may suggest a similar utility of the twisted convective cells in the present

problem.

Whatever equations might be used to describe the plasma, this near degeneracy of
localized modes will be a Teature of any calculation based on a sheared-field model. For
suppose that the model were changed slightly, so that the magnetic field was of constant
strength but changed its direction uniformly with height at a rate A(x—xo), then the

field would be invariant under a ‘'helical' transformation in which the axes are translated



a distance d along the x-axis and rotated through an angle Ad about the x-axis. Any
mode, centred at X and aligned in a direction &, is therefore almost equivalent to any
other mode centred at x; and aligned in a direction [6 + A(x. - xo)], so that all such

centred modes are almost degenerate with all others in this model.

The importance of 'quasi-modes' for plasma loss can be seen from the following. The
growth rate of conventional G-modes suggests that they would have a significant effect on
plasma containment in devices which reply on shear for stabilization; however the localized
nature of these modes makes it difficult to understand exactly how they contribute to plasma
loss., For low B the growth rate p ~ ﬁn/hz, where h 1is a measure of the mode height,
and if we assume that each G-mode corresponds to an eddy of height h and velocity hp,
the eddy diffusion coefficient is ~ fn which is of the same order as the classical diffu-
sion. However the present paper shows that the G-modes may be combined coherently into

extended quasi-modes which might considerably enhance their effect.
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