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Abstract
We have applied the Kruskal-Oberman energy principle to a simple
model of an anisotropic tokamak in which the pressure varies round
flux-surfaces. We show that the weighting of pressure towards regions
of favourable curvature leads to a significant stabilisation of the

high-n ballooning modes.
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Following recent theoretical investigations of the MHD stability

1- 6
of scalar pressure tokamaks » it is now generally believed that the

upper-limit to B is set by the ballooning mode. Apart from its use as

an additional heat source, neutral injection has been proposed as a
7
method for "pumping-up" f in the flux-conserving tokamak ;it is also

8
fundamental to the counterstreaming ion concept . These applications

have led us to consider the MHD stability of an anisotropic model of

tokamak to high-n ballooning, n being the toroidal mode-number.

9
Our analysis is based on the Kruskal-Oberman energy principle ;

using the property of adiabatic invariance, Andreoletti10 has shown
their result to be independent of the form of distribution function.
We assume that neutral injection is applied at an angle to the magnetic field
such that hot ions are created only in the untrapped region of velocity space,
so that the distribution function for the trapped particles is not significantly
anisotropic. Then for small inverse aspect ratio, &, the kinetic term in

. %y :
Kruskal-Oberman is 0(6"2), whereas the fluid terms are 0(52), when R ~ &.
Thus, we drop the kinetic term, anticipating that our general analysis will
be applied to a large aspect-ratio model. Writing the fluid terms in a

5

form as closely analogous to that for scalar pressure as possible, we

obtain

W =fd-f )(1-0_)6L2- (1-0) L2 (€ x 3.0 - 2(£.)E.V5)
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where p = (pL-+p“)/2 g @ = (p” -pi)/B2 . a = curl(g X 3), %I =0,

-

and Kk denotes the field-line curvature. In order to define o 5 we

introduce the pressure-like moment
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where the velocity space variables are = %y? and p = BL s SO
2p + C
that v? =2 (¢ - uB). Thus o = —*-3— . It follows from Eq.(2)
10 - 13
and the definitions of By and p“ that C and p are related by
—+ - 2_ & -
B.vp= 2£2C F via2) (3)

In practice, the criteria for stability to the "firehose" and "mirror

13, 14
modes , namely, 1-o >0 and l+0l > 0, will be satisfied.

5
Following Dobrott et al. and expanding in 1/n, we find that to

lowest order the minimising displacements satisfy V,‘E = 0(1) and
- -
B.VE = 0(1). The lowest-order contribution of the kink term (second

in Eq. (1)) vanishes, and after minimising with respect to the first-

=(1
order displacement, g() , the "field compression" term (fourth) also
vanishes. In zeroth order, &W is then a functiomal of the zeroth-

g

order ¢ only. Employing the usual axisymmetric (¥, x, ¢) coordinate

- . = o= ing 4
system, we express £ as a fourier mode £ = X(V¥, x) e , and obtain
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E = - + M‘E, with £ = ——l- EEE‘- & z = %\l' + _._B x Vv :
|Eﬂﬂ2 gW B? s’ s in OV ° “y |V¢|2 By
ﬁw = %5 , and ES = E—grg%ﬁQZP . Minimising Eq. (4) with respect to



QW we obtain an Euler equation containing partial derivatives which
act on the rapid V- variation of gw » as well as derivatives with

6
respect to y; following Connor et al. , this equation is reduced to

an ordinary differential equation. Thus, we define the transformation

gq,(\!f, ¥)=> F(I, y) by

@©

. . y '
gw = r% elmeF(‘P, y) e_l(my +n [ vdx') dy

-

3
= P ; " ; ;
where v = lv‘l’l VX' » and all the rapid V-variation of g‘p is contained

4 5 !
T - d ¥y
within the phase-factor e " J” vax Defining G(V, y) = vdx , then in
0

transform space the Fuler equation becomes

(1-0) 4 \2 K
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From the mode radial structure defined above, we deduce the physical

L
boundary condition [ylaF - 0 as [yl = ©, Asymptotic analysis of
12
Eq. (5) leads to the localised interchange criterion , as was noted

in the scalar pressure caseﬁ. In general, anisotropic equilibria are
of the form 5 = p(¥, ¥); this suggests that if equilibria can be
produced such that the pressure surfaces are displaced inwards relative
to the flux-surfaces, then the "loading" of pressure into regions of

favourable curvature could lead to stability at higher . We now

demonstrate this to be the case.

Using simple forms for p and the toroidal current density, we
14
expand the equilibrium equations in 6 and develop a circular boundary

(radius = a), 'flat'-current, f ~6 model of tokamak. Introducing co-

ordinates (r, 6) based on the plasma centre, and with the major radius

R =R (} + — cos %), we obtain
o R0
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p(r,0) = - 29 Zkl W(l + @ r/a cosf) , (6)
B
4
27a?B
where I = 'F_E—g is the toroidal current, B0 characterises the
i \0

magnetic field, and k and @ are free parameters. As a consequence

of the ordering, p, = p”(W) and B, = pL(W, rcosf), and hence from

Eq. (6), pL/pn =A + (1L + Alarcosf, where A is arbitrary. We have

three cases: (a) scalar p(e =0,A =1), (b) p =p(N(a=0, A# 1)
and (c¢) p = p(W,rcosO)(a # 0, A # 1). It is the general case (c)

which is of interest here; @ is a measure of the extent to which

p # p(\), For given @, k is defined through Bp(= 8ﬂ1é2fﬁrdrd6)

which becomes Bp = 671k (1 + %k)(1 + %ek)~2., Flux and pressure surfaces

» p and

for a typical case are shown in Fig.l. We note that for P, 3

15

& = 0 the model reverts to that of Cordey and Haas

We have taken the large aspect ratio form of Eq.(5), and solved
it numerically for the above equilibrium. Except for the immediate vicinity
of the magnetic axis, the localised interchange criterion is always satis-
fied when @ <0, On a surface of given shape and magnetic field, with a
prescribed amount of shear, there are, in general, two marginally-stable
pressure gradients which bound a range of unstable values. When « = 0,
the equilibrium value of &p/&V is found always to lie in the unstable
range, but rather close to the higher marginal point. As o falls below
zero, the unstable range narrows, Plotting Bp versus &, our results are

presented as a marginal stability line in Fig. 2. We also indicate the

equilibrium limit, and for completeness, the current reversal limit. We



observe that for very modest values of &(- 0.1), our model is ballooning
stable right up to the equilibrium limit; as Bp approaches this limit,
the value of @ corresponding to marginal stability begins to decrease,
This effect is thought to result from a stabilisation associated with large
values of the major radius displacement function A’ close to the boundary,
where A’ ~k. We note that for ¢=-0.1 and A = 1, 0.8 E?pl/p“ <1.2,

In obtaining the marginal curve, we have excluded the magnetic axis and a
small surrounding region (less than 1% of plasma volume). Any instability

in the excluded region will thus be strongly localised round the axis and

is therefore disregarded.

In the case of scalar pressure (@ = 0) as k = O the shear at the
boundary vanishes like k2, and as a result our equilibrium is unstable
even in the limit of small pressure. However, with a current profile
producing finite shear at the boundary we expect stability up to a
finite limit in 6p. When the additional shear is small this value is
in the vicinity of point A in Fig.2; the latter point is obtained by

6
applying the result of Conmor et al to our circular boundary.

As a consequence of large aspect ratio and Eq. (3), E can only
have the correct lowest-order variation round a flux-surface if C 1is
0(1). Calculations of P» P, and C for a distribution function
which models neutral injectiOnlﬁ, show that substantial variation of
p is to be expected only for near-perpendicular injection, with
v“/v ~ 6% for the injected ioms. Perpendicular injection is known
to have less favourable microstability properties than parallel injection,

16’17
although the non-linear consequences are uncertain ;

For the same class of current profiles, it is clear from Fig. 2 that
by a modest inward weighting of pressure, a significant improvement in
B can be obtained over the scalar pressure value. Although the weight-

ing modifies the shear, this effect is small at the values of a(- 0.1)

-5-



necessary to ensure stability up to the equilibrium limit. ©Naturally, we
expect this class of profiles to be kink unstable; stabilisation of this

mode requires shaping of the current profilels. We conjecture that the effect
to which attention has been drawn in this letter, may also give rise to

improved ballooning stability for equilibria possessing more realistic current

profiles.

We are grateful to Mr R.J. Hastie and Drs J.W. Comnor, J.B. Taylor and

J.A. Wesson for helpful discussions,.
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Fig.1 Flux (solid lines) and constant p surfaces (dashed lines) for equilibrium with
k = 0-5 and @ = — 0-2. The major axis lies to the left.

Equilibrium limit .
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Fig.2 Variation of the marginally-stable poloidal §, measured in units of § -1, is plotted
versus o. For §p above the dashed line, the toroidal current reverses on the inside.
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