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ABSTRACT

Early investigations of resistive instability assumed that the
plasma was at rest. However a recent paper investigated the influence
of the natural diffusion velocity (v ~ n/a) on resistive tearing
modes and showed it to be important even in the limit mm - 0 . In
the present paper we investigate the effect of a more general
velocity, of the same order as the natural resistive diffusion
velocity but otherwise arbitrary. It is found that as 7 - 0 the
effect on the stability threshold is finite and independent of the
velocity except for its sign. Hence the threshold is discontinuous
at v = 0 . There is an additional effect of velocity on modes of
finite growth rate which may be stabilising or destabilising according
to the sign and magnitude of the velocity. The present calculations
of these effects agree well with numerical simulations of tearing

modes.,

(Submitted for publication in Physics of Fluids).

March 1978



I. INTRODUCTION

The influence of resistivity on plasma stability was first
systematically investigated by Furth, Killeen and Rosenbluth1 (FKR)
for the plane slab model and later by Coppi, Green and Johnson2 (CGJ)
for low-B plasma in a circular cylinder. These authors showed that
in the high conductivity limit (n - O) resistivity is important
only in a thin layer, outside which the motion follows the ideal
(n = 0) mhd equations with zero growth rate. The solution within the
resistive layer determines A'(p) , the change in logarithmic deri-
vative across the layer, and matching this to the difference in

logarithmic derivative of the ideal solutions in the outer regions

r

(A ext

) determines the growth rate p of the tearing modes. The
stability criterion obtained in this way is found to be A’ext =0
These and all subsequent calculations assumed a stationary equi-
librium, ignoring the equilibrium diffusion velocity v, and the
field diffusion (9B/dt) on the grounds that these occur on the
resistive.timescale Ty ™ a?/n whereas the tearing modes grow on the
much faster timescale p = Wre ~ Sz/'5 (where S = TR/TA and Ty is
the Alfven wave transit time (p%a/B) so that S - © as 1 - 0).
Recently, however, Dobrott, Prager ana Taylor3 (DPT) have pointed
out that the neglect of the diffusion velocity is incorrect, since the
length scale which determines its importance is the thickness of the
resistive layer & not a macroscopic dimension such as a . For the

7

tearing modes 6/a ~ S so that diffusion across the resistive
layer occurs on the same timescale as the growth of the tearing modes
and is therefore significant even in the limit n - 0 .

The relevant diffusion velocity is that of the fluid relative to

the resistive layer, whose location is determined by k.B = O where



k is the wave-number of the perturbation perpendicular to the density
gradient, and which itself moves if 9B/dt # O . This velocity v
~ (o}

is defined by

QG
o

2

+ VX (nVXxB) - VXx(yy, XB) =0 (1)

Q@
rt

and it was the influence of this "natural" diffusion velocity on
tearing modes which was investigated by DPT. For the plane slab
model they calculated A’(p) at the threshold of stability (p = 0)
and found that in the presence of this '"natural" diffusion A’(0)>0,
indicating a stabilising influence of the diffusion velocity. A
stabilising influence was also found when pﬁ/v0 was large.

In the present paper we extend the calculations of DPT in several
directions. The first extension is to "decouple" the diffusion
velocity from the equilibrium profile. That is we comsider
the effect of an arbitrary velocity which, although it is of the same
order in 1 as the natural diffusion velocity, does not necessarily
satisfy Eq. (1). This extension allows one to investigate the
stability of equilibria which do not satisfy the elementary Ohm's law
which lies behind Eq. (1) (such as the force free paramagnetic model)
and to make comparison with numerical calculations, such as those of
Shestakov and Killeen4 in which the equilibrium velocity is treated
as an arbitrary parameter.

The second extension is to calculate A’(p) for values of p
in the vicinity of p = 0 as well as at the stability threshold
itself. This allows one to investigate the effect of diffusion on
weakly unstable tearing modes, in addition to the strongly unstable

and marginal cases discussed by DPT. Finally, in Section III we



extend the calculation to investigate the influence of diffusion

velocity on tearing modes in a cylindrical plasma.

II. BASIC EQUATIONS (DECOUPLED FLOW)

In the standard plane slab configuration equilibrium quantities

depend only on vy , the density is p(y) and the magnetic field
B = éﬁoz + iBox(y) . The flow velocity is in the y direction and,

as in FKR and DPT, we assume that the plasma is incompressible and
the resistivity uniform (to eliminate ripple modes). For modes of the

form ~ exp[i(kmx + kzz) + wt] the linear perturbations are given by

wB, = Vx (v, X Eo) W, Ba) = LS LA By (2)

P,V X (Wyy + y.Vy,) = VX (B VB, + VX (B,-VB_) (3)
o

V., =0 ¥.B, =0, (4)

Again, following previous authors, a pair of equations can be
separated from this set which involve only B,y and v,y . Then in

the dimensionless variables

¥ = B,y/B W= - ikvyy 7o F = k- B/kB
a = k = -
a P = wTp C vOTR/a
= = = 2
S TR/TH y = ap TR T @ /<>
T = &_% 3 = /< > = - /<>
H B P po P n n,/<n

the equations governing the tearing mode in the presence of an equi-

librium velocity v, are



B, O Loy e
1!1+p+P (v a?y) (5)

F" 1

oo @2y - VT s (c” - a®'") + p(W” - o)) (6)

In the case discussed by DPT, when the velocity is that of mnatural
diffusion given by Eq. (1), we have C = F”/F’ . Because the natural
velocity is tied to the equilibrium profile the formulae of DPT do not
describe the effect, on a particular profile, of changing the
diffusion velocity. Also they cannot be applied to equilibria which
are not themselves governed by the standard Ohm's law. We shall
therefore consider L to be a general velocity, of the same order
in n as the natural velogity but not tied to the equilibrium
profile.

In the high conductivity limit, S - ® , Eqs. (5,6) reduce to the

zero frequency ideal mhd equations

v+ Mo €2
p
”
v - a2V - %.‘!;’ =0 (8)
except in the neighbourhood of F =0 . As discussed in FKR and DPT,

solutions of these equations exhibit a discontinuity in logarithmic

derivative

A= e -V )

e

at F =0 and the growth rate of resistive modes is determined by
matching the solution of the full equatioms (5,6) within the

resistive layer to the value of the discontinuity Aéxt



As 1 = 0 the resistive layer width & - O , the reduced growth

rate p - o® and W/¥ - © , One therefore introduces appropriately

1,3
scaled variables.

p ~ 61 ¥~ 1 W~ §-2 a~1 € ~1

F ~ 5 F' ~1 F' ~ 1 $2 ~ 8=5 9/9pu ~ 6-1

1!,0” = O (9)

\!1 s p(\!! + FW/p) (10)

1 1 " = pF¥ - F" (11)
S22 PE% ‘o

The lowest order solution is wo =1 and the quantity we need,

A'(p) , is given by

lim dln(p + W) dp

;6 QZS?‘\\ i
After a further transformation W — p h s, M= 68 , with

%

5 = (EE%?EQ)% , the problem is reduced to:

)ch + h —63h=e-7\F (12)
where
- . A
C(aFSs)* _ F"(aFs)?
Ao =Ty ==y (13)
p Fpls
5/
and Al = %f(l + oh) de (14)
(aFS) }

We now turn to the solution of Eqs. (12) and (14).

= 6 =



Small A 1limit

When AF,RC « 1 we can expand h in powers qf RF and Ac
(which are treated as the same order in accordance with the basic
supposition that the equilibriumvelocity, represented by kc , is of
the same order as the natural velocity represented by RF). Then if

he=h +Hh, <+ h, .. one finds
o

@ ®
3
A'= 2/4;5 f(l + oh_) de +feh,_de (15)
(a¥s8) AR o
with
h” - 6% =g
o} (o]
h'”'- 8%, =-x -2xh" (16)
F cCo
hzﬂ_ ezhz = _ hchlﬂ'l

Clearly h, is the sum of two parts, proportional to (Ac RF) and

}ch respectively, so that
! - 2
A A+ BIACAF + lec

where A,B, and B, are constants. These coefficients have been
determined both by numerical solution of Eqs. (16) and analytically by

expanding ho’h1’hz in Hermite polynomials

@

ho, 1, z(e) = e-92/2 Z ag?i,z Hn(e)
n=0

and using standard properties of Hn(e) (see e.g. Ref. (5)) to evaluate
(n)
the coefficients aé?i,z and from them the quantity A’ . Then one

finds



A'(p) =

5 . L
A 2
L 1285 % (. 78cr /8" + 0.49.c2) (17)
|aFs | % p /o ' :

The first term is that given by FKR, while if the diffusion
velocity has the natural value C = F"/F’ the sum of éll three terms
reduces to the result obtained by DPT. We see that the natural
velocity always exerts a stabilising effect, as does any velocity in
the same direction. For velocities in the reverse direction the effect
is at first destabilising but may become stabilising again when the

velocity is sufficiently large.

Large A

Following DPT, the solution of Eqs. (12,14) for X - « determines
a stability threshold (p - 0) for tearing modes. However in additiom
to extending the calculation of DPT to the case of uncoupled flow we
shall also extend it to obtain A’ for small p , so that the be-
haviour of weakly unstable modes as well as the marginal mode can be
discussed.

Returning to Eq. (12) we write 6 - Rcysr, h - AFRC_ySg sy (for
the present we consider lc positive so that x 1is a real variable)

then in the new variables

A
gm_ ng + 1= Lﬁ {_E T - gu} (18)
NaAsE .

c
-4
For large AF,AC the appropriate expansion is in powers of ht s )

then

A
81 _.ngl =._.l'._.{.__9._-r_g”}
A s Lg )
c



and

F > X.% '
A’ ="13’f (rgo+ g, +-—{;—>dr . (19)
-0

Again following DPT, Eqs. (19) may be solved by Fourier transform

e}
1 -ikx
80,1 = grfco,l(k) e dk
-0 )
where
G" + ik3G¢ = - 276(k)
o] o
1 A
Gy'+ ik, = —— { k2G_ - 2mi << 8 (k)
A ° Ay
c
and G, , » 0 as ]kl - ® , The function Go is continuous but its
derivative is discontinuous at k = 0 and the derivative of G, is
1
L
ill defined. However if we introduce Y = G, = 1 XE G; the
F
problem is reduced to
14 .
GO + ]_k3Go 5 276(1() . ,GO' - 0 'k, - @ (20)
and
" = 1 lC
Y” + ik = g K6, {1-3 51, Y| -0 [k]-w (21)
27 Ap
c
where the derivative of Y 1is continuous at k = 0 . Then the

required quantity A’ is given by

. i 7" dGO dGD iF" dy
a=-33&) (&) -7 (& e
F o o, E k=0 -



Eqn. (20) may be solved in terms of Hankel functions

¥ (1) 2 i 5/>
G, = Ak Hy (Se bk 2

and the Green's function for Eqn. (20) can also be constructed from
Hankel functions so that both GO and Y can be evaluated analy-
tically. The detailed calculations are given in Appendix A and the
final expression for A’ is

" 3/ ’ K,
A'=1rtan(7r/10)£. [1 - 4‘{TP 5 545 (1 - 351;) got b :l . (23)
F 3,&FS| /5 C/S (H 1/5)2)_

This expression has been derived only for hc > 0 . However the
symmetry of the original Eqmns. (12,14) ensures that
A'(hF,-lc,p) = A" ( -hF,hc,p) so that the appropriate expression for
negative A can easily be obtained. Taking this symmetry into

c
account and inserting numerical values for the I' functions the

final expression can be written;
I

A" = 1.021 o E‘ . b, ( } ] - 3|c|> (24)
Fl (ats) | s

o
where o = sign (CF/F).

The first term in this expression is the shift in the stability
threshold due to diffusion, found by DPT. It can now be seen that
this shift occurs for any non-zero diffusion velocity, not just the

natural velocity, and indeed is independent of the velocity except

for its sign.
It will also be seen from Eq. (24) that in addition to the shift
in the stability threshold, which depends only on the sign of ¥y @

the velocity has an additional influence on modes with small but

finite growth. This small additional effect depends on the magnitude

- 10 -



and direction of the diffusion velocity and may be stabilising or
destabilising.

For the "natural" velocity it is always an additional
stabilising term.

ITI. CYLINDRICAL PLASMAS WITH DIFFUSION

So far we have considered only the plane slab model,

In this
section we derive the resistive layer equations for tearing modes in

a cylindrical plasma with equilibrium diffusive flow.

The notation
and the ordering follows closely that used by CGJ.

We assume a stationary equilibrium magnetic field

B=2B(r) 6+B(r)z
~ e ~ A ~
in the presence of a radial flow v

The basic equations governing
the evolution of the system are

9B
VX (nV XB-yXB)= -5 (25)
d Y5
T (pp D =0 (26)
dy
-VP+(‘\7X§)X§=p_t (27)
20 4 pV.y + . Yp =0 (28)
where v is calculated from V¥V X (go X §)==-rrvzg . Linearising
Egs.

(25-28) and applying perturbations of the form

£.(r) = £,(r) exp (imd - ikz + qt)

We obtain the equations for small displacements

3

- 11 -



poq(go.v+q)§+ poqg.VXo = (Vxb) xB+ (VxB) xb-Vp, (29)

; -~ = -(1+7v) - -(1+v
qt.V(p p, ) +y -V (Pip -1, P, )=-a(pip; - ¥PiP,P, SIRECY
qp; + ap V.g + af.Vp = - v,.V0, = py Vv (31)
n 1
E"EVEE'VX(Q"E)=EVX(V X b) (32)

where uniform resistivity has been assumed.
We proceed to the limit m - O by applying the ordering

procedure used by CGJ (extended to include the scaling of vof

=
1l
m
s
™
11}
m
[~
™0

€y

N
1]
m
a
~
1
w
Il
m
]
"
<
]

The scaling on Vo which is fixed if the velocity Vo has the same
order in n as the natural diffusion velocity, implies that flow terms
must be present in the resistive layer equations as they were for the
plane slab. Consequently resistive diffusion will affect the stability
of tearing modes in cylindrical plasmas, even in the limit 1~ O,

just as it did in the plane slab.

Resolving perturbations ¢ and b along £y B,

1

X B, we then
rescale the leading order terms in Eqs. (29-32) precisely as done by

CGJ. (See Appendix B.) The resistive layer equations are then

cl\.lr0
= 0 (33)
d2vy,

- = Q ¢O+ XW (34)
dXx

w PR



d3w dW _
St ~—— = - T+ X2y + QX
C 3 + Q 2 QXy J (35)

/ 6
ﬂ“=w(s_%%>+gu(mggz>

i \ B Q &X
20 6QIV
- DXQA - —“;E"—O- (36)
Y Xy J
dA _ XU _ ‘o o
QA—*—C&—-DQ QJZG+———DQ ' (37

In these equations V is proportional to the radial magnetic field
perturbation br’ I" to the field perturbation along B, W to the radial
displacement Er and A to the displacement along B. Other definitions

are contained in Appendix (B).

We note here the quantities

2 J*B
4wﬂ€ J B

2w Ji _
kaB;i’(a) R2

35 = kB (a) ar

(J.B) , J

which describe the parallel current in the resistive layer. In the plane
slab limit only Jp persists and it then reduces to F"/F', Egs. (33-37)
reduce to those of CGJ when C = 0 and to those of DPT in the plane

slab limit. The main cylindrical modification to the plane siab problem

is the presence of the term - I in Eq.(35).

The problem now involves solving Egs,(33-37) for W,AT,¥, so that
the solutions match smoothly on to those obtained in the outer hydro-
magnetic region. The matching condition again leads to an eigenvalue

equation for Q

!

A’(Q) = Aext
p.4
A" (Q) = lim (Q¥, + XW)dx
X0 gy

= 18 =



Here, we shall analyse the layer equations only for equilibria
with vanishing J but finite shear F’ (such as force-free equi-

libria). Using the normalisation ¥ =1 Eq. (36) is then just
" o 2t o B T (38)
so that Eqs. (34,35,38) form a closed system for W,wz and I' only.
By making the following transformations
% 5/ 5
W-Q'H T - Q4G C - Q'lex
L 5 5 .
X - Qe Jp —'Q/‘*Jl;‘ J - Q/“J'

we can reduce Eqs. (34,35,38) to

MY+ H" - gL =89~ 6 - Jp“"‘ (39)
AG +G=JF (40)

(s8]
A = %j (1 + eH) de (41)

-

which closely resemble Eqs. (12,14) for the plane slab problem. The
stability threshold for tearing modes can again be determined from

the large X 1limit of Egs. (39-41). After a further transformation

¥,

3
6 -2 ; B~ h.g F , the problem becomes

F" - z2F = - l(J +J)
c P

@ 42)

A =cC j zF(z) dz + O(h_ﬁ%)

These can again be solved by Fourier transform, with the result that

the critical A’ at the stability boundary is

A =coll +3J | 7 tan(#7/10) (43 )
c,cyl P .

= 1k -



As expected, this is similar to the result obtained for the plane

slab with the quantity F”/F' replaced by (J + Jp).

CONCLUSIONS

As noted by DPT, a velocity of order n/a influences the
stability of resistive tearing modes even in the limit n = 0. They
calculated the effect of the natural diffusion velocity. In the
present paper we have extended these calculations in several
directions. First, we have considered velocities which, although of
the same order as the natural resistive diffusion velocity, are other-
wise arbitrary., Second, we have considered weakly unstable modes as
well as the strongly unstable and marginal stability situations
discussed by DPT.

In the strongly unstable case, p » Cﬁg(afs)75 the effect of
velocity on tearing modes is represented by

5 M 1
/4 2
2.12p % aFS|% 5 sgcp7 /5’ + 0.49c2) (17a)

A'(p) =

where C is a measure of the velocity. The first term is the classic
result of FKR and the other terms constitute the extemsion to
arbitrary velocity of the calculation of DPT. One now sees that any
velocity in the direction of the natural diffusion velocity exerts a
stabilising influence but a velocity in the reverse direction may be
stabilising or destabilising according to its magnitude. This
expression has recently been compared by Killeen and Shestakov4 with
their extensive numerical simulations of resistive instabilities in a

plane slab. 1In the appropriate limit S - o they find good agreement

with Eq. (17a).

- 15 o



4 . .2
In the weakly unstable case, when p « C’%(QFS) B, the effect of
an equilibrium velocity on resistive tearing modes has also been cal-

culated and is given by

o emm (B )

A =1.021 ¢ 2/ ry
F (aFs) s |c| "

which also determines a stability threshold (p = 0)}. This formula
extends that of DPT in two respects. It applies to any velocity of
the same order as the natural velocity and it applies to modes of
small growth rate as well as at the stability threshold. This result,
Eq. (24a), is remarkable in that it shows that there is a shift in the
stability threshold for any non-zero velocity and that this shift is

independent of the velocity except for its sign. This means that

v, = 0 is a singular point of A’ and that the stability threshold
is discontinuous in the flow velocity, jumping from A’ = zero when
v =0 to A" =4 when v_# 0 . This peculiar behaviour is

o DPT o

less surprising when one recalls the basic equation

)-ch’” n hrr - 62h = @ - )F

For if we put hc = 0 not only does this reduce the order of the
basic equation but it increases the symmetfy of the problem so that
although KF may be non-zero it makes no contribution to Al

Eq. (24a) shows that, in addition to the shift in the instability
threshold when 8 # 0 , there is a further influence of velocity on
modes of small but finite growth rate. This additional effect depends
on the sign and magnitude of the velocity but for the natural

diffusion velocity it is again stabilising.

- 16 -



The final extension we have made to the DPT theory is to
cylindrical plasmas, where the first point to note is that the
influence of velocities of order m on tearing modes ag;in persists
in the limit m - 0 . In the cylindrical case it is not possible, in
general, to isolate a single pair of equations and the problem is
governed by the full set of Egqs. (33-37). However in the limit
B - 0 this set does reduce to equations similar to those for the
plane slab and A’ can be evaluated. There is again a shift in the
stability threshold which is independent of v, except for its sign
and given by

r

Ac,cyl = alJp + le tan(7/10) | (43a)

This involves two contributions to the parallel current, the first of
these is analogous to the corresponding term F”/F’ in the plane slab

but the second has no analogue in the plane slab model.
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APPENDIX A

Solution of Equations for A’ in large X limit

Consider functions Y(k), G(k) satisfying

G" + ik3G = - 278(k) , |G| 20 as |k| - w (A1)

v o+ ik3dy

i

Rk 2G » |¥] =0 as |k| - w (A2)

Denote by K(k, k") the Green's functions for the operators on the
left side of (Al) and (A2) corresponding to decaying solutions as

|k| » = so that

8 %K , s ) ,
gz (e K+ ik Kk, k') = 6k - k)

Then the function Y can be expressed as

T

Y(k) = B g/ﬂ Kk, k')k’26(k")dk’
(s 0]

Using the symmetry properties
K(k, k') = K¥(- k, - k") G(k) = G*(- k)

this can be written

v(k) = B v/ﬂ (K(k, k'Dk’" 26(k") + K*(- k, k' )k’ 2G*(k’))dk’

°
Hence, the quantity (dY/dk)o which is required for the determination

of A’ can be written

2 0,
QE) - 0s | & PN 2e 0t Ay (A3)
(;k - 2if Imkwl‘ak(o’ k' )k’ 26(k" Ydk
0
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The Green's function K(k, k') can be constructed from the linearly

s =
independent solutions H (k), H (k) of the homogeneous part of (Al)

which decay at +o and - respectively. These are

L i 5
5 = k° (2 Llé k/2)
/5

5 <z)(g -inl4 5/:)
k H},5 5 e k

H (k) =
(1) (2) )
where H and H are the Hankel functions.
Then
H (OH (k)
———na k >k’
W
K(k, k') =
B OOH ()
..._.__..__Ii_...__._._. k < k'
W
and W is the Wronskian
. - .- +
W = H+(k)H (k) - H (K)H (k) = - % cosec (7/10)

Then equation (A3) becomes

(;k » 2if Im W k2G(k)H (k)dk

Similarly, the solution of equation (Al) can be written, for

where

1
im/20 e

A = Ziﬂsin(I%) I(6/5)e (1/5)"

o 1G =

(A4)

(A5)

k>0

(a6)



dy

The quantity we required (EE) can therefore be expressed in terms
k=0

of the integral

0,

I =[k3HE/:) 2 ei”ﬂ‘ks’a HE/:) 2 ei”/‘*k5/2> dk
()
which is performed along the real axis. The function H(l)(z) vanishes
as |z| - m everywhere in the upper half plane. We can therefore
substitute

_ gein/4 kﬁg

=3

and reduce I to the form

@,

3‘
_(5YS -2iw/5 . LS ¢ DU V.
09 -(2> e /9 5 H% (H)H% (6)de
(o]

This can be evaluated as follows. Consider for a moment the integral

RO

-x, (1)
o = | 7% (o)
| f y (OHy

(e}

Then recalling that the Hankel functions can be written

) . ~in/s
HE/; @) = icosec(n/5) (721, () -3, (@)

_.20 -



M(A) is proportional to the integral

@
-N -2iw/5 -im/5
l;)(e = Jl/s(Z)Jl/s(Z) - 2e J—}/S(Z)J}g(Z) +J_1,§z) J_1/5(Z))dz (A7)

which can be evaluated from the formula6

o ru)rf\'“*“‘h*l)

=1 2
t 'J (£)J (t)dt =
v vV

L+ v+ A+ 1 Vo= p+ A+l -V 4+ p+ A+l
2"r 2 )F( 2 )F( 7 )

(A8)

Unfortunately, this formula is valid only in Re A > 0 because the
integral (A8) converges only in this domain, and is singular when X= 0.
However Eq. (A7) involves the sum of three such integrals and this sum
converges for Re A > - 1. Hence we may evaluate M(A) for Re A > 0
using (A7) and then analytically continue the result (which will be

well-behaved at A =0) to A= - %. 1In this way, one finds

3, (-3
575 cosec2(7w/5) (A9)
N2 [ T3] 2

~4im/5
e

I=-

Collecting together (A4), (A5), (A6) and (A9) gives

i
(d_Y) = 53/5 . 4if8 n2 tan/m %
dk k=0 3 tanw/s [H /5)] 2

Combining this with the other contribution to A’ (calculated by DPT)

gives the result quoted as Eq. (23) in the text,
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APPENDIX B

The Equations for a Cylindrical Plasma

In the usual notation, we obtain for cylindrical geometry

ikazi' (a)[r - a]

: 27 2p(a)
B.V e , i(a) - , B 27 > B B _(a)
. !
Fr _ kale (a) 5 = - 87T2p, (a) & kiz(a)
278 ’ aszg[i’(a)]2 . ' i (a)

1
Fxpanding ¢ and b in powers of € (effectively m é)

il s 6]
E= E 3 : b = E €n2(n)
B= =0
= £(€EO) + Egil) + waced F g(géo) - egél) £ .. + £ " E(gfo) " GQEI) @

We extract the leading order terms of Eqs.(29-32) as € - 0. Taking,

respectively, components of the momentum equation (29) along B,r x B
E x \\ ~ ~
and operating with the annihilator V’.(riﬁri) gives
dg(o)
’ (4) (4) = 212 (0) 2 B
pobr -B. W%, = pa’B2E,"" + poqvoB rm (BL)
(o) |1 (&) iB (4)
Y s = = . = +
Q E)br -+a(mBz-+akBe)p1 - mBz akBg)bB (82)
+ 2
@', (mB, * 2KB)” ap J4)
- Vogr qE.r poan.'.‘l dr B
. " i(mB + akB,.) J.B
By g 2 2 _q_(______ b4 (33)
p,aq ~o ¥ P24 dr \ B2/ r .

The radial and parallel components of the induction equation (32) yield

e T



I B _—
q r T

I, (4)” (2) 2
qu - V.t (p +B)§ C - BJVES (B5)
Egs. (30) and (31) become
2 4
.0 () popf )) WV, dm?l - dpg )
(1-7)pq—§ ( p ar Vo dr
%o © (B6)
(2)
dp, (2) ( dp
2) (2) "Fo _
Vo e + qp; + quV.E + qgr T 0o (B7)
Next, the leading order terms of V, b=0 and V. E(o) = 0 are
db§4)
= -0 (38)
ap (8
I = —(mB + akB, )b(") (89)
dr
(2)
dgr = —(mB + kaB )g(°) (B10)
dr
These Eqs.(B1-Bl0) can then be reduced to 5 involving only bik) s bia)

(o) (2) (a4
gB 3 Ebr H] bB .
yields' the resistive layer Eqs.(33-37) of the main paper

Finally, introducing the following rescaled variables

La =-EL2.a'_2 3 =M X = xa/S
R ] QR paz 3 6/
m2F 22 I, 75
R
4
% (2) Dsz( Do %
Q= 4 H) = € H L 6/
L 5Q : p'L, s
R 'R R
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ia %p(%)

v, o= . 1]; s
: mFBLR %
16
; s
leLR 5 (ir (a)) kB (0)
% N %R 5
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