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ABSTRACT
A general introduction to the hydromagnetic stability of toka-
maks is given and stability theory is related both to experimental

results and to reactor requirements.
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I INTRODUCTION

The aim of these talks is to summarise the overall MHD stability of
tokamaks, relating theory to experiment and putting the results into per-

spective, particularly with regard to reactor requirements.

First then let us recall the objectives, the precise reactor require-

ments depend upon detailed assumptions but roughly we require

Temperature T = 10 keV
Particle density n =2 X104 cpn~3
Confinement time T =1 sec

[pdt/ [B%/2dT B> = 10%

The { value arises from the values of n and T, together with a
technological limitation on the toroidal magnetic field. The present values

of 7 and [ fall short of the required values by a factor of about 20,

Stability requirements impose constraints on the values of [ and T
which can be achieved, although the actual limits have not yet been deter-
mined. We shall shortly look at the way in which these constraints arise
from the different types of instability. Before doing this, however, it
will perhaps be worth briefly explaining the nomenclature used to describe
the various modes. As might be expected the distinctions are not precise

but the following descriptions give the basic ideas.

An initial distinction can be made between ideal and resistive insta-
bilities, Ideal unstable modes are those which would occur if the plasma
were infinitely conducting. Resistive modes are those which only occur if
the resistivity is finite. Another important concept is that of the resonant
surface, that is the surface on which the pitch of the mode matches that of

the magnetic field. The position of this surface for a given mode plays a



basic role in determining the nature of the instability. The individual

modes will now be described separately.

1. Kink Modes

This term is mainly used for modes which distort the plasma surface.
The resonant surface for unstable modes lies outside the plasma. In tokamaks
these are potentially the strongest instabilities and are driven by the gra-
dient in the axial current. The term kink mode is also used for the =1

internal mode because this involves a gross distortion of the plasma inside

the q =1 surface.

2. Internal Modes

These are modes which have a resonant surface inside the plasma and the
instabilities would occur even if the plasma boundary were not free to move.
They are sometimes called interchange modes. The driving force is basically
the pressure gradient. For high m—numbers'they are localised in radius
provided the pressure gradient is not too high. For lower m-numbers these
modes are less localised. For sufficiently high [ (and therefore high
pressure gradients) these modes balloon, that is they are stronger in the
region of the cross-section where the magnetic field curvature is worst. As

mentioned above the m = 1 internal mode is called a kink mode.

3. Axisymmetric Modes

These are modes with no dependence on the toroidal coordinate and are
essentially a vertical shift of the whole plasma. They are unstable if

the plasma is elongated to too great an extent.

4, Tearing Modes

Are the resistive form of kink modes. Unlike kink modes they have

resonant surfaces inside the plasma.

S Resistive Interchange Modes

These are the resistive form of the (m > 1) internal modes.

All these instabilities will be analysed in more detail later, but we

now return to the consideration of the constraints they impose.

The constraints on B can be brought out by writing the expression for

B in terms of the quantities which determine stability. This may be done

as follows:

We use the following expression for average f and [-poloidal
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where p is the plasma pressure, B is the magnetic field and I is the
toroidal current, to obtain
ey
B> =~ Tams
¢
where A is the cross-sectional area of the plasma and BqJ is a mean

value of the toroidal magnetic field.

For most configurations of interest Bm may be expressed by

where the subscript zero refers to the magnetic axis, q being the safety

factor, jcp the toroidal current density and Ro the major radius. Using

this expression we obtain
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Each of the factors on the right hand side is constrained by stability con-
siderations. The first factor measures the current carrying capacity of
the plasma for a given jwo' In order to obtain kink stability it is
necessary for j¢ to fall off sufficiently rapidly with radius and this
then limits the total current and consequently the maximum value of this
factor. The second factor, l/q; is limited by internal instabilities.

If q, <1 then the internal m =1 kink becomes possible and higher
m-number internal modes can also limit q,- The third factor is increased
by having a small aspect ratio and by elongating the plasma to increase

the cross-sectional area A. However, this elongation leads to instability
of the axisymmetric mode and the greater the elongation the more diffi-
cult this is to stabilise. If the plasma is stable to these three categories
of mode and the final factor ﬁp is increased then at some point ballooning of
the internal modes will occur and again there is a stability constraint.

The factors limiting f may be summarised then as shown below:
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The attribution of the constraint on Bp to ballooning is an oversimplifi-

cation since there are other factors involved. The introduction of resist-

ivity strengthens tne constraints.

The constraints on confinement are less easy to analyse because the

processes involved in the transport are not understood. The classical con-

I2(1)

finement time will scale as , the current being a measure of the

total poloidal flux,which provides the confinement. The non-classical
models suggested also give improved confinement with increased current(z).
Let us ask then what constraints on the total current are imposed by
stability requirements. The current may be written in terms of the same

factors as equation (1) to give

_ I 1

XLt L A
I, Aj q, ng

where the current Ic’ the current in the toroidal magnetic field coil,
provides a "cost" normalisation. It is seen that it is again beneficial
to have as broad a current profile as is consistent with kink stability,
as small a q, as is consistent with internal mode stability and as large

a plasma area as possible for a given major radius.

Having obtained an overall view of the relation of stability require-
ments to the reactor objectives we will now look in more detail at the
individual modes of instability. It was seen above that an optimized
tokamak will be of small aspect-ratio and will probably have a shaped cross-
section. However the stability of tokamaks is best understood by first
considering the case of circular cross-section and large aspect ratio and

proceeding from there to the more difficult problem of optimisation.

The next section will deal with the theory of ideal modes and the
following one with resistive modes. Axisymmetric modes will be dealt with
in Section VI. A more complete discussion of stability together with the

appropriate references may be found in reference (37



I1 IDEAL MODES

The potentially most unstable mode is the ideal kink mode. The

potential energy of a displacement ¢ is given by the low 3 cylindrical

expression

282 [ A y\ 2 2

W, = —-R—Q{f[g: %Ef-) + (m?2 - 1)@{'(151'1— - —i—) rdr
° %%
(2)
+|:£(E__1__ + (l+m)t)(ﬂ_..l_)l]azgz

q, \m q_ m o q a

where
w2 L+ (a/p)’"

1 - (a/b)’m

a and b are the radii of the plasma and the conducting wall, and
perturbations have the form exp i(mf - ng), & and @ being the
poloidal and toroidal angles. The subscript 2 refers to the fact that

6W, 1is the second order term in an expansion in (a/R).

It follows from equation (2) that a necessary requirement for
instability is that q < m/n. Thus, for the usual case with djw/dr <0
and dq/dr > 0, unstable modes must have a resonant surface in the vacuum

region.

An alternative form for &W, 1s
(¢ ) s )
—— ra 4 _ I 2
&, WRDfB B,(1 = 3 &/ rdr . (3)
o

the integral being taken over the plasma and the vacuum. It is seen that
it is the second term which provides the possibility of instability and
that the destabilising contribution comes from the current density gradient
in the region where (1 - %?) 7%? < 0. 1In the usual case djm/dr is
negative and the destabilising region lies where g <’§ . Thus since for
this case dq/dr is positive, unstable region lies inside the resonance

surface.



It follows from equation (2) that a necessary requirement for

stability is that the current density, jma’ at the plasma surface must be

zero (or at least not positive) since, for sufficiently large m and n,

the resonant surface, r,, can be chosen arbitrarily close to the plasma

surface and the displacement

m - nq

£ = ¢

m-ng 4

gives
rS -a j

= w - S .- #
W, (27r39aga) = 35
P

<j$> being the average current density in the plasma.

For lower m, a resonant surface close to the plasma surface leads to
more stringent requirements on the smallness of the current gradient in the

neighbourhood of the plasma surface. This is illustrated by the results for

the two parameter model

the stability diagram for which is shown in Fig 1. It is seen from

this diagram that, provided q, > 1, stability can be obtained for any q,
for a sufficiently peaked current profile.
To complete the description of kink modes it is necessary to add that

for the higher m modes stability is easily achieved by removing current

from a small region 6 inside the plasma surface such that

m o
1V
5|
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Fig.1 Stability diagram for kink modes for the current distributions j 0 =j(po (1- 52—) . The vertical axis

measures the peaking of the current as given by qa/q (which is equal to » + 1). The horizontal axis
measures the total current I expressed as a fraction of (a/R, )2 I, where I, is the current in the coil
producmg the toroidal magnetic field. This axis also gives q, whlch is mversely proportional to I. The

= 1 mode is unstable for q, <1. The stability region for the other modes is determined principally by
the shaping of the current rather than the value of q,- The differing degrees of current peaking required
for each mode is indicated by the sawteeth, the mode numbers (m, n) being given at the top of the
figure. For large m the stability requirement is v > 1.

Turning now to internal modes, for which ¢ _ may be put to zero, a
a

necessary condition for the instability of these modes is that the integral
in 6W, must be made sufficiently small that the neglected terms must be

retrieved. The stability of internal modes is determined in the order

W, ~ €4Ro§23{: :

For the m =1 mode, &W, can be made to approach zero by a displace-
ment, £, approaching £ = constant inside the radius at which q <% and
€ = 0 outside this radius. Modes m # 1 must be sufficiently localised
around the resonant surface for the factor (5 - E]]__)z to make the integral
in 6W, small.

Toroidal calculations for the m = 1 mode show a toroidal stabilising .

effect but it is effective only for rather low values of pressure gradient



inside the surface q = 1. Usually therefore stability requires q, =

For high m numbers the appropriate criterion is the Mercier criterion,

rBz S 2
= p')(q2-1>+—8£9 ﬂq—) >0

which gives stability if q > 1 everywhere. For a radially decreasing
current distribution stability again requires q, > 1, since the first

term dominates at small r.

This stability requirement added to the kink stability diagram gives
the diagram of Fig.2. It is important to bear in mind at this point that,
even if q, < 1, the removal of the pressure gradient inside the q =1
surface will restore stability. It might be desirable to accept this small
change in order to obtain other advantages. As will be seen later it seems
that the plasma configuration adjusts itself to prevent gq, from going too

far below unity.

1 \\\X\ -

8654 3 2 q

0 02 04 0.6 08 10
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Fig.2 Stability diagram for ideal hydromagnetic modes for the current distribution j s j 00 (1- ;1') . In

this figure the stability requirement, g, > 1, for the internal modes is added to the kink mode diagram
of Fig.1. This criterion covers both the interchange modes and the m = 1 internal kink mode. The
maximum stable current for this model is obtained with a parabolic current distribution having g, = 1
and q, = 2.



III RESISTIVE MODES

When resistivity is introduced the internal pressure driven modes are
subject to a more stringent requirement. However, if q > 1 everywhere,
there will be no q = 1 surface in the plasma and the m = 1 mode will
be avoided. Furthermore the modified criterion for localized modes will

also be satisfied, that is
3 r 3 r3 2R021' )
(-p"){ q2 - 1 + 9. [‘5'+ === p')] dr}y >0

The result that kink modes only occur with a resonant surface in the
vacuum is also changed by the inclusion of resistivity. Current driven

instabilities can now occur with resonant surfaces within the plasma and

these modes are called tearing modes. Indeed, in the presence of resist-
ivity the distinction between kink modes and tearing modes is less marked.
Both can, in fact, be regarded as resistive modes since for kink modes
the resonant surface occurs in vacuum where the resistivity is infinite.

The Euler equation for the &W, of equation (2), which covers kink

a-d;((i‘- - %)2 3 %E‘) - (m2 - 1) (EI]; - EH:-‘)Z ¥E =0

This equation may be written in terms of the perturbed radial magnetic

modes, 1is

field which is given by V¥ = iBB(m - nq)&/r and it then takes the form

il a , dj@/dr
T [r o (r¢ﬂ - m?y - (Belmrz)(m e v =0 (4)

This is also the equation for neighbouring equilibria:

Vx (j xB' =0

where the prime indicates to the linearised part and no assumption of per-
fect conductivity has been made. A mode for which equation (4) is satis-
fied is marginally stable to tearing modes. In general this equation will
not be satisfied and the solution satisfying the regularity condition at
r = 0 will not allow a continuous matching with the solution satisfying
the outer boundary condition. Stability is then determined by the jump

in the logarithmic derivative of V¥ at the resonant surface,

\0
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stability being obtained if A < O .

This criterion has been applied to the model of Figs. 1 and 2 and
the result is shown in Fig.3. For this model complete stability requires
q > 3 in order to avoid modes m = 2 and 3. The resulting values of
B would be 9 times less than that obtained with 9 = 1. However we know

that experimental tokamaks do nmot have to operate with such high 9,

Having surveyed the basic stability theory for tokamaks we are now
faced with several questions. How does this theory relate to present
experiments? How do we investigate higher-f3 equilibria and what are the
problems of achieving higher-f by elongation? How is the large aspect
ratio theory of tearing modes modified at smaller aspect-ratio with higher
B? What is the MHD stability limit on the achievable }? These questions

will be considered in turn in the remaining sections.

1 / 10
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Fig.3 Complete stability diagram for a “standard” tokamak current distribution j 0™ j o (1- r_z_) .
a

The diagram gives no indication of the strength of the instabilities but the tearing modes have
lower growth rates than the ideal modes and may therefore be more tolerable.
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IV  RELATION OF THEORY AND EXPERIMENT

First let us look at the variation of energy confinement times as a

function of the total current and therefore of q,- Fig.4 shows some results

)

4 ; i .
from T3( from which it seen that Tp 1lncreases with current up to a

certain value and then falls away. The critical value of q, is between

4 and 5.

&

kA

Fig.4 Dependence of Tg on the value of the discharge current on the T-3 device for
n,~2 X 10'* cm™ and B, = 26kG.

As the current is increased and q, falls, magnetic fluctuations occur

(5)
as

at the surface and these have been identified by Mirnov and Semenov
the modes having m =~ q,- A typical result is shown in Fig.5. These modes
are identified with the kink or tearing modes which are predicted if suffi-

cient current flows near the edge of the plasma.

11
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Fig.5 (a) Development of the magnetic fluctuations, W, in the initial stage of the discharge indicating
successively modes m = 6, 5 and 4.

(b) Development of fluctuations when q,, is reduced to 2. The three periods of fluctuation correspond
tom =4, 3 and 2. The m = 2 mode leads to a disruption of the plasma and a fall in the current.

Experimental estimates of the value of the safety factor on axis give

= 1(6). A sawtooth oscillation of the soft X-ray emission from the central

90

region of the plasma, shown in Fig.6(7), is believed to be due to a relaxa-
tion oscillation. It is thought that ohmic heating leads to a concentration
of the current around the magnetic axis making q, < 1l. An instability then
occurs which restores g > 1. The manner in which this occurs has been
investigated by numerical simulation. These calculations reproduce the
relaxation oscillations and their physical basis is made clear by the results
shown in Fig.7(8). When q on the magnetic axis falls below unity a magnetic
island is formed. The value of q on this island is greater than unity.
This island grows, in a manner suggested by Kadomtsev(g), until it is
appropriate to think of the structure as a double helix formed by two mag-
netic islands. The growing island with q > 1 displaces the original
"igland" with q, < 1 and this leads to a symmetric configuration with

q. > 1. The whole process then repeats itself.
o

12
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Fig.6 Sawtooth instability. Oscillogram giving the time
dependence of the soft X-ray emission for the inner
region of the plasma.

Fig.7 Sawtooth instability. Plots of the transformed magnetic field trajectories. The
regions with q <1 are shown shaded. The initially stable configuration becomes
unstable as a result of current concentration. An island is formed (having q > 1) which
grows and displaces the original unstable “island”. The island with q <1 decays away.
(The small scale variations are not real being due to the computer diagnostic used).

13



The best confinement is typically obtained with q, ~ 4 and, as we have
seen, q_ = 1. In the absence of tearing modes, transport would determine
the temperature and therefore the current profile. For the types of profile
which would then be expected the low m-number tearing modes would be unstable.
Fvidence for such low m-number modes has in fact been observed and an example

is shown in Fig.S(lo).

Fig.8 Fluctuating component of soft X-ray signal showing an m =2 oscillation,
observed in PLT(10), Signal represents line integrated emission. The total time
in the figure is 2 ms.

It appears then that the effect of tearing modes is such that it is
preferable for confinement to accept their non-linear consequences in order
to obtain a higher current. This would correspond, in Fig.3, to working
around the gq = 1 line with q, ~ 4 where the m =1 internal kink and

m=2 and m = 3 tearing modes are predicted.

The growth of tearing modes will lead to island formation as illustrated
in Fig.9. This results in a reduction over this region of the destabilising
current gradient. It has been shown(ll) that, if the current profile is
adjusted, stable configurations with q = 1 and q, as low as 2.6 are
possible. The resulting current profile is shown in Fig.10. If, however,
such profiles are obtained as a result of the non-linear effects of insta-

bilities, the resulting additional tramsport would have to be tolerated.

14
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Fig.9 Hlustrating the way in which magnetic islands are formed at a rational surface. The field

lines plotted are those of B* = B f + (B - 2% B,) 6 where L is the periodicity length in z.

3
T I | | Jd1o
j(r)
2 q()
i(r)
q j©)
1=
0 l ] 1 I 0
0 0.2 0.4 06 08 1-0

Fig.10 Showing the current and q profiles for a configuration (with no
conducting shell) which has been designed to give stability for all low
m-number tearing and kink modes.
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v HIGH-f EQUILIBRIA

It was pointed out by Mukhovatov and Shafranov in 1971(12) that there

is no theoretical limit to the equilibrium [ that can be obtained in a
tokamak. However some care is needed to obtain an equilibrium model which

allows the control necessary for the optimisation of B.

The equilibrium equation for the poloidal flux V¥ is

=
@

)
=3

L.
dR

R g +"'"§=-R2p’—ff!(=—chp)

R oz

A=
@

with p = p(¥) and f = £(¥). A simple choice which gives a roughly para-
bolic current distribution at large aspect ratio is p'e i and ff'e V¥ .

For an elliptical plasma with q, = 1 this gives, at large aspect ratio,

%R =20 B (a/R)? (b/a) (5)

where b and a are the minor axis of the ellipse. However for this model
the actual increase in [3 with decreasing aspect-ratio falls off at small
aspect ratio as is seen from Fig.ll. Whereas a circular plasma with Bp =1
and Ro/a = 2 1is predicted to have B = 5% the actual value is less than
2%, Furthermore increasing Bp does not lead to higher B in this model(lB),
On the other hand elongation does lead to the improvement predicted by the
large aspect ratio model as shown in Fig.l2, However the B wvalue for

B =1 and R/a =b/a =2 1is only 3% compared to the 10% predicted by
P

equation (5).

5_
4]
% B

3+ Asymptotic theory

2l

1l \\

\Actuul
O_/v 1 1 | 1 |

2 3 4 5 6

Aspect ratio Rl/a

Fig.11 @, expressed as a percentage, as a function of aspect ratio
for a circular plasma with p’ & ¢, f =0 and q, = 1.
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R/a = 2
41
0,°B

3F
2k

1| L

//,

0 ,’ 1 1 L 1 1 ]

0 1 2 3

Elongation b/a

Fig.12 (, expressed as a percentage, for an elliptical plasma as a function
of the ratio of the major and minor axis. The aspect ratio R/a = 2 with
p ey, f'=0andq =1.

A set of equilibria which allows the independent variation of B,Bp

and q, may be obtained from the following mode1(14)

R%p’ = @ R?¥ + a,R2Y2
- _ 212 _ p3y3
ff @, RV a3y
so that
Rj, = aR¥W + a,(R2 - RIW2 — aip?

The quadratic term allows substitution of kinetic pressure for toroidal
magnetic field. The last term enables toroidal current to be removed from
the region around the magnetic axis (maximum V), and therefore q, to be

increased, in a similar way to that which occurs experimentally as described

in Section IV.
A general view of the equilibria allowed by this model is given by the

(B,B_) plot of Fig.l3, which gives some results for the proposed JET con-
figuratioélé), At any point in the (B,Bp) plane the value of q, can be
varied. The current I, corresponds to 1.43 X B¢ Mamps in JET, where B{\0
is in teslas. If [ is increased by increasing the total current at a
given Bp then [ = I2, The resulting increased current gradients are
accompanied by lower values of q, and it would be expected that this will

lead to kink instability. If, on the otherhand, B 1is increased at a

17



given current by increasing Bp’ the improvement in [ is only linear but
the value of q, is increased and this might lead to some improvement in
kink stability. Before moving to a discussion of the dependence of stability
on [ for a given plasma shape we shall first consider a destabilising

effect which arises if higher 8 isobtained by elongation of the plasmas,

30

AN
275

I= 3], . _
171

20l | 4.21 L

I= 21|

Fig.13 Equilibrium diagram. Each point in the (3,8,) plane corresponds to a given current, and lines
corresponding to three currents I, , 21, and 3I; are shown. (I, =1.43 B(‘rJl M amps if B, , the toroidal
magnetic field at R = 3, is in teslas and the dimensions shown are in metres). Current distributions are
shown for four chosen equilibria. In each case the left-hand figures show the current distribution in
the horizontal midplane and the right-hand figures show it along a vertical line through the magnetic
axis. The current distributions shown are four equilibria with q, = 1 but it is possible to vary q,, while
remaining at a fixed point in the diagram by redistributing the current. The current profiles all have
the same scale.

18



VI THE EFFECT OF PLASMA ELONGATION

A variety of arguments has been made concerning the merits of shaped
plasmas but the most important case for elongation appears to be that, as
seen from equation (1), it allows a higher equilibrium f3 for a given

current profile and a given value of q on the magnetic axis.

However elongation of the plasma leads to the introduction of another
possible type of instability, the axisymmetric, or n = 0, mode. This

mode is basically a vertical shift of the plasma.

For an elliptical plasma with a constant current density surrounded by

a perfectly conducting shell the stability criterion i§14)

b - a b + a )2
b+ a < (L' + a’ (6)

where b’ and a’ are the semi-axes of the shell. For b/a = 2 the shell

position required for stability is (b + a)/(b’ + a’) > 0.58. 1In practice
the conductors used for stabilisation are likely to have a finite conductivity.
To estimate the effect of this, the shell in the example given above can be
made finitely conducting. The n = 0 mode is then always unstable. Provided

criterion (6) is well satisfied the growth rate is given b§

v = 1/D'TR

where

D > 0 being the criterion (6), and Tp 18 the resistive time of the
conducting shell. This remaining instability would require feedback

stabilisation.

VII THE EFFECT OF INCREASED [ ON TEARING MODES

The full treatment of tearing modes requires first of all a calculation
of the jump A as described in section III and secondly the matching of this
jump to the solutions obtained in a resistive layer around the resonant sur-
face. When compressibility is taken into account the solutiqn in the resis-
tive layer is altered and the resulting stability criterion is changed from
A>0 to A>A. where A, increases with [B. The value of A, derived

by Glasser, Greene and Johnson, is(ls)

19
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A =1.54 % I:eq ujzf-‘ﬂi/(l + 2q2)2] x

X
2 @Caplan) [ o, L ardgar (2, BT eyl
B2 "r (dq/dr)? - r3 q? " B2 dr, f
[e]

This criterion can be applied to the model of Fig.3 to find the effect on

the stability diagram(l6). The pressure is taken to be given by

d _ _ g
dr BPJ chB

and the parameter determining stability turns out to be

A Bs/a 5 q%
= €t s” .,
P
For present experiments A is of the order 3-10 and a tokamak with an

aspect ratio of 2.5 and T  ~ 4 keV would have a A of about 30.

It is found that for AS 3 the m = 3 mode is predicted to be
stabilised over most of the previously unstable region in the stability
diagram. This leaves the m = 2 mode and the results for this mode are
shown in Fig.1l4. It is seen that a considerable improvement is predicted
as /A is increased and that stable operation of G 5 T 1 1is possible for

A > 30.

9a

Fig.14 Stability diagram for m = 2, n = 1 mode for various values of A.
This is the dominant tearing mode and the diagram shows the improved
overall stability, over that of Fig.3, as A is increased.

20



Further amalysis of these modes is necessary both to include the effects

of finite Larmor radius and to extend the theory to the collisionless regime.

VIII STABILITY OF HIGH-[3 BALLOONING MODES

The theory of stability outlined in sections II and III loses its
validity as [3 is increased, The principal reason is that the increased
energy available to drive instability is sufficient to produce Significant
bending of the magnetic field lines. This means that perturbations can
vary strongly along the magnetic field and can be large on the side of the
plasma furthest from the major axis, where the magnetic field curvature is
worst, and small on the side close to the major axis, where the curvature

is favourable. This phenomenon is called ballooning.

We shall look shortly at some numerical calculations carried out to
study thiseffect but it will be instructive first to look at a simple model

of the physics of ballooning.

If we take the ballooning to be strong so that the displacement is
large in the region of bad curvature then the potential energy available to

drive the instability is proportional to

gz

|
Tie

where £ 1is the displacement and R the radius of curvature of the mag-
netic field line which for the present purpose is adequately measured by the
major radius of the torus. The energy increase resulting from the line bend-

ing is roughly proportional to k:B$€z or

27V
St 2p2
(E)Bc.og
where { is the length of the field line over which the bending occurs.
An approximate stability condition will therefore take the form
d 27y Bg
ap =K =
dr<c(£ R3
or
gﬁ( ;_(ZNR,Z
Tar S ¢ R\

where c¢ 1is a constant of order unity. It is tempting to make the further

step of putting £ = 27mRq and obtain for the critical 8 the ordering
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B ~¢€/q? .

However this would be misleading since the effective value of £ can be

much shorter than this, and in any case a precise numerical calculation of

stability is required.

Two dimensional numerical calculations have been carried out for some
of the equilibria described in Section V and illustrated in Fig.13(14). The
growth rates of the first three toroidal modes, that is n = 1, 2 and 3,
have been calculated for the configuration D, which has J = 5.4% and B,
which has [ = 12%. The plasma was taken to have a conducting wall on its
surface and consequently only the internal modes are allowed. The results
are shown in Fig.15. It is seen that in both these cases the modes are
found to be stable for sufficiently high qq° An eigenfunction for the

= 3 mode is shown in Fig.l6 to illustrate the effect of ballooning. The
vectors show the local poloidal displacement of the plasma. High m-modes
cannot be treated by this type of calculation and a method of treating these

separately has been devised(”)’(m) ;

I ' Toroidz:ll mode
o6k numbers (n) are
i indicated
&2:102
0.4F ]
\\3
N
. Case B
B2 2 (B =12%) 1
\\\\
S R
0 "‘\. L .
0 15 2.0
%

Fig.15 Stability diagram for internal modes giving the square of the
dimensionless growth rate 7(= '3y R, /(B /\/p) where R, is the
radius of the point R = 3 in the mid- plane of Fig.13 and By is the
Y1
toroidal magnetic field at that point) against q, the value of q on
the magnetic axis. The full lines give the growth rates of the modes
with toroidal mode numbers n = 1, 2 and 3 for equilibrium D of
Fig.13 and the broken lines give the corresponding growth rates
for equilibrium B.
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Fig.16 Eigenfunction for n = 3 mode illustrating the effect of
ballooning. The vectors give the local poloidal displacement.

IX CONCLUSIONS

The stability properties of tokamaks at large aspect ratio and low-f3
are fairly well understood and there is a reasonable connection between
theory and experiment. At higher [ the theory is less advanced and there
is no experimental evidence. Initial ideal mhd calculations for configura-
tions with f3 ~ 10% look promising but it is necessary to determine the
stability of modes with high mode numbers, the stability against resistive

modes and the non-linear consequences of any modes which may be unstable.
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