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THE EFFECT OF SECONDARY ELECTRON EMISSION
ON A PLASMA SHEATH

Peter J Harbour

EuratomUKAEA Fusion Association, Culham Laboratory
Abingdon, 0X14 3DB, England

Abstract

Sheath potential and heat transfer across the sheath have been
studied for the case of a plasma in contact with a wall that emits
secondary electrons. The solutions are valid for arbitrary magni-
tude and spread of ion velocities and whether or not the plasma is
at floating potential. To allow for electron loss at the wall the
electron velocities are expressed as truncated Maxwellian distribu-
tion functions and these lead to plasma conditions which allow
greater electron emission and heat transfer rate and lower sheath

potentials than have previously been reported.
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I. INTRODUCTION

This paper presents a study of the influence of electron emission on
a plasma sheath. The sheath could be that on the wall of an experi-
mental fusion device or of a possible fusion reactor, and of parti-
cular interest is the sheath at the target of a tokamak divertor.1
The contiguous plasma will be almost fully ionized with high tem-
perature and low density, so ionization and other collision processes
can be neglected in the immediate vicinity of the sheath. This col-
lisionless plasma is lost at the wall so if it is to exist in a
steady state it must be generated elsewhere. For example, in consi-
dering the exhaust flow along the magnetic field lines of a tokamak
fusion reactor divertor, the main foroidal plasma within the separa-
trix may be considered to be an equilibrium source of plasma which
flows collisionlessly through the divertor channel and thence through
the target sheath to the wallz. Ions reaching the wall are assumed
to recombine, moreover an equal global loss of electroms must also

occur over the total area of the sheath although these losses need

not balance locally.

The energy with which charged particles strike the wall éan be high
so both ions and electrons will yield appreciable numbers of secon-
dary électrons. These secondary electrons are accelerated into the
plasma by the electric field in the sheath. However, if the yield
is so great that the resulting space-charge causes local electric
field reversal at the wall, then some electrons are reflected back
to the wall and the net electron emission current saturates at the
space-charge-limited value. Secondary electron emission causes a
reduction in sheath potential such that an additional current of

electrons from the plasma can reach the wall.

The objectives of this paper are: (a) to determine the influence
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of secondary electron emission on sheath potential; (b) to
establish the limitations on sheath parameters when the emitted
electron current saturates due to its space-charge and to find
a Bohm stability criterion which takes the emitted electrons
into account; (c) to derive an expression relating the energy
transported by particles through the sheath to the sheath poten-
tial, which itself is a function of secondary electron yield;
(d) to map the general regime of validity for the solutions
obtained for potential, electron emission coefficient and heat
transfer; and finally (e) although this paper deals predomi-
nently with a deuterium/tritium plasma (m.:L is taken to be

2.5 amu) it is considered desirable to investigate how the

results vary with ion mass.

It is necessary to consider the flux and energy carried by each
specie, ions, thermal electrons and secondary electrons. It is
convenient to evaluate the energy transfer at the wall rather
than at the boundary between plasma and sheath, for then the
energy transferred by emitted electroms is negligible and other
simplifications can also be made. The model used is discussed

in detail in Section II. It allows the ions to have a substan-
tial drift velocity towards the wall such that they may be super-
sonic or subsonic with respect to the acoustic wave speed in the
plasma and the energy transported by the ions is enhanced by the
energy they gain in traversing the sheath. The thermal electrons
in the collisionless plasma and in the sheath are not Maxwellian
because, although they come from a collisional plasma at tempera-
ture Te’ the more energetic among them reach the wall and are
assumed to be lost, so there is a deficiency of energetic elec—

trons travelling away from the wall. The electron velocity




distribution function in the model is truncated to allow for
this. The velocity distribution of the secondary electrons at
any location in the sheath or collisionless plasma is a delta
function about the velocity that they gain as a consequence of
being accelerated from the wall. All of the electrons traver-
sing the collisionless plasma in the direction away from the wall
are assumed to come into equilibrium in the collisional region
before returning. The analysis neglects the effect of magnetic

fields.

To determine the limitations to sheath stability it is necessary
to integrate the Poisson equation in the sheath. Apart from
velocity distribution function instabilities which may be impor-
tant but are beyond the scope of this paper there is the space-
charge limit and also a Bohm-1like stability criterion3 for the
velocity of plasma ions approaching the sheath. The latter must
allow for the presence of secondary electrons. It will be shown
that for a plasma with energetic ions this modified Bohm stability

criterion is easily satisfied.

Previous studies of the influence of electron emission on a

plasma sheath have been carried out by Hobbs & Wessona’5 but for
plasmas containing low energy ions. The present study is different
because it allows for more energetic ions with more general velo-
city distribution functions and more accurate electron distribu-
tion functions. Further, it does not require the assumption that
the net current density of all charged particles to tﬁe wall must
be zero at every point, even though it must be zero if integrated

over the sheath on the whole of the plasma vessel.



II. DESCRIPTION OF THE PLASMA AND THE SHEATH

A parametric description of the plasma and sheath is now presen-
ted. This includes the spatial distribution of potential and
current density of the various species together with the boun-—
dary conditions applicable on either side of the sheath. Once
the velocity distribution functions of ions and electrons have
been specified, then it is possible to write an expression for
heat transfer through the sheath that is related to two parame-
ters, namely the effective coefficient of secondary electron
emission and the sheath potential. These two parameters are not
independent and only when their relationship, which is discussed
in Section III.1, has been determined can a complete expression

for the heat transfer be deduced.

A. Description of the Potential, Current Density and
Boundary Conditions

The sheath, the collisionless plasma and the thermalisation
region are illustrated schematically in Fig.l, for a one-
dimensional flow with constant area. The potential, V, is taken
to be zero at the wall (x = xw) and increases monotonically in the |
negative x-direction until at x = O the collisionless plasma is %
reached and the potential is assumed constant and equal to Uthere-
after. Fig.l(b) shows the non-dimensional version where
¢ =eUﬁW/Mé (1)
represents the potential whose value at the wall is

¢w = eU/kTe . (2)

The distance in non—-dimensional form is

£ = X/AD (3
where the Debye length
_ 2
AD = (aokTe/noe )



In the above equations 0 is the charged particle density at
x g0, Te is the electron temperature in the thermalisation
region and Eo,k and e are, respectively, the permittivity of

free space, Boltzmann's constant and the electronic charge.

The distribution of current density among the charged species
is shown in Fig.l(c). The constant ion current density, j+,
throughout plasma and sheath is consistent with the assumed
one-dimensional flow with the ions being lost at the wall.
The secondary emission current density, js-, is that released
by incident ions and electrons subject to it not exceeding the
space charge limited value. It is convenient to write j-'+js-
for the thermal electron current density to the wall because

* =

j = j when the plasma is at floating potential. The boun-

dary conditions on either side of the sheath are summarised in

Table I.
. Collisionless Wall
Plasma
Distance X 0 X
W
Normalised distance E 0 Ew
Potential v U 0
Normalised potential ¢ 0 ¢w
: ; ; . _ d¢ .
Normalised potential gradient ¢~ = €73 0 ¢w
Plasma density n,,n, n =N =0
Table I. Boundary conditions on either side of the sheath
B. The Velocity Distribution Functions
1. Distribution of ion velocities

In the collisionless plasma the distribution of ion velocities

is assumed Maxwellian in the y and z directions but in the
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x-direction it is truncated at vix==0, thus if O g Vi <%

then

ni(vix) = Ai exp[} mi(vix - ui)z/ZkTi ], (4)

but n.(v. ) is zero for all negative values of v._. In

i ix ix
Eq.4, A; 1isthe constant of normalisation, L is the velocity
of an ion in the x-direction, us is its most probable speed,
Ti is the ion temperature characteristic of the collisionless
plasma, m, is the ion mass, and n,(v. )d(v. ) is the ion density

i 1Y ix ix

i velocity range |v. ,v. + d(v. . i i i i
in the y rang [Tlx’ ix d( 1x) ]. This distribution
function is illustrated in Fig.2(a). In practice such a simple
expression may not be applicable but Eq.4 has the advantage of
describing all types of ion flow from subsonic to supersonic
with respect to the ion sound speed. The parameters used in
Eq.4 can be made more convenient for the analysis in this paper,
which uses non-dimensional equations, by the introduction of
two non-dimensional parameters. The first is the ion speed
ratio, S:s which is the ratio of the most probable ion velocity

in the x-direction to a typical thermal speed:

- 2 i
The second parameter, called here the ion energy transport coef-
ficient, Gi, describes the magnitude of the ion energy. It is
the average number of units of energy, kTe, carried in the

x-direction by each ion in the plasma and it can be shown6 that

6ikT may be expressed in terms of the ion temperature and speed
e

ratio:
GikTe = kTi L(si), _ (6)
where 5 5
(5.2 + 2)exp(- s§.2) + /1(s.” + 2)s.(1 + erf s.)
i 1 1 2771 1
L(Sl) = 2 /_ + £ ? (7)
exp(- s; ) + v Si(l er si)
with S.
. g §* e 2
erf s. = —= exp (- .
it | e e

o
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Equation 7 is complex but L varies smoothly from 2 when s; = 0
to si2 when si-+W. Thus for a half range Maxwellian with si==0,
Eq.6 yields the standard kinetic theory result of 2 kTi for the
mean energy carried by an ion. At the other extreme for mono-
energetic ions (si-+m) with velocity u, then the mean energy
carried by each ion is kTi L(=) and becomes kTisiz, which, using

Eq.5, is equal to } miui2 as would be expected.

The analysis in this paper is valid for all values of s; and Gi,
provided the Bohm limit (Gi X 0.5) is satisfied. This is more
general than the earlier work of Hobbs and Wesson4’5 which was
restricted to cold ion plasmas with 61 barely satisfying the
Bohm stability limit, and for analytical simplicity s, was taken
to be infinite. Despite this generality it has still been neces-
sary in the present analysis to restrict some of the calculations
to the case s, > Numerical evaluation has been performed for
ion energies extending up to éi = 2.5, which is unlikely to be
exceeded in a streaming plasma. The reason why any particular
values of ss and Gi should occur is beyond the scope of this work
because they are related to processes in the thermalisation
regionz. If the collisionless plasma were in fact an ion beam,
then 6i would considerably exceed 2.5, nevertheless the analysis

would still be applicable to such a plasma.

2. Distribution of electron velocities

In both plasma and sheath the thermal electron velocity distribu—
tion function (excluding secondary electrons) is assumed
Maxwellian at temperature Te in the y and 2z directions, while in

the x-direction it is truncated such that,

n(vex) = Ae exp{ -[}mevexz + e(U-V) ]/kTe}, (8)

in the range -(2eV/me)£ < Vs < «, but n(vex) 1s zero 1if

% 7 &



vex < —(ZEV/me)i. Here Ae is the constant of normalisation and

¥ is the velocity of an electron in the x-directionm.

This distribution function is illustrated in Fig.2(b) which also
indicates a delta function for the secondary electrons. Elec-
trons approaching the wall, (vex > 0) are characterised by a
half range Maxwellian function so their mean thermal speed is
unchanged by the sheath potential but their density, and there-
fore the flux towards the wall, is attenuated by the factor

exp (eU/kTe). As a consequence in the collisionless plasma the
electron current density towards the wall, (5 + js-) exP(eU/kTe)
shown in Fig.l(c) includes this exponent. The corresponding
current density in the reverse direction is the difference
between the incident fluxes on the sheath at x = O and on the

wall at x = X s also shown in Fig.l(c).

C. The Heat Transfer through the Sheath

The heat transfer to the wall is

i .+ - .- . -
= i + -+ -
q=[ Eiw G s )Eew 1s Esw]/e
where E. , E and E__ are respectively the mean energy trans-
iw’ Tew sW
ported at the wall by each ion, each thermal electron and each
secondary electron. The ions gain energy eU in crossing the
sheath so the energy they deposit on the wall is
E. = 8.kT + eU.
iw ie

For electrons incident on the wall standard kinetic theory shows

that Eew = 2 kTE.

Secondary electrons are emitted with insignificant energies so
Esw is negligible, and so if radiation is neglected the heat
flux to the wall can be expressed as

§ = j+(5ikTe/e +U) + (3 + js_) (2kT _/e) . (9)



To express the heat transferred by each ion and its associated
thermal and secondary electrons, Eq.9 can be made non-dimensional

to yield, in conjunction with Eq.2, an energy transport coef-

ficient
- _Ge _ i
6t .+ 6i‘+ ¢w +2 & I‘s ' (10)
J kT, j

This approach has the advantage that it includes

.=, .t
1‘s = A /3 (11)

which is an effective coefficient for secondary electron emission
at the wall. This coefficient can be determined by writing the

secondary electron current density at the wall

st L T e 1T
ig =vi +y G +j
in terms of the secondary electron emission coefficients for

impact by ions (Y+) and electrons (y ), thus
+ - -+ -
ro=[07 sy aTanlia- . (12)

When T+ and Y_ are both small, PS tends to zero and Bt tends to a
minimum value. Conversely when y~ approaches unity, which is likely
to occur for some practical conditions then the space charge of
secondary electrons causes FS to saturate as discussed in Section

III.D.2.
III. RESULTS

A. Variation of Sheath Potential with Secondary Electron Yield

In the plasma the density of both thermal and secondary electrons
is controlled by the sheath potential in such a manner that their
combined density is equal to the ion density. Thus if these den-

sities are known, the sheath potential can be determined.



The ion density in the collisionless plasma can be shown to be
e
§.kT
ive

‘ot
no= ) Geotrey, (13)
where

4+ |} erf s;

~ 1
F(s;) = [21(s)) | s (14)

- 2
exp ( si) + /r s; (1 + erf Si)

with L(Si) given by Eq.7. F(si) i3 illustrated in Fig.3 and
varies from F(0) = 1 to F(») = 1/V27, so it is slowly varying in
5. - Thus the ion density in the plasma as given by Eq.l3, is not

strongly influenced by the spread of ion velocities.

The electron density in the collisionless plasma can be shown to

o o N S }
Y I i e 141 el el . =
Peo e KT_ 3% g ek (kTe exp KT_ + (g /e)/m [2eU, (15)

where on the right-hand side the first term represents the density
of thermal electrons obtained by integrating the electron velocity
distribution function, Eq.8, over the whole of velocity space. The
second term is the density of secondary electrons in the collision-

less plasma region.

The relationship between the non-dimensional sheath potential and
the effective coefficient for secondary electron emission can now

be obtained by equating the ion and electron densities in Egqs.13 and

15. Thus
2m Ei.£ F(s.) = i: +T|\V7m (1 +erf v ) exp ¢ +T_ ¢ ~ (16)
6:]_ me i j+ s w w S W y

where ¢w and Fs have been obtained from Eqs.2 and 11. Equation 16 is
: -t ;
evaluated for T_ in terms of ¢ , m,/m , 8, and j /j . Figure 4 shows
s w? i'e’ 71
L. plotted against %, for a range of values of Gi(0.498§ Sis 2.5).
The plasma chosen for this evaluation is a deuterium/tritium mixture

in which the ion mass is taken to be 2.5 amu. For simplicity a

—-10_



floating potential sheath (j+ = j ) has been assumed and the ions
incident upon the sheath are taken to be monoenergetic so 5, T,
When secondary electron emission is negligible the non-dimensional
sheath potential varies in response to variations in ion velocity
which are implicit in the parametér 61, the potential being lowest
for high 6i which corresponds to low ion density. For substantial
emission of secondary electrons characterised by FS % 4 the sheath
potential drops to well below kTE/e. In practice the yield of
secondary electrons is determined by the physical properties of
the wall material so the sheath potential is not an independent
variable. In addition TS is restricted by space charge saturation
at the wall and the stability of the sheath is dependent upon a

3 ; .
Bohm™ criterion.

B. Limitation to Sheath Stability

L Space charge limitation

When the secondary electron yield increases, the sheath potential
decreases and so the emitted electrons are less strongly accelera-
ted away from the wall and their density increases. This effect
is most strongly evident near the wall because the secondary elec-
tron velocity is low and their density is correspondingly high.
Conversely the ion density at this location is low because ions
are accelerated towards the wall. The electric field at the wall
is reduced because of the combined effect of high electron and low
ion space charge. For higher electron yields the electric field
at the wall becomes zero or even slightly negative but only suf-
ficiently so to prevent further emitted electrons from traversing
the sheath. The emitted electron current is space charge limited
at this point. The conditions for space charge limitation in the

sheath are derived in Sect.A of the Appendix and follow from the solution
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of the Poisson equationwhich is also obtained in the Appendix. The algebra
becomes rather complicated and so for simplicity the limiting solutiomn
has been found only for monoenergetic incident ions with an ion speed
ratio 5, *. This means.that the space charge limit and the

modified Bohm limit (Section 1I1.B.2) are derived only for mono-
energetic ions. However, provided the electron emission is not

space charge or Bohm limited, then the heat flux and potential

solutions are still valid for arbitrary iomn speed-ratio as well

-+ -—
1 .. 1 /3 id
as for any value of T, m., ] /j and 61

The condition for space charge limitation may be expressed in
terms of the normalised electric field, ¢W' = (dqb/dE)w at the
wall which is derived in Sect.A of the Appendix. This non-
dimensional field is

¢ \4 .=
52 W -2 W e
¢W = 46.‘1 (l + 6_) -1 C ‘]—_'_‘ (G 2V ey

i ® j

2(6 - /M [Co - (7/iN)¢]

(17)

Co G + ¢,7%)
where G = G(gy) = V7 (1 + erf \/&s:) exp ¢ (18)
and | Co™ (aj.L:ne/m:.L)'£ . | (19)

The subscript = 1is used because the derivation is only for s, Fe.
Thus the criterion for no space charge saturation of the emitted
electron current dictates that ¢w be large enough to make the
right-hand side of Eq.l7 positive. The space charge limit is
obtained by equating the right-hand side of (17) to zero and sol-
ving numerically. Such limits have been applied to the plasma data
illustrated in Fig.4. The dashed curve represents the maximum in
Fs and the corresponding minimum in sheath potential for a series

of incident ion energies as represented by Gi. The largest value



of FS occurs for low incident ion energies and is just below 10,
and here saturation occurs due to the large yield of secondary
electrons. At higher incident ion energies the tendency to lower
sheath potential results in lower acceleration of secondary elec-

trons and to space charge saturation at small values of Fs.

2. The modified Bohm criterion

The sheath stability criterion derived by Bohm3 is applicable to

a sheath upon which monoenergetic ions are incident and within
which there are Maxwellian electrons. Within the sheath the ion
density decreases because the ions are accelerated towards the wali
and the density of Maxwellian electrons decreases by the Boltzmann
factor, exp(- ¢). It is essential to stability in the sheath that
the ion density be always greater than the electron density and
this is achieved1 in the case of no secondary emission for the
present notation if the ion energy transport coefficient, % 7% 0.5.
If this Bohm criterion is not satisfied then as ions enter the
sheath their density falls more rapidly than does the electron
density. As a result electric field reversal occurs at the sheath

edge with ensuing instability.

When secondary electron emission is included and the electron velo-
cities are expressed by the truncated distribution function dis-
cussed in Sect.II.B.2, then it is still possible to obtain the
appropriate criterion for sheath stability by the methods used by
Bohm3 and by Hobbs and WessonA’s. Firstly the non-dimensional
electric field in the sheath is derived, as in Sect.B of the Appendix

as a series expansion in ¢ (Eq.Al3):

6. m \! =t
82 - {(1_L ’rs(l e) L_J_LJ_}¢2+0(¢3). (20)

254 Yo T

The modified Bohm criterion is now obtained by making the right-hand

_13_



side of Eq.20 positive for all values of ¢. This is most criti-
cal when ¢ is small so the criterion is:
8, m, 5 1 -t

_i_e 0 S I
s ¢w mi 2¢w Fs (21)

1
Legepl
1

or, if rs is eliminated using Eq.16 and substituting from Eqs.18 and

19,
1- G /iHe/Ce -+
1 1 /
3 = > - J—J-g : (22)
28; 1+ 6Yo 209]  co,

1t is seen from Eq.21 that if Fo ™ 0 the criterion is that &, > 0.497
for the plasma conditions of the D-T mixture illustrated in Fig.4.
This is almost equivalent to the Bohm value of 0.5. The very small
difference is due to the second term in the square brackets of Eq.21 and
this is associated with the truncated Maxwellianelectron distribution
function, which was not featured in Bohm's derivation. For finite
secondary emission (Fs > 0), the ion energy must be increased in
order to continue to satisfy the ineguality (21). The right-hand
side is never large so a small increase in Gi meets this requirement.
The values of Gi were obtained by a simple graphical solution of
inequality (22) and some are shown in Fig.4. When 6 exceeds 0.53
the Bohm criterion is easily satisfied and the space charge limit

on the sheath stability becomes dominant.

Cc. Relationship between Heat Transfer and Sheath Potential
The heat transferred through the sheath by jons and all their asso-

ciated electrons is characterised by the total energy transport

coefficient Gt. This is expressed in Eq.10 in terms of both TS and
¢w. However, Fs can be eliminated using Eq.16, thus the heat trans~

fer may be expressed explicitly in terms of sheath potential:

6, = 8 ¥ 4+ ZE: + (j_lj+)¢w_"]/(G + ¢w-£) (23)

- 14 -




where
m, \}

27

oF [

and is related to C_ given in Eq.19.

The expression for 6t given in Eq.23 is valid for any values of
S:5 61, ¢W and mi provided that the Bohm and space charge
saturation criteria for sheath stability are satisfied. Figure5
shows the relationship between Gt and sheath potential for a
deuterium-tritium plasma sheath under the same conditions as
are illustrated in Fig.4. Regardless of the value of Gi, the
lowest heat transfer occurs at the highest sheath potential
which corresponds to no emissiorf of secondary electrons from
the wall. Under this condition the energy transported by each
ion pair reaching the wall varies from 6 to 7 kTe. This corres-
ponds to 2 kT for the electrons and 4 to 5 kT  for the ions,
most of the ion energy being gained in the sheath. If the
secondary electron emission is finite the extra electrons cause
the plasma potential to decrease. Then more plasma electrons
can reach the wall and heat transfer by electrons is increased.
The ions gain less energy by acceleration through the reduced
sheath potential so their heat transfer is reduced. However,
the total heat transfer increases because it is now dominated
by the contribution due to increasea electron flux. Space
charge and Bohm limits still apply so the shape of the limiting
curves for heat transfer (St in Fig.5) closely parallel those
for the effective coefficient for secondary electron emission

(Ps in Fig.4).

The maximum heat transfer (6t = 23) occurs when Gi = 0.53 and
¢w = 0.87. Thus the heat transfer is almost four times greater

than that when no secondary electrons are emitted.

- 15 -



D. General Regime of Validity

Both space charge saturation and the Bohm criterion limit the
maximum possible effective coefficient of secondary electron emis-
sion and therefore the minimum possible sheath potential. However,
a further restriction to sheath potential leads to a maximum in
9, when the secondary electron yield is zero. This may be obtained
from Eq.16:
EE_EE_ F(s.,) = i: Vi (1 + erf Vo Jexp ¢ . (25)
Gi m, 1 j+ W W
These three constraints imply that heat transfer through the sheath

is also subject to restrictions.

1. Bounds to sheath potential

The range of possible floating sheath potentials has been plotted in
Fig.6 as a function of the ion energy transport coefficient, Gi, for
the simplest case, namely monoenergetic ionms (si = =), The plasma
is again a deuterium-tritium mixture (mi = 2.5 amu). The upper bound
to sheath potential occurs when there is no secondary emission and
is shown by the parameter [bw]r -0 This bound decreases when ion
energy, characterised by Gi, inireases because then the ion density
decreases and the plasma becomes more negative. The lower bound to
sheath potential is determined firstly by space charge saturation
[@;]Sat and is found by equating the right-hand side of Eq.17 to zero
and solving numerically. This is also shown in Fig.6, it decreases
with increasing Gi in a comparable manner to [@w]r _— differences
in shape being associated with the influence of ioi space charge on
the saturation current of secondary electrons. The second lower
bound to sheath potential is the modified Bohm criterion, [};]B’
which is conveniently obtained by equating the inequality (22). As

can be seen from Fig.6 this bound is only important in the range

- 16 =



0.497 g Gi € 0.53. It is more effective as a lower bound for Si
rather than for ¢w and in this region it is not very different
from the classical Bohm limit, Si 2 0.5. If the plasma contains
cold ions such that 6i lies below this bound then, following

Bohm, it would be expected that Gi would be raised by instabili-
ties. Hobbs and Wesson4’5 have extended this concept to include
secondary emission and argue that instabilities would cause
[¢w_-|sat = EdJW_JB. Under these conditions, shown by the point SB in

Fig.6, the present analysis yields [Si]SB=O.53 and [cpwj SB=O.865 for mi=2.5 amu.

In order to compare the present analysis with that of Hobbs and
Wesson, [}ulsai has been determined for a Maxwellian electron
distribution function and a floating potential sheath. This

HW

appears in Fig.6 as [ﬁgjsat and has been obtained from the equa-

tion corresponding to (17) which is

$ 1
12 _ Wy E
o = 461[(1 + Gi) 1]

Vilexp(o) - 1] + ¢w% " [(n/qsw)%/cm] xp (8) (20 -1) - 1] 26
-4 | . (26
2/ exp(9 ) + ¢ 7

It is evident that the assumption of Maxwellian electrons raises
the magnitude of the lower bound in sheath potential without signi-

ficantly affecting its dependence on Gi.
. . ; . HW .
The correspondingly derived Bohm criterion, [&;]B , 1s related to
the inequality (21) and is:
8. m_\3}

€ 1 + 1 (27)
m.
i W

1 i
3 T_|=
Zﬁi s ¢w

1l -

This bound is similarly raised and in both cases the increases
arise because the neglect of truncation to the thermal electron
distribution function leads to too many thermal and therefore too

few secondary electrons. For a cold ion plasma the assumption
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. : HW HW
that instabilities increase Gi unt1l [bé]sat = Eﬁ;]B , yields
Bi = 0.58, ¢w = 1 for m, = 2.5 amu. These correspond to the

> and the main difference 1is

values quoted by Hobbs and Wesson
that the present analysis predicts lower values of sheath poten-

tial.

2 Bounds to electron emission coefficient

The bounds to FS can be determined from the bounds to ¢W, which
have been obtained for the simplest case (si = «), Substitution
in Eq.16 leads to the corresponding parameters, [?s]sat and [r;]B’
which are shown in Fig.7, where Ps is plotted as a function of

ion energy transport coefficient, 6i. These bounds reflect the
characteristics of the corresponding bounds to sheath potential.
The parameters with superscripts, HW, have been obtained without
truncation of the velocity distribution functions and so are
equivalent to the Hobbs and Wesson approach. The magnitude oi the
upper bound to FS is substantial and exceeds the Hobbs and Wesson
prediction by 20%Z. In most practical cases the limit to secondary
electron emission will be set by the surface properties of the
wall. Because of the shapes of the curveg of [Té]sat and [Ts]B
the maximum value of Fs lies close to its value [?QJSB at the

intersection point, SB, of these curves.

i Bounds to heat transfer

The limitations to heat transfer can be similarly determined by
substituting the limiting values to ¢, in Eq.23. These limits,
[St]sat’ Bt]B and ES';IF —gare plotted inFig.8 as a function of éi. The
upper bound [}tjsat isssubstantially greater than the value of
6 to 7 which would occur in the absence of secondary electron
emission. The limits corresponding to the Hobbs and Wesson

W

H %
approach, Est]sat and ES;]HW, restrict heat transfer through a

stable sheath by up to 167%.
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E. Influence of Ion Mass

Since the work described in this paper originated from a ther-
monuclear fusion study, most of the data have been evaluated
for m, = 2.5 amu. The equations are valid for any mass of ion
but it was not intended here to provide a complete evaluation
for every possible combination of mass, speed ratio and current
density ratio, j+/j_. In this section a few results for dif-

ferent ion masses are gathered together.

When the electron emission is saturated the effect of ion mass
upon the sheath potential, [¢w]sat’ can be determined from Eq.17 °
and is shown as a function of (Si in Fig.9. The effect on the
sheath potential at the modified Bohm limit D’w_-lB’ determined
from the inequality (21), is plotted as a function of 61 in
Fig.10. It is evident that ion mass does not significantly
influence the sheath potential under these limiting conditionms.
Under conditions of saturated emij.ssion the lowest ion energies,
characterised by [61'.] SB? which satisfy the Bohm criterion
I}w]sat = ]:¢>w__|B (see Sect. III.D.1 and Refs.4 & 5), are listed
in Table II together with the corresponding values of [¢w-|SB'
Although ion mass has a small effect upon the latter parameter,

its effect upon Eai]SB is negligible.

Also shown in Table II are the corresponding values |:I‘s__| gp and

[6;[ gp Which to a first order are proportional to mii.

Ion Mass, my (amu) 1 2.5 200

Ion energy transport coefficient, [Gi:]SB 0.525 0.53 0.532
Normalised sheath potential, [¢w-_| SB 0.85 0.865 0.91
Max.effective secondary emission coeff.lj‘s] SB 6.01 9.78 90.44
Max. total energy transfer coeff., BJSB 15.39 22.96 184.3

Table II. The influence of ion mass on sheath parameters under
the condition SB where the saturated emission and Bohm limits

coincide. (The ion speed ratio §;>=and the sheath is floating,j+/j_=l)
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For electron emission which is not saturated the influence of
jon mass on the relationship between sheath potential and Ts can
be determined from Eq.16. The ratio mi/rSi is an invariant in
this equation so the analysis expressed in terms of ﬁi {and shown
in Fig.4) is applicable to the equivalent analysis in terms of

o, . As an example the curve showing di = 2.5 for a D-T plasma
with w, = 2.5 amu is applicable to a hydrogen plasma with m, = 1
at 6i - 1. The corresponding effect of ion mass on heat transfer
can be determined from Eq.23. Unfortunately the concept of
invariance in miléi can only be applied approximately to this
equation. Quantitative determination of the effect must there-
fore be obtained by direct calculation. However, a qualitative
indication can be obtained by applying the analogous argument of

invariance to the data shown in Fig.5.

Iv. CONCLUSION

The solutions for potential (16) and heat transfer (23) are valid
for arbitrary incident ion energy and ion speed ratio, and whether
or not the plasma is at floating potential. However the plasma
stability, under conditions of the velocity distribution functions
generated in this problem, has not yet been investigated, but the
instabilities of such velocity distribution functions are well
known. It may well be that these plasma instabilities restrict the
regime of validity of the present analysis and the problem merits
further consideration. For simplicity the determination of the
regime of validity has only been carried out for monoenergetic inci-
dent ions, because the mathematical complexity for other ion speed as
ratios is considerable. However, the case of thermal ioms (si = 0)

should be relatively easy to evaluate.
No account has been taken in the present study of the influence of
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magnetic fields on the sheath. In thermonuclear fusion applica-
tions very strong magnetic fields are present. Nevertheless the
analysis should not be significantly affected by a magnetic field
provided it is reasonably uniform and perpendicular to the sheath.
For non-uniform fields the influence of the loss cone of magnetic
mirrors should be taken into account in assessing the electron
transport, while for non-perpendicular magnetic fields it is neces-
sary to account for some suppression by the field of a proportion

of the secondary electronms.

The present analysis indicates that the high electron temperatures
which are anticipated in nuclear fusion devices might lead to
sheath potentials of a kilovolt or morel’z. These high sheath
potentials are likely to lead to unipolar arcing7 and a study of
such arcing, its avoidance and consequences, will be required

before the results of this paper can be applied to very high tem

perature plasma sheaths.
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APPENDIX

The Solution of the Poisson Equation in the Sheath

For simplicity the sheath equations are solved for monoenergetic
incident iomns (si = ») so Eq.13 is rewritten, following the nota-
tion and equation numbers of the main text, in terms of n_, the

density of electrons or ionms in the plasma,

()
n = ¢ \mar) L)
i e

y - ; . . G .t
The ion density in the sheath 1is obtained from continuity of j and
the ion energy, thus

e |
n = nOE.+ 399l%?} 2 (A2)

m. u
1l O

where u_ is the velocity of ions incident on the sheath.

The electron density in the sheath is obtained by rewriting Eq.1l5

of Sect.III.A with U replaced by V:

. . I
n = 1 4 Z“mé E i+ § erf Jﬂi-% ex ¥
e e KT KT PlkT
e e e

+ (i [e)/m_[2eV . (A3)
The Poisson equation,
d2V/dx2 =e(n - n.)/e
e i"' o

where €y is the permittivity of free space, is written

d2¢ - i T e (AL)
de? 4

in non-dimensional form, where ¢, £ and A, are given by Eqs.1-3.
By substituting from Eqs.l, 5, 6 and 7, Eq.A2 can be rewritten in

non-dimensional form:
_ -3
ni/nD = (1 + ¢/6i) : (A5)

Also if Eqs.l, 2, 11 and Al are substituted into Eq.A3, then it may
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be rewritten in non-dimensional form:

me—ai:+r naii 1+ erf(¢ - :
n_ |.+ s im, er cbw 2 exp(¢w-¢)

o b i

/me 6i

+ T ——_—= (A6)
s m. (¢, = ¢)

Now Eq.A4 may be rewritten by substituting for ni/n‘D and ne/no

from Eqs.A5 and A6:

o= (e

8
- m, } ) m, 8 4
- i:+ I‘s ﬂsiﬁ; 1+erf(¢w—¢) exp(¢w—¢)-l"s qw , (A7)

where the prime denotes d/dE.

Equation A7 can be integrated once by multiplying both sides by 2¢':

E oyt
3 2¢'dg
2f oreae, = [ —

.- m\}{ £
- [+ T Cra.—e é’ 1+ erf(¢, - cia)ije:‘q)(cb“r - 9) 2¢'de)

. im,
J
m 2¢'dE
- ps (_35_)£ J;__.__l

i
PECREL
where £y is a dummy variable within the limits of integration given
by El =0, El = £. The lower limit 51 = 0 corresponds to the boun-
dary of the sheath with the collisionless plasma and here (from
Table I) ¢ = O and ¢' = O so the integrals yield the following

expression for the electric field in the sheath:

L 4ﬁil:(1+6ii)i- 1]
s m i
= & j: + l"s) 1"51;;?) [exp Be = taxr>(4=W - ¢) + E(¢w) - E(s, - ¢) ]
- ar 2yt Gt - »t] (A8)
s mi 1 w W
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t
where E(t) = f erf vu du = exp(t) erf vt - (2/vm) Yt .

[s)

A second integration to find ¢ would have to be done numerically
but is unnecessary for the purposes of this paper since ¢w can be
obtained from Eq.16. Eq.A8 describes the electric field in the

sheath and, since the potential must vary monotonically with dis-
tance in the sheath, then ¢' must be negative or zero. Therefore
Eq.16 is valid if the right-hand side of Eq.A8 is always positive

or zero throughout the sheath.

In the usual derivation of the Bohm sheath criterion an equation
similar to (A8) is obtained but with I, =0 and j_/j+ =1

(eg Eqs.8-8 to 8-10 of Ref.8). Itis easily shown that ¢'2 >0 if
6i > 0.5 so the Bohm criterion is unlikely to be infringed for a
highly supersonic plasma with 6i much larger than 0.5, even if PS

is large.

A. Limitation to Sheath Potential due to Space Charge
Saturation of the Emitted Electron Current

The space charge of emitted electrons affects the electric field
in the sheath, especially near the wall. The field throughout the
sheath may be calculated from Eq.A8 (assuming values of Si and

j_/j+) in the following manner:

First a reasonable value of ¢W is chosen so that FS can be obtained
from Eq.16; then the values of ¢w and TS are used to determine ¢'
for various values of ¢. A series of curves showing the variation
of ¢' with ¢ is presented in Fig.ll which shows that the electric
field increases progressively as the potential, ¢, approaches that
at the wall, ¢w. The variation of ¢' with ¢ for small but finite
Fs is illustrated in Curve 2. It can be seen that both the elec-

tric field at the wall, ¢w' and the sheath potential ¢w’ are

= O -



reduced as a result of electron emission but that the characteris-

tics of the sheath away from the wall are not much affected.

As Ps increases (Curves 3, 4 and 5) the electric field at the wall,
¢ ', becomes much weaker until with FS = 5.94 (Curve 6) it becomes
zero. This occurs when ¢w = 0.509, the lowest possible sheath
potential for which a stable solution can be obtained. In order to
avoid such trial and error computations it is necessary to expand
Eq.A8 in a Taylor series

where ¢'2 = ¢w'2 + 8¢y 12, 0(62) , (A9)

0 =¢ =19¢ .

w

Making use of the series relationship

3 5/ 7/
_2 02, "/2, 4 2 8 2
E(t)-_./?E‘t tigt *To5 t +...],

it is found that the first non trivial term in Eq.A9 is the zero

order term

- m\ %
e 2
—2-?:+rs ms, —= ,}xp(d;w)(l-ierf/d:)"/—_/qi':'{'
j i m
me
- 4FS E;-6i¢w .

If FS is eliminated via Eq.16 with s; = and F(») = (2“)_i, then
¢ \? .~
2 MY o - 24 (g - -
e z.ai[(l ' 61) ] -2 . (s 23 -/1?)
2(6 - /M) [Co = (7/iDE]

- = (A10)

Cs (¢ + . )
where G =G() = Ym (1 + erf fE;) exp ¢ (A11)
and Co = (6ime/mi)'5 ) (A12)

Equation AlO describes the electric field at the wall and has been
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tested for accuracy by numerical comparison with the data in
Fig.ll. Equations Al10-12 are reproduced in Sect.III.B.1l of the
main text as Eqs.17-19 and are discussed both in that Section

and in Sect.III.D.

B. Limitation to Sheath Potential due to
a Modified Bohm Sheath Criterion

At the plasma boundary of the sheath ¢ is small so it is com-
venient to expand the right-hand side of Eq.A8 as a series in ¢.

By using Eq.16 and the expression
E(o) = E(¢_ = ¢) = ¢[exp(o) erf Vo ]
-1
- 622 [ o)™t + explo,) ert Vo + 07,

it can be shown that the first non-zero coefficient in the series

expansion of Eq.A8 is of second order in ¢ so

6. m \1 =, .t
pt=da-g0 - -i-E) 2—1——J—U—}¢2+o(¢3>. (413)
1

- qJw mi ¢w rs

This expression for the electric field at the plasma boundary of
the sheath is reproduced in Sect.IIT.B.2 of the main text as Eq.20
and is used to derive the modified Bohm criterion (Eqs.21,22)

which is discussed in that section and in Sec.IIL.D.
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I‘ (a) The potential, V, plotted as a function of distance, x.

\\‘:—v( j
: j'-ié)exp(f-}-;)-j is) ]
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%
MM

Thermalisation | Collisionless I Sheath
region plasma

wall

The potential in the plasma, U, is assumed constant.

(b) The non-dimensional potential, ¢ = e(U-V)/kTe,
plotted against the non-dimensional distance, £=x/Ap,.

4

(c) The distribution of current density. If the plasma is at
floating potential with respect to the wall, then j* = i
Backscatter of ions and electrons at the wall has been
neglected.

Fig.1 The distribution of potential and current density in the plasma and sheath.
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Ni(vix)

P
ni(vix )=A; exp mi(vix-u;j)

/7 T 2kT

—f=
0 Vix

(a) The ion distribution function in the collisionless plasma. In the sheath it is assumed for
simplicity that the ion speed ratio, s; = o, where 5; = (m;u;? /2le) but this assumption
is required only to obtain the limits to the stable sheath region via the Poisson equation.

Me( Vex)
Secondary “ 4 Truncated maxwellian group:
electrons el Vex) = Ag @xp | - e(U-V)  mevex?

e -& Kle ~ 2¢%
|
I 1 -
(=YY 0 Vex
Me

(b) The electron distribution assumed both in the plasma and in the sheath. It is Maxwellian
in the y and z directions, while in the x direction it consists of a truncated Maxwellian plus a
delta function due to secondary electrons.

Fig.2 The velocity distribution functions assumed in the model.
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lon speed ratio, s = (miuiZIZkTi )/2

Fig.3 Variation of the function F(s;) with the ion speed ratio, s;, as defined in Eq.14.

I [ [ I |
Space charge limited —
emission at wall (Eq.17)

10 —

Non- dimensional sheath potential,®,, (=eU/kTg)

Fig.4 Variation of the effective coefficient for secondary electron emission, I'g, with non-

dimensional sheath potential, ¢, for various values of the ion energy transport coefficient,

5;. The evaluation was carried out for a deuterium/tritium plasma sheath (m; = 2.5amu) at 4
floating potential (j* = ") and with monoenergetic incident ions.
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Fig.5 Variation of the total energy transport coefficient, 5; (Eq.23) with non-dimensional
sheath potential, ¢,,. The plasma is a D—T mixture with the same conditions as in Fig.4.
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lon energy transport coefficient Oi

Fig.6 Bounds to the floating sheath potential versus the ion energy transport coefficient.
The plasma is a deuterium/tritium mixture (m; = 2.5amu) with monoenergetic incident
ions (s; = °°). The hatched area between [¢w] rs=0 [#w]sat and [¢] B defines the
regime of a stable sheath based on the present analysis, whereas that between [y, ] Is=0,
(o] Y and [¢y]HWY is a corresponding regime following the arguments of Hobbs and
Wesson. These parameters are described in the text.
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Fig.7 Maximum permitted values of the effective coefficient of secondary electron
emission versus ion energy transport coefficient. The curves correspond to similarly
labelled curves in Fig.6 and are related to them via Eq.16.
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Fig.8 Maximum permitted values of the total energy transport coefficient versus the
ion energy transport coefficient. The parameters correspond to those in Figs.6 and 7.
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Fig.9 The space charge limited sheath potential, [¢y,] sat, plotted versus the
ion energy transport coefficient for several ion masses.
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Fig.10 The Bohm limit to sheath potential, [¢y,] g, plotted versus the ion
energy transport coefficient for several ion masses.
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Fig.11 Variation of electric field with potential in a deuterium/tritium plasma sheath

(m; = 2.5amu) at floating potential (i*=j). The incident jons are monoenergetic

(s; = °°) with an energy characterised by &; = 2.5. ¢" has been obtained from Eq.A8

with ¢, as the independent variable and I'g from Eq.16.







