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ABSTRACT

The technique of deducing plasma density profiles in circularly
symmetric plasmas from the Abel inversion of phase shifts measured by a
parallel beam multichannel interferometer is generalized to a multidirect-
ional array of beams and to an electron density distribution which can be
described by any kind of "sufficiently regular'" non-concentric contours,

including the quasi-triangular and "D" shapes characterizing certain tokamak

plasmas.
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1. INTRODUCTION

Multichannel interferometric determination of the electron density
profile is needed on many plasma devices. GORBUNOV et al (1968), (1973),
GORBUNOV (1973), GRIBKOV et al (1974), VERON, CERTAIN and CRENN (1975) have
used parallel or perpendicular beams for that purpose. But engineering
constraints very often do not allow the ideal disposition of windows so that
the only data available are interferometric measurements of the phase-shifts
introduced by the electron density over a few non-parallel paths. Moreover
tokamaks often show displaced elliptic, quasi-triangular or D shapes which
cannot easily be dealt with. BAKER (1974) devised a method to determine the
density profile in case of elliptic symmetric and asymmetric plasmas with the
degree of asymmetry given beforehand. The method amounts to constrwc ting that
density profile for which the Abel integral most closely matches the experi-
mental phase shift data. In this paper we consider first symmetric and
asymmetric circular density profiles and show how to reduce computational
operations to a minimum using Cavalieri's Principle (HALMOS (1950)), then go to

deal with any kind of sufficiently regular displaced profiles.

2. CIRCULAR CASE. APPLICATION OF CAVALIERI'S PRINCIPLE

Let us assume that the deviation of the ray from a straight line is neg-

ligible. For a beam with off-centre distance x (Fig. 1), the phase difference
of a wave probing a plasma between A] and A2 will be
v(x) = — 72 n(r)d (1)
. 2) n. )y, ¥ '



where n(r) is the radial electron density profile
A wavelength of the probing beam
n_ cut-off density for the wavelength X,
In the absence of axial symmetry, we shall consider the lines of constant
density as being defined by a family of off-centred circles. The equation for

each circle is

‘(x-A(r))2+y2=r2 (0&rga) (2)

with "a" the radius of the circular plasma. Following GORBUNOV et al (1968),
GORBUNOV (1973), A(r) is the displacement of the circumcircle of radius r
along the displacement axis x, relative to the centre of the boundary surface

with r = a.

Let us consider the displaced surfaces and probe the plasma along the P
direction CFig.Z(a)) with
T

A(l’) = XO(I = -5 )

X = A(rn) .
The direct evaluation of the integral (1) is difficuit. However the applic-
ation of Cavalieri's Principle, as described in Appendix I, demonstrates that
the integral is unchanged if instead of the configuration shown in Fig. 2(a)
we consider the family of displaced circles céntred on the x; instead of the

. i .
x with X =X cosy (Fig 2(b)).

A particular case of this property is the invariance of the integral when
probing parallel to the displacement axis. In that case, it is impossible to
detect any shift of the centre of the plasma column, GORBUNOV et al (1968).

The integral (1) is readily calculated using

X

r o .
B~ a ? Xo T2 Xn B A(Rn) i3 n Xn cos ¥

with the off-centre distance of the probing path and § defined as on Fig 2(b),

we have
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l g |
y(D,8) = - B%ﬁli .[ E )\/RZ(I—X'OZ) - ZRX'O(D-X'D) - (D-x'o)2 N (R) dR
’ c R(D

R(D) is the radius of the circle tangent to the probing line P, that is

. D- X
R(D) = -
1-X,
if D-X 20 ,
(o]
. D - x'o
and R(D) = - .
1 +X
[s]
if D-X <0 .
0

Let us consider a set of measurements defined by the two parameters D and §,
and at each of these measurements, let us associate a positive integer I
[(L)]. To each of these measurements corresponds a value REDL) = RL. Then,
if we consider M displaced circles of radius RL, 1L <M, and a linear

approximation of the density between the different circles, we obtain

N(R;,)) - NGB
N@®Rp) = —5 %
J+1 J
with RJ+| # RJ
and
M-1 R - \
_ _n(o)a J+1 2, o 2, , 7 _ v P
) == = Jg% f J RP0-x" % - 2mx”_ 0 %" ) - @& )N ®R)dR
Ry
M=l NRp, ) - NR)) Rykl T N )j
Y(L) = - “§°)a 2 §+' — R or oL oL L a6l
Be J=L J+1 J R

J
dR .



Defining

L _ fRJ+l Jz . 2 . , » 2_‘
Ul j RO(-X ) = 2RE (D = X)) = (O X))
RJ
L L
. Ui-1g Y504
and V; ¥ =®_, R®_ R
| J+1 J
we obtain
A y!
- ¥ (D) Yo L ln@m) 2R+ NERV, e NRV, +NER V)
n(o)a 1 RZ-R] 272 3773 * M-2" M-2
1 UD}I 1,M
+ N(R ' + N(R ) —2>—
M—I M—] RM RM -1
2 2
An U
_ c _ 2,3 2 Uo1,m
v(2) ala N(R ) i;*ﬁ; + N(R )V3 + ... N(RM)
M -1
M=-2 M=-2
An |8}
e . M-2,M-1 M-1,M
Y(M2)—rsm = - N(Ry ) Ry - By + N(Ry_; IV + N(R,) B - Ep g
=1 M-1
Kn U.
= - M-1,M _M-1,M
- (M- 1){1(0)‘El N(R M_l)RM T + N(R )= R
- 40 e =0 = N(R )
n(o)a
which can be written
B ) 3 Kn T
N(Rl) - w(l)n(o)a
hn
BE)d  2hon
(T) =
?\n
N(RM-Z) bt llj(M 2)n(0)a
?mc
N(RM_I) - {(M-1) ©)a
N(RM) - (M)
L 8 3 e

dR



and, if (T-l) exists

_ . hnc
n(Rl) - (1) <
Rnc
n(Rz) B - (2) ==t
= (T 7)

Rnc

n(By ) ~ BMeL 2T
An

n(R M) - () TC. = 0

n(Ri) being the calculated electron density as a function of the radi of

the displaced circles.

Computational trials of the method have been made with 14 beams taking
into account the limited access on a machine like RFX. A linear approximation
, . : . N(R) _ ; s o
such as the above with a density profile of NGo) 3(1 + cos ) with

e = 1.5, 3 and subsequently a hollow profile

1 + 1(cos HRZ - cos mR) - R2 were assumed.

The profile has been reconstructed, first with no displacement of the column

(symmetric case) then some given displacement (asymmetric case).

Fig. 3, 4 and 5 show respectively a representation of the assumed electron
density profile where the density is plotted as a function of the radius R of
the displaced circles {(contours of equal density) as well as the reconstructed

profile representation in the case € = 1.5, 3 and hollow profile with different

parameters Xo and 0.

Fig. 6, 7 and 8 show respectively the assumed normalized electron demsity
profile given on the displacement axis and the respective recalculated points

in the cases ¢ = 1.5, 3 and hollow profile.
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These graphs serve to illustrate the accuracy of the method which
enables us to recalculate a density profile which exhibits a high degree of
asymme try XO = 0.8 as well as a hollow shape. The absolute error AN in the

finding of the density profile in the case of the Fig. 3 with Xo = 0 is less
13 =3

than 1.65 10"~ cm ~ for all the cords probed. See Table 1.
TABLE 1 Displaced Circles Case N(R)/N(0) = 3(1 + cos le'S)
Normalized Given Calculated Absolute error
circles radii | density (ecm™ ) density (cm™) (em-3)
0.000 6.6 10l4 6.690 1014 9 1012
0.217 6.436 " 6.480 " Lok 1012
0.233 6.395 " 6.460 " 6.5 1012
h
0.250 6.349 " 6.458 " 1.1 1013
0.450 5.224 " 5,224 " 0.00
0.483 4.926 4.975 " 4.9 1012
0.650 3.051 " 3,055 " 4, 101!
0.833 8.893 1002 7.239 1053 1.65 1013
1.000 0.000 0.000 0.00

Similar results hold for all the other cases (€ = 3 and hollow profile).
The principal limitation of the method appears to be the degree to which a
profile consisting of displaced circles accurately models the true electron
density distribution. To overcome this limitaion a more general method
capable of dealing with elliptical, quasi-triangular, and D-shaped profiles

has been developed.
3. GENERAL METHOD

a) Mathematical developments

Let us now take (1) with a slight change, i.e., r is now a parameter
defining each of the equi-density curves. (It has been the radius of the
equi~density circles and we shall see later.that. it can.be.the majqr;axis
of ellipses.)

If the equation of the equi-density curves can be written as
f(y,x,r) = 0 or more specifically
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a(z,1)y> % b@,r)y + c(x,r) = 0 (3)

and if % exists, (1) can be rewritten as

1 fx(y,) d
V(x) = ﬁlz fr(yZ) n(r) -&% dr , (4)
1

The probing path intersects one of the equi-density curves at only

one tangent point. Let the value of the parameter r be Ty at that point.

We can write { as

V(x) = _z.iTlrfro n(r) %’ ar # frz n(r) %}"’ dr:,
* Cc I'l rO

where y_ and y, are solutions of the equation (3).

Again
o o
_2lnc ¥(x) = n(x)y_(z) - j n' (r)y_dr
r r
1 1
) T,
+ n(n)y () - n'(r)y dr »
r, T,

As n(r]) = n(rz) =0
(Density nil on the outside curve) and

vy (ro) = ¥, (ro), we obtain

r r

n'(r)y dr - J

,27111C P(x) = J .

1
n'(r)y, dr

r rO

T and r, are equal as they both refer to the same external equi-density

curve.
Then
T
AZJmc P(x) = J r; o (x) [y_ -y, } dr
¥y B tesh ~ dales) alted) (5)
= _J n'(r) 3 s s
, a(x,r)
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Equation . (5) can be used to write a system of linear equations. Taking
a linear approximation of the density between the different equi-density

curves tangent to the probing paths, we obtain

M-1

by = -4 @ V@R, ) -FRy) 4
J=
Ry 4q = By
R, + 1 2 3
J (b (X, ,R) ~4 a(X; »R) c(X,R))?
" I 5, 5, . =
R; a(X , R)

“where d is a normalization factor, N, R the normalized electron density
and curve parameter and Xi the normalized off-axis distance of the Lth

probing path.

b) Particular case. Displaced ellipses.

Let us consider a family of displaced ellipses. There are three
important axes (Fig. 9).

The probing axis P, defined by BL and XL.

The displacement axis A, defined by 7.

The inclination axis I (Major axis of the ellipses) defined by B.
Let us define a system of co-ordinates in which the X' axis is parallel
to the I axis and Y' is perpendicular to it. The equation for the
ellipses is

[X'— B_» (R) ]2 + az(R) .[Y| —Ay' (R) ]2 = R2
with cos (n - B)= b+ (R) / A(R)

sin sin (n - B) = Ay' (R) / A(R).
A(R) = Xo(l - R) is the displacement of the centre of the éllipses

of normalized major exis R relatiye to the external equi-density

curve centre.



6R) = 1 + uo(l - R) is the eccentricity of the ellipse of normal-

-ized axis R. Note that the eccentricity is a function of R such as to

match the circular external section with assumed density 0.

Let us consider a new system of co—ordinates with the Y axis

parallel to the probing axis and the X axis perpendicular to it.

The equation of the ellipses relative to the new system of co-

ordinates is

[ X cos (6 -8) - Y sin (5§ - B) - A(R) cos(n - B)]2

+ az(RJ [X sin (6 = B) +Y cos (6§ - B) - A(R) sin (n - B)]2 =R

2

which can be written as

a(x,R}Y2
with
a(X,R) =

b(X,R)

I

c(X,R)

+ b(X,R)Y + ¢(X,R) = 0

sin2(6 - B) + az(BJ c032 (§ - B)

= 2[sin (8 -~ B) A(R) cos (n - B)

+ a2(R)X sin(§ - 8) cos(s - B)
- az(R) cos(8 = B)A(R). sin(n - B)
- X cos(8 - B) sin(8 - B)]

B) + az(R) sin2(6 - B)]

Xz[cosz(é
2X[cos (6 = B )A (R) cos(n - B) + uz(R) sin(8 = B)A(R) sin(n~ B)1]
A2(R) [cosz(n - B) + az(R) sinz(n -8l

R,

The radius of the tangent ellipses to the probing paths is given by

b2 = 4ac = 0 thus,

o2(®) 22R)E% - 220(R)%2(R)C + X2a2(R)

- R%[sin(5 - B) + 02(R) cos? (5 - 8)] = 0

with

G = sin(n - B) sin(6 - B) + cos(n -8B ) cos(8§ - B )

and , X l is the probing path off-axis distance.

.



We have computed the solution of such a problem in the case of

maximm eCcentricity 2, which is ay = 1, and maximum displacement XD = 0.4,

Fig. 10 shows the plasma model with ellipses tangent to the 14

probing paths considered.

As in §1 an electron density profile of the form

N(R) / N(O) = 4 (1 + cos R ")
with

N(0) = 6.6 10'% cn >
has been assumed, and the profile has then been reconstructed comput—
ationally from values of the phase-shifts which would be obtained along
- the probing paths. As before, in the case of displaced circles, the
12 -3

absolute error is very small indeed and less than 2.1 10~ em ~ for all

the points but the most external chord, i.e. R = 0.89.

Again we stress here the great accuracy of the method which is able to
produce a two dimensional density profile although the probing directions are
distributed over 2m, depending of the availability of ports for diagnostic

access.

The main drawback of this method is, its high sensitivity to errors in

the experimental data.

In order to illustrate this sensitivity, we have introduced a random
error of a few 7 in the phase-shift test set and show on the Fig. 11 the
influence of this error on the computed profile.

The curve (a) 1is the original profile

(b) is the one obtained when no error has been introduced
in the phase-shift

(¢) 1is for a random error of a maximum of 17

(d) is for a random error of a maximum of 27

(e) 1is for a random error of a maximum of 47Z.

When a random error of more than 4% is introduced, the spurious ringing
observed in the calculated results reaches such an amplitude as to render

them useless.
_10_



TABLE 2 . Displaced ellipses case
N(R) / N(0) = (1 + cos 7R "> )
Normalized Given Density Calculated Density Absolute Error
Major Axis (cmf3) (cme) (cnr3)
0.062 6.596  10% 6.586  10'% 1.03 10'2
0.112 6.577 " 6.589 v 1.18 "
0.196 6.479 i 6.486 " 0.78 w
0.280 6.249 " 6.264 " 1.54 "
0.363 5.853 " 5.861 " 0.79 =
0.429 5.395 " 5:397 " 0.21 "
0.480 4,955 " 4.951 it 0.41 u
0.516 4.609 " 4.620 " 1.10 "
0.572 3.990 " 3.992 e 0.21 "
0.639 3.193 " 3.184 " 0.84 "
0.661 2.910 " 2.907 " 0.31 "
0.742 1.907 " 1.900 L 0.71 "
0.777 1.486 n 1.465 = 2.10 "
0.887 4.286 1013 3.411 10'3 8.76 "
1.000 0.000 0.000 0.00
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CONCLUSIONS

It is well-known that the radial electron density profile in a plasma
where the contours of constant density are concentric circles can be deduced
by Abel inversion of phase shifts measured in a parallel beam multichannel

interferometer.

This paper has used Cavalieri's Principle from the mathematical theory
of sets to deal with multi-directional multichannel interferometer and
density contours which are non-concentric circles. Furthermore it was demon-
strated that the method can be generalized to cater for density contours such
‘as.concentric and non—concentric ellipses, and finally any "sufficiently
regular" non-concentric contours. The technique is accordingly applicable to
the quasi-triangular and "D" shaped plasmas characterizing certain tokamak

configurations.

As an example, the case of 14 randomly directed beams probing an electron
density distribution defined by a set of contours consisting of mutually

displaced ellipses was discussed, and the sensitivity of the reconstructed

profiles to random measurement errors was investigated. It was shown in
this case that random errors in phase shift measurements of less than 4%

could be tolerated.
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APPENDIX T

"The integral (1) is. unchanged per transformation which shifts the
contours of equal density parallelly to the probing direction, provided

, '
that the function N(R) stays defined on [-1, +1]}

The demonstration of this fact is a simple application of CAVALIERI'S
Principle (P R HALMOS (1950)). If X and Y are two sets, the Cartesian product
XxY is the set of all ordered points (x,y) where x£¥, y€Y

XxY = [(x,y) ;  xEX,yey ] .

(
B, = Ly 3 (xY)EE

Similarly EY is defined by

If E is any subset XxY and x any point of X, we shall call the set
the section of E determined by x.

EY = {x; (x,y) €E} .

Let v be the Lebesgue measure on X and Y,

If E and F are measurable subsets of X x Y, such that v(Ex) = v(Fx)

for almost every x in X, then A(E) = A(F), where A = v x V.
In our case, X x Y = R x R; v is the length, A is the surface.

E is the set shown on fig. I-1, F on fig. I-2

A 4

N ///
/,7/\ _ ////,

Fig. I-2

Y

As the equi-density contours are shifted, the conditions of the
CAVALIERI's principle are fulfilled, and the value of the integral is

unchanged per translation of the circles.



APPENDIX TII

- L —
Calculation of UJ,J+1
f RJ+1 .\/ 2 F 2 Fd > -~ 2‘
R(1-X o ")-2RX o (D X 1 )-(D X ; )7dR
Ry
s 2 ’, s N
Ca-x"_ R, x"_ (@ -x"_) .2 g¥ B P " o o2
= OL ~ g+l OL L OL” “R™ ;, (1=X"0 )-2R ., X' (D X" )=(D X" )
2(1-x"_ %)
oL
1x"_R-x"_@.-x"_) "
- G Y e TRk - ”%? 1x" %or . X" (.-x"_)-(D.x"_)?
. 2 J oL LRl s el A )
2(1-X o )
L
v B
_ (DL—X-Oﬂ .
: 2.3/2 L
2(1-X of, )
Loy o BB . 2 p , > w2y . 2
o o " (D ~ O E R
(xR, QX7 D-2r g X7 (D =X =D =X )T+ (LX) DR g

- X OL(DL-X OL)

4 2.2 o 2 . 2 ’ ’ ’ 2
VQl-x or) {RJ(I-X oL )-ZRJX oL )—ZRJX OL(DL—X OL)-(DL~x OL) 1+

s 2 ’ ,
- = =, )
(1X o IRFX (D X 0

oL "°J 0oL

L
- UJ,J+1

[T} function of ﬁxD) function of Xo’ y = 6-8
X and © unknown

D and & given.




Fig.1 For a beam with off-centre distance x, the phase
difference of a wave probing the plasma between A,
and A, is: q v
Y(x) = z— /7?2 n(r)dy .
) 2M. y,

(a)

Fig.2 Section of the plasma column showing the displaced circles structure. P is the probing direction.
0X is the displacement axis. The integral | 7 n(r)dy, along P is unchanged per translation of the circles

¥
from the configuration (a) to the configuratlion (b).
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Fig.3 Representation of the electron density profile as a function of the radius of the circles — contours
of equal density — for e = 1.5,
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& profile No 2{] SesnR")
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Fig.4 Representation of the electron density profile as a function of the radius of the circles — contours
of equal density — for € = 3.
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given ____ NO®_q, 1 (cosnR?- cosnR)-R2
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Fig.5 Representation of the electron density profile as a function of the radius of the circles — contours

of equal density — for a hollow profile.
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Fig.6 Electron density profile on the displacement axis (Corresponds to the case (2) of the Fig.3).
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Fig.7 Electron density profile on the displacement axis (Corresponds to the case (2) of the Fig.4).
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Fig.8 Electron density profile on the displacement axis (Corresponds to the case (3) of the
Fig.5).
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Fig.9 Ellipse model. Definition of the different parameters.

T

Fig.10 Cross section of the plasma showing the different ellipses tangent to
the probing paths. Here X, =0.4,6=0.39,7=-0.39.



a) Given ____ N(R) = %(h cos T R"S )

profile No
N (R) A 8 b) e No error
o c) + 1%
1.0L (o) d) & 2%
0 _*-._r_i*—-%\\g e) 0 4%
A o ~u o
0.8 | N
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0.6 6
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0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 09 1.0 R

Fig.11 Representation of the electron density profile as a function of the major axis of the ellipses for
a,=1.5,X,=04,8=0.39, n="-0.39 and different values of random error.
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