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ABSTRACT

In the investigation of stability of a plasma confined by magnetic fields
some of the most important modes of oscillation are those with long wave-
length parallel to the magnetic field and short wavelength perpendicular to
it. However, these characteristics conflict with the requirement of
periodicity in a toroidal magnetic field with shear. This conflict can be
resolved by transforming the calculation to one in an infinite domain
without periodicity constraints. This transformation is the starting point
for a full investigation of the magnetohydrodynamic stability of an axi-
symmetric plasma at large toroidal wave number n . [Small values of n
can be studied by direct numerical computation but this fails when n is
large.] For n » 1 there are two distinct length scales in the problem

and this separation forms the basis for a systematic approximation, formally
as an expansion in 1/n . 1In lowest order the oscillations of each magnetic
surface are decoupled and a local eigenvalue is obtained. However, the mode
structure is not fully determined in this lowest order. 1In higher orders a
second eigenvalue equation is obtained which completes the determination of
the structure of the mode and relates the local eigenvalue of the lower
order theory to the true eigenvalue for the problem. This higher order
theory shows that unstable modes are localised in the vicinity of the
surface with the smallest local eigenvalue, that the true eigenvalue is
close to the lowest local eigenvalue and that the most unstable high-n modes
occur for n - o . Hence the local theory, which involves no more than the
solution of an ordinary differential equation, is normally adequate for the

determination of stability of any axisymmetric plasma to high mode number

oscillations.






§ 1. INTRODUCTION

It is well known that plasmas confined by magnetic fields are often
unstable. In a simple idealised configuration, such as an infinite
cylinder, there is a single comprehensive test for the magnetohydrodynamic
(m.h.d.) stability of the plasma, given by Newcomb (1960). For any given
cylindrical equilibrium profile this requires only the solution of an
ordinary differential equation. However in a more realistic toroidal con-
figuration, such as a Tokamak or Toroidal Pinch, there is no such
comprehensive method for determining stability even though the system may
be axisymmetric so that Fourier modes ~ exp in{ (where { 1is the angle
around the symmetry axis) may be considered individually. One has certain
necessary criteria for m.h.d. stability, such as Mercier (1960), which can
be applied and there are elaborate two-dimensional numerical codes
(Wesson and Sykes 1975, Todd et al, 1977, Berger et al. 1977) which can be
used to test for stability. But these two-dimensional codes can describe
only oscillations of small toroidal mode number n .

In this paper we develop a method for determining m.h.d. stability of
toroidal axisymmetric plasmas to high-n perturbations. Since this theory
encompasses all high mode number perturbations it complements the two-
dimensional numerical computations and so essentially completes the ideal
m.h.d. stability theory of axisymmetric toroidal systems.

From studies of simple configurations one knows that some of the most
persistent instabilities are those which have short wavelength perpendicular
to the magnetic field but long wavelength parallel to it. [These character-
istics minimise the stabilising influence of field line 'bending'.] 1In a
toroidal configuration perturbations of high-n will have these character-
istics but must also be periodic around the torus. When the magnetic field
possesses shear (that is when the rotational transform varies from surface

to surface) this periodicity requirement conflicts with the long-parallel
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and short-perpendicular wavelength of the most dangerous modes., The first
problem in the investigation of stability of toroidal systems is therefore
that of reconciling long-parallel wavelength, short-perpendicular wavelength
and periodicity.

In 8 2 we describe a general method for achieving this reconciliation,
by means of a transformation from the periodic domain to an infinite domain.
Using this transformation the theory of high mode number oscillations is
then developed in 8 3. There we show that in the leading order of an
expansion in 1/n , the oscillations of each magnetic surface V¥ are de-
coupled. The lowest order theory therefore defines a local oscillation
frequency w2(¥) and fixes the structure of the mode along the magnetic
field. However this lowest order theory does not determine the structure of
the mode transverse to the magnetic surfaces. This transverse structure,
and the relation of the local oscillation frequency w?2(V¥) to the true
frequency 02, are determined in higher orders of the expansion.

Although the higher order theory is necessary to complete the solution,
this solution itself can be expressed entirely in terms of quantities cal-
culated from the lowest-order theory. Consequently the lowest-order theory
alone is sufficient for the determination of stability. Like Newcomb's
analysis this involves no more than the solution of an ordinary differential

equation which can readily be solved for any given equilibrium profile.

§ 2. SHEAR, PERIODICITY AND LONG PARALLEL WAVELENGTH

In this section we review the problem of reconciling long-parallel and
short-perpendicular wavelength with periodicity in a sheared toroidal magnetic

field and show how it may be overcome.

In any axisymmetric toroidal system the magnetic field may be expressed

as B = V¥ x V{ + I(¥) V{ where V¥ = constant defines a toroidal

magnetic surface and ¢ is the angle around the axis of the torus. Then



we can introduce an orthogonal coordinate system (V,¢,x) (Mercier 1960)
where X 1is a poloidal angle-like coordinate (so that x,{ locate a point
on a magnetic surface). If R is the distance from the axis of symmetry,
the metric for these coordinates is ds? = (dllf/RBX)2 + (JBde)2 + (Rd¥) 2

and the volume element d7 = Jd¥dyd{. The path of a field line is described
by V¥ = constant, ¥ = xo(g) and the differential rotation of a field line,
(dxo/dg) = v~l, is an important parameter of the field structure, given by
v(V,x) = IJ/R2. This is related to the 'toroidal safety factor' q by

q = (2m~1gvdy. Since ¢ 4is an ignorable coordinate any linear perturbation
can be decomposed into independent Fourier modes ~ exp in{ and we wish to
study the stability of such modes for n » 1.

Now the usual representation of short wave oscillations in a slowly
varying medium is in an eikonal form ¢ ~ F exp inS, where the phase varies
rapidly (n » 1) but F and S vary slowly. In the present problem, as
we will see, the magnetic field introduces an overwhelming anisotropy and
the important oscillations are those with short wavelength transverse to the
field but long wavelength parallel to it. The appropriate eikonal form for

such oscillations is

X
¢ = F(¥,x)explin({ - [vdx)] , (1)

where the phase varies rapidly across the magnetic field but is constant
along it. In this expression the parallel wavelength of the oscillation and
the effect of the slowly varying medium (which have comparable scale lengths)

are both embodied in the slowly varying function F(V¥,x). Of course the

validity of the representation (1) depends on whether, when the calculation
is completed, the function F is indeed a slowly varying function,

If no other consideration intervened (1) would indeed be the appropriate
representation of a perturbation with long-parallel and short-perpendicular
wavelength. Unfortunately, when there is shear in the magnetic field it is

impossible to reconcile the expression (1) with the requirement of periodicity



in the poloidal angle x for all values of V¥, without abandoning the
hypothesis that F(¥,x) varies slowly - and with it the whole concept of

an eikonal representation.

Several attempts have been made to overcome this difficulty while
retaining the form (1). In recent calculations of ballooning modes
(Dobrott et al. 1977, Coppi 1977) a constraint was imposed that F =0 at
the ends of the basic period in X . However, although this generates
periodic modes,this constraint does not allow one to construct the most
unstable mode so that the stability of the system is overestimated
(Connor, Hastie and Taylor 1978). Another approach (Rutherford et al. 1969)
is to introduce a discontinuous change in F at the ends of a basic period-
to compensate for the change in the exponential factor over that period.
However, except when the shear is very weak this is contrary to the
requirement that F varies slowly. Yet another technique
(Connor and Hastie 1975) is to introduce an arbitrary function G into the
eikonal, such that ¢(v + G)dx = 27m, where m is integer, on all
surfaces, but no satisfactory method for determining G has been given.

One choice, (Coppi and Rewoldt 1973, Coppi 1977) is G =( - ¢vdy) 6(x - xo);
however the discontinuity which this introduces means that F must be zero
at X and this again prevents comnstruction of the most unstable modes.

It is clear that in order to obtain the correct compromise between long-
parallel wavelength and periodicity an alternative representation for the
perturbation is needed. The construction of this representation can be
described in general terms as follows. [The method is actually an extension
of that used to describe the influence of shear on drift waves (Taylor 1977)
and a preliminary account has been given by Connor, Hastie and Taylor (1978).]

After Fourier decomposition ~ exp in{ in the ignorable coordinate,
the calculation of linear oscillations in any axisymmetric system can always

be reduced to a two-dimensional eigenvalue problem



L8, x) o0, 2) = Ap(8, ), (2)

where 6 represents the poloidal angle and z the flux surface coordinate.
The operator ii is periodic in @, 0< 6 <27 and ¢ must be periodic in

@ and bounded in r. We now express ¢ in the form

8

o8, z) = Ze‘i“"a[ el™ 3n, z) dn (3)
-

m

which automatically ensures that ¢ is periodic in 6. The function o
need not be periodic.

This transformation from ¢ to @ can be regarded as made up of three
successive steps. In the first the periodic function ¢ is represented by
a Fourier sum L a2 exp( -imf); 1in the second the coefficients a_ are
extended into a function a(m) coinciding with a when m is an integer
and in the third step this function a(m) is itself represented by a
Fourier integral.

By direct substitution of the transformation (3) into (2) it can be

seen that any o(n, £) which is a solution of
L @, @) on, 2 = xpn, ) (4)

in the infinite domain - ® <n <+ @ will generate a periodic solution
(0, x) of (2) with the same eigenvalue. In fact, all the relevant
periodic solutions of (2) can be obtained from the eigenfunctions of (4).
[This and other properties of the transformation are given in Appendix A.]
In effect, the tramsformation (3) replaces the actual stability prob-
lem, with its awkward periodicity requirement, by a fictitious problem in
the infinite domain with the same eigenvalue. The operator for the
fictitious problem is identical with that in the real problem so that

properties such as short-perpendicular and long-parallel wavelength retain



their importance. The point of the transformation is that, because it does
not have to be periodic, ¢(n,z) (unlike ¢(B,x)) can be represented in an
eikonal form similar to (1) with the amplitude F(m,x) slowly varying com-
pared to the phase function.

It is interesting that this eikonal form for @ is essentially the
'quasi-mode' introduced intuitively by Roberts and Taylor (1965) - that is
a perturbation in the form of a 'twisted-slice' which is everywhere almost
parallel to the magnetic field. However here @ is not the actual plasma
perturbation. The real, periodic, perturbation ¢(f,x) which can be con-
structed from it will resemble a super-position of quasi-modes. [Appendix
A]l. 1t is this superposition of quasi-modes which is the sought for repre-

sentation of oscillations with short-perpendicular and long-parallel wave-

length in a torus.

In order to complete the eigenvalue problem in the infinite domain one
needs the appropriate boundary conditions as [n| - o , These follow from
the requirement that @(n,r) must generate a physically acceptable
p(6,x) . 1In particular, as |n| » o, ¢ must be such that the integration
in (3) will converge and in many cases this alone is sufficient to
distinguish the acceptable from the non-acceptable solutions of (4). A
particularly interesting example where a more subtle test of acceptability

is required is described in S 4.

Of course one still has to calculate the amplitude F(n, =) and the
eigenvalue M. The significance of the eikonal representation F(n,r)exp in S
is that all the rapid r variation arising from large n is contained in the
phase so that, in an expansion in 1/n, the lowest order equation for Fln,x)
is an ordinary differential equation in m, i.e. along the magnetic field.
The slower variation of F with r is determined by higher order equationms.

In the next section a systematic approximation procedure for the calculation of



F and A is developed in the case of m.h.d. oscillations; a similar develop-

ment is possible for other forms of oscillation.

8 3. MHD STABILITY WITH n » 1

In this section we investigate the m.h,d., stability of an axisymmetric
toroidal plasma to high mode ﬁumber perturbations starting from the ideal
m.h.d. energy principle (Bernstein et al. 1958). According to this the
change in potential energy due to a displacement € is given by the

~

functional

where Q = VX (E X E) is the perturbation of the magnetic field. The
given equilibrium is specified by the pressure p and the current density
J and v is the specific heat ratio. The sign of the minimum value of
6W(5,£) with respect to £ determines the stability of the equilibrium.

We introduce an individual Fourier mode ~ exp inf. Then by carrying
out the minimisation of 6W with respect to g" (the component of |3
parallel to E) and with respect to gs (the component of 51 lying in the
magnetic surface) the potential energy can be reduced to a quadratic form in
€¢ (the component of ¢ normal to the magnetic surface) alone. From this
one then constructs an Euler equation for the minimising §¢.

To describe this minimisation in detail it is convenient to introduce

€ 3
= = ——g - I — .—X.
X X
so that U is proportional to the displacement gs . In terms of these

quantities ©6W takes the form

2
1 B2 2 R?
= s ==
W zﬁd\pdgdx,g R752 |k X[" + T2

B _ . 9 (X
ax o \R2
(7)

1

j 2
. oX 2 19 . -
1nU+.—+ﬁ§XTx - 2K|X| +'yp'J B\II(JX)+1nU+lBkIIZ

+ B ?
X
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where we have made use of the equilibrium relations for the toroidal
current jt and pressure gradient p'(¥) (prime denotes a V derivative):

= e 3 :__-IR_.—Q— 2
= =0+ . 3y JW(JBX). (8)

The coefficient K 1is
roa Jj
K = =% -—?—(EnR)————g—%(fnJBX) (9)

and k“ represents the "parallel gradient'" operator

1 o .
< ..=_- gy g + i
1k” T8 (31 1r1v) (10)

The first step in minimisation of 6W is to select Z so that the last
term in 6W wvanishes. This is always possible (unless the shear vanishes)
and corresponds to making (V. g? = 0.

For the next step, mimimisation with respect to U, we first observe
that when n = @, 6W will be positive and large unless kuX and k“U
are ~ 0(1) in this limit. (This represents the predominance of the parallel
gradient operator which requires that the least stable modes have long
parallel wavelength). This feature of kIU allows us to carry out a
systematic minimisationwith respect to U as an expansion in 1/n. We

replace oy in (7) by iteration of the relation

o

8U _ _ jnypU + 1iJBk U, (11)
oy 1

and U can then be determined in each order of 1/m by an algebraic

minimisation of &W. Correct to 0(l/n) the minimising U is given by

X p’ v I? 12 1 &X _
: o ] LA L o = 1O =0 12
1“U+a¢+x(32+v X252 +y R 282 JBklI g (12)



which represents the fact that (V. 54? is an 0(1l) quantity as n - o,

Using (11) and (12) we obtain 6&W, correct to 0(1l/n), in terms of X

alone
RZBZ 2
- JB? x| 19 [
W = ﬂfd\bdx {RZB; [k” | J32 e (JB k“X)|
2J ’ 2 '_a_” _B_z il 1 a BZ "
R TSRS ENCOT S
+ e &'y - % [P¥JBk Q + PIBk" Q""‘]} , (13)
n I n 1 I
where
82 Xp’ 12 1
P=X0—;%--IE'5§—(JBI<X), Q=37+ szBz-r—laq, Bk X),

This expression forms the starting point for the investigation of high
mode number perturbations. We have now to minimise (13) with respect to all
periodic functions X subject to an appropriate normalisation which we take

to be

2 2
W-/’Jd\lfdx{g{%%@ ( g—ﬁ }: 1, (14)

This represents the kinetic energy of the transverse motion (to leading order
in 1/n) and is convenient because it retains most of the features of the
total energy normalisation without affecting the minimisation of &W with
respect to Z and U.

The two-dimensional Euler equation obtained by minimising the

expression (13) subject to the condition (14) is



Jf r 1. RZBXZ 2 1 92 23 5 /. B2 ,i 0X p'I3B?
! - = X - — . 4+ = 4+ = — iy
4Bk, [JRZB; Ll ( B n? a\!r] 2Bk, TR Q’ 2) n o B4 Oy

R2B? '

1 9. 2 %)-S - P_
- - JBkll[a¢< J332> (J Bk x)] = JBk,(o ) JBk Q- Bk P

1 1 8 [tB 1 1 o 12
h E.JBku n ov|v JBk QT Equu n 5@[;R232JBkn?

2n 2 2
= 2 _._.J._X - IR B_X ...]_',, %X - 1‘. __8_ JR B 1 8X (15)
RZB; B? n2 oy? n oV B2 n 8¢ '

This partial differential equation, with the periodicity condition

X(x + x.) = X(x) where Xy = ¢dx, determines the stability of the system
o

through the sign of its lowest eigenvalue Q2. It is an equation of the

general type discussed in § 2 and hence it is amenable to the transformation

described there:

)

X(V,x) = exp( —-———X)f dy exp(z—m)‘(-w) IE(\P,y) . (16)
m o]

-

~

This converts equation (15) for X into an identical equation for X but
with X in the infinite domain and free of periodicity requirements. Because

~

X 1is free of periodicity constraints we can represent it in the form
3
X(,y) = F(w,y)exp(: in ,/ﬂ vdi) . (17)
Yo

Then we indeed find that for large n all the rapid variatiom of X is con-
tained in the exponential phase factor and the amplitude F(V¥,y) remains a more
slowly varying function of ¥ and y as n = @,

Formally,,we introduce two length scales in the direction normal to
the magnetic surfaces - the equilibrium scale which we continue to denote
by V¥ and a rapid scale x = n%(¢ - ¢o), where ¢0 will be identified
later. When (16) and (17) are introduced into the eigenvalue equation (15)

the result can be written

o T w



(L + QM)F =0, (18)

where

o
n
1 1
M = Mo + F M, o+ = M, . (19)
n

The leading order operators L0 and MO are

Rsz Yy “

N . +(__x o an? &

o 8y |JR?B B Y | oy
yO

¥
gp__( _B_)Ba_( )_a_z.
B2 p\PT 2/ T\ | VY5 |-
yO

-
e
]

+
=
FA—\

(20)

OE

e

I

=]
d;tq
[ 5]
1

H

+
7N

1 7<)
U'-f [ ]
L=

Q\

[a N
L
| SR

s |

Note that LD is an ordinary differential operator in the extended parallel

coordinate y(- ® <y < ®) and depends only parametrically on the coordinate

V, If we write

- i — - .
LO = LO( ay:Y!‘l,yo) MO e MO(Ysll’syo) E]

then the higher order operators, which we give in full in Appendix B, can be

written
_~ . 8 _o . 0
L1 —Lll'a—x M1 —Mll'a—x (21)
with
. 1 aLo " 1 BMB
Ll_ e M1=_-.7_.._._._
v (yo) 9y, v (yg Byo
and
N = 82 5 ~ 82 ~
LZ_-L2?Q}?+L2 M2=-M25:';2—+M2 (22)
with
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' | oM
s 1 0 1 8LO M. = 1 __B___ _}__l__ 0)
2 - Jr(yo) Syo v'(yo) Byo 2 2 (yo) ayo v (yo) Byo

L, and ﬁz also being differential operators in y alome.

L
We now seek a solution of (18) by an expansion in powers of 1/n”.

The lowest order approximation is

(L, + wz(ll’,yo)MO]Fo =0 , (23)
or explicitly
y
R2B ? 22 BF
1 @ 1 ( Xf 4 __ 0
animzaz[lJ’ B i 4 y
X o
Fp' [ 5 B2 1( y 1 o (B2
(o] o et ' e B A8 =
* 2-g3 [Eq? (p+2)-B2deyJ8y(2):]
yO
RZBZ Y 2 .
w2(\|lf= EQ) 1+ f U’ dy F 0 .
R2B 2 B o (24)
0

Thus the lowest order approximation yields an eigenvalue problem in one
dimension only. The oscillations of each surface are decoupled and the
eigenvalue w? depends on the flux surface V¥ and the quasi-mode origin

¥s° The corresponding eigenfunction takes the form

F, = A®E (y;¥,y) (25)

where the variation of f0 with ¥ arises only from the parametric dependence

of L0 on the '‘equilibrium profile.

To calculate the eigenvalue w?(V ,yo) the boundary conditions for

f0 as |y[ - ™ are required. To find these we must examine the behaviour

= 19, =



of the two solutions of (24) at large |[y|. If w2 < 0O one of these two
solutions is exponentially growing as |y| @ ® and one is exponentially
damped. Clearly the growing solution is unacceptable and the appropriate
boundary condition on £ 1is therefore simply that f0 -0 as |y| = w,
Hence the determination of unstable solutions of (24), if they exist, is
straightforward - one simply solves (24) as an orthodox two-point eigen-

value equation.

On the other hand when w? > 0 the two solutions of (24) both behave
like (1/y) exp iwy as lyl - ® and both are acceptable. Thus an accept-
able solution of (24) can be constructed for any positive w?, [This is
presumably related to the existence of a continuous spectrum of stable modes
for a cylindrical plasma (Grad 1973).] When w2 = 0 a more detailed investi-
gation is necessary. This case, which is of special interest because it leads
directly to a necessary criterion for the stability of all high-n m.h.d. modes,
is discussed in § 4,

In the lowest order calculation the envelope A(x), the origin Yo of
the quasi-mode and the relation of w2(¥) to the eigenvalue Q2 are all
undetermined. To resolve these factors we must proceed to higher order in

the l/n% expansion. The next order yields

(L, + wM)IF, + (L, + WMIF =0 (26)

It is clear from (21) and (25) that

—; dA
F, =1 a fl 3 (27)
where
(L, + WM )f, + (L, + wMIE =0 . (28)

An integrability condition, for the existence of f,, is obtained using
the self-adjointness of the operator (Lo +102M5) and the fact that £
satisfies (23), (two properties which will be exploited frequently in
subsequent analysis). This integrability condition is
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(€ L, +wi, £ > =0 (29)

(with the obvious notation

[s0]

(E|L|g> =fdy fLg )

=00
Differentiating (23) with respect to ¥ shows that the condition (29) is

equivalent to the more useful result

) _
by wz(\lf,yo) =0 . (30)

This fixes the hitherto undetermined parameter y - on each magnetic surface

U it must be located at an extremum of wz(w,yo). (In many cases the posi-

tion of the extrema of w2 will be obvious from the symmetry of the system.)
An equation for the amplitude A(x) 1is obtained from a similar

integrability condition on the next order equation for F,

(L + WwM)IF, + (L, + wM)IF, + (L, + WM)IF + n(Q? - w3HIM F =0 .
o} (o] (o} o o

(31)
This integrability condition is
5 1 0%w?
(£, Ly + WA, [Fy> + (E |1, + WA, |F > + [n(m - v - 55T xz] EolM [E,> =0
(32)

where ¢0 has now been chosen to be at a minimum of w2(¢,yo) (with y
determined as above) and we have expanded w2(¥) about that minimum (in
anticipation of the fact that the envelope A(x) is localised in the
neighbourhood of wo). At this point we note an important property of the
second order operator fz (see Appendix B), namely

e~ o~ i 8 = - i dw? -
<f0|L2 + WM, [ > =5 oy <fo[L1 + WM, E S -5 W<f0|ml|_fo> . (33)

Using this property and (29) it follows that
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(f0|L2 + w2M2]f0> = 0 (34)

on V¥ = wo . Then, using the properties (21) and (22) of the operators, the

result (30) and the identity

52 , _ (35)
oy <E L, +w M |£> =0 ,

equation (32) becomes

2,42 2 ; 2 24,2
R 2 (V) [znmz—u;) -2y x2]A - 0. (36)
(o]

[A simple heuristic derivation of this equation is given in Appendix C.]

The most unstable mode (smallest ©2) will be found by taking Y, which
we have shown must be at an extremum, to be at a minimum of w2 (v, yo).

Then asz/ay; >0 and A(x) is a Gaussian function:

[v' (y )] %
A(x) = exp {- 2 . (aalwzz/aa?):) xz} x (37)
o]

The corresponding eigenvalue is

i
2 = .12 1 Pw?2 w2 \*
& By 2n|v'(yo)1 ( o2 By; : (38)

These results show that the 'amplitude' A(x) is indeed localised near Vo= ¢0
and that (apart from a small correction 0(1l/n) ), the eigenvalue of the
overall system, 0%, is equal to the minimum of the 'local' eigenvalue
w2(¥) . Furthermore the most unstable high-n mode occurs in the limit

n- o,

Thus, although the lowest order theory alone is incomplete, all the

relevant features of the higher order calculation are expressed in terms

- 15 -



of the function w?2(y¥, yD) which is obtained from the lowest order calcula-
tion! In practice therefore one need calculate only the solution of the
lowest order equation (24) in order to determine both stability and the

structure of the unstable modes.

8 4. BOUNDARY CONDITIONS WHEN w2 = 0 AND THE MERCIER CRITERION

In this section we consider the behaviour of solutions of (24) as
ly| » @, which we noted requires special treatment when w? =0,
Before investigating its behaviour at large ]yi, we note that (24)

is an Fuler equation of a variational form &W(- @ , @), where

Y2 y
. 9f 2 1 RZBZ 2
!
oty sy = [Iayd (5 ) Femz |1+ 5 J VY
Y1 x yO
; Yy
0 B2 I 3 (B2
= 2f2%—5 -@(p +'-'2—)—EZ-J-$("2"—) v dy ; (39)
¥
o

This is a one-dimensional energy integral for our problem and the stability
of the system is determined by the sign of min &W(- @, ©), This form for
8W closely resembles that studied in the analysis of the cylindrical pinch
by Newcomb (1960). We can therefore use this analysis, in particular
Theorem 5, which states that if a solution of the Euler equation which
vanishes at 1y, also vanishes at some other point of an interval (yl, Yz)
containing no singular points, then a function f(y) can be constructed

such that f(y,) = f(y,) =0 and
My, v,) <O . (40)

In the present problem there are no singular points : hence if a solution

of (24) oscillates as |yl = = the system must be unstable.

We now return to the behaviour of solutions of (24) as |y| - o when

w? =0. It is clear that in this limit the solution depends on the
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y
"stretched" variable z = [ y'dy and on the period of. the equilibrium. We
y

0]
therefore write the solution at large y in the form

e {go(y) +2 g0y +2, 8,0y + } ,

where the gn(y) have the same period as the equilibrium. Then equating

powers of z we find

d R?B2 dg
e - XZ -9 =0 (41)
dy JB dy
with solution 8y = 1. For 8, we have
R23 2 dg ’
KN - T av’ 2 la 42
dy[JBz(dy+ * Rz &y v422

The first integral, dgl/dy » contains an arbitrary constant which must be

chosen so that g, is indeed periodic. Then

a pv'dy + p’ ”ﬁ
dgl ’ Bzv B)( v '
dy + av = 2 7132 = B_g . (43)
X J{.Bi dy X
X

The next order in 1/z provides an equation for g, . Because By

is periodic it may be annihilated by integration over one period in y.

The resulting equation is

v'R2B? / dg
X L ’ ’ J 8 B2
(e + 1) dy TB? ( dy +0!V)+ 2pfdy Bzw(p +'-2—)

dg (44)
- pf dy — =
pI B2 & 0.

After substituting for dg,/dy this provides an indicial equation for the

= 7 =



index o, specifying it in terms of field line averages of the equilibrium

quantities. The two values of @ are

1 =
@ ,=-3%J5 "D (45)
where
2
' 2
_ ) v B rf Jdx 0 e frax v vdy

(46)

The quantity D is exactly that which appears in the Mercier (1960)
stability criterion when this is expressed in the form % -D>0.

In the present context we see that if D > % the indices « are
complex. In this event both solutions of (24) are oscillatory as ly| = @
and, by the Newcomb theorem, the system is unstable. Thus the Mercier
criterion emerges naturally from our analysis as a necessary condition for
the stability of all high-n m.h.d. modes. Furthermore when D > % an
acceptable solution of (24) always exists for w? =0 as it does for

w? >0.

When D <‘% the indices are real and unequal. In this case both
asymptotic solutions may decay (0 <D < %-), or one may decay and the other
increase (D < 0) . 1In either event only the smaller asymptotic solution is
acceptable because, even though it may approach zero as |y| » =, the larger
solution can be shown to lead to a divergent AW . Thus if D €5 and
w? = 0 the appropriate boundary condition for eigenfunctions of (24) is
that they tend to the smaller asymptotic form as |y! - o, (An equivalent
condition is that y%f(y) > 0 as Iyl - m.,)

We can now summarise the boundary conditions for (24) as |y| - ©,

When w2 > 0 both asymptotic solutions are acceptable. When w? <0

- 18 -



(the unstable case) only the decaying solution is acceptable and the

boundary condition is fO = 0. When w? =0 two cases must be distin-
. . 1
guished: if D > 7 both asymptotic solutions are acceptable (but the
; 1
system is unstable); if D < A only the smaller solution is acceptable

L
and the boundary condition is yf - 0.
o

§ 5. CONCLUSIONS

In the investigation of high mode number oscillations of a toroidal axi-
symmetric plasma one must reconcile long-parallel and short-perpendicular wave-
length with periodicity in a sheared magnetic field. This problem has been
overcome with the help of a transformation which converts the problem
into one in an infinite domain y without periodicity constraints. Then,
and only then, one is able to introduce an eikonal or quasi-mode form
X = F(\W,y) exp(- in fyvdy) in which the rapid short wavelength variation is

Yo
contained in the exponential factor (through n » 1) and the amplitude varies

only slowly. The quasi-mode X is not the physical perturbation; this can

be constructed from X and will resemble a super-position of quasi-modes.

The existence of two distinct length scales (~ V' and ;%W respectively)
then provides the basis for a systematic calculation of the amplitude
F(¥, y) and of the frequency of oscillation. In lowest order in 1/n the
oscillations of each surface are decoupled and the 'local' eigenvalue
w2(v, yo) is determined by an ordinary differential equation (24) - which
can readily be solved for any given equilibrium profile. In this equation
the independent variable is the extended poloidal coordinate y(- ®» <y < )
and the flux surface coordinate V¥ and the lower limit % of the quasi-

mode appear only as parameters.

The boundary conditions as |y| = © associated with the equation for
w2(y ,y ) are obtained from the requirement that any acceptable solution
o

in the infinite domain must generate a physically acceptable function in
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the periodic domain when used in the transformation (3). For w? < O (the
interesting case for stability analysis) the boundary condition is simply
fo -+ 0 as [y| - ©, For w? >0 an acceptable eigenfunction can always
be found - presumably a reflection of a continuous spectrum of eigenvalues.
For W2 = 0 the analysis of the asymptotic solutions as |y| - o reveals
the connection with the Mercier criterion.

Solution of the 'local' lowest order equation is straight forward,
but it does not determine the structure of the mode in the radial ¥ co-
ordinate. The determination of this structure, and of the relation between
the 'local' eigenvalue w2(¢,y0) and the true eigenvalue Q? requires a
higher order theory which has been described.

In higher orders of the 1/n expansion one first finds a condition
determining the parameter y - it must be at an extremum of wz(w,yo), in
fact at a minimum. Next one finds a second eigenvalue equation, this time
in the radial coordinate V¥ alone, which determines the mode structure and
Q2. The coefficients of this second equation can be expressed entirely in
terms of the function w2($,yo) determined from the lower order calculation.
Hence, although the higher order theory is essential, because the lower
order theory alone is incomplete, the solution to the higher order theory
involves only quantities calculated from the lowest order equation. The
salient features of the final solution are: (i) an unstable mode is local-
ised in the vicinity of that magnetic surface wo which is associated with
the lowest local eigenvalue wz(wo) = woz’ (ii) the true eigenvalue Q2
for the system is approximately equal to u02 and (iii) the most unstable
of the high-n modes occurs in the limit n = @ and in this limit Qz==w02.

Consequently, in practical applications of this theory, the stability
of any axisymmetric plasma against high mode number perturbations can be
determined from the lowest order equation for the local eigenvalue

w2 (Y, yo) . This ordinary differential equation can readily be solved for
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any given equilibrium profile and the sign of the smallest value of

w2 (v, yo) determines the stability of the system. This procedure corres-
ponds to a complete minimisation of the potemtial energy integral &W in
the limit n = ©. If required the structure of an unstable perturbation
can also be obtained from w2(V, yo) and its associated eigenfunction

fo(y; v, Yo) .
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APPENDIX A
TRANSFORMATION OF PERIODIC MODES

The representation of periodic modes of long-parallel wavelength in a

sheared magnetic field was achieved by the transformationm,

@
o(0,x) = :E:f-lme ]‘elmn o(m,x) dn (A1)
m -0

which takes the perturbation from the periodic domain 0 < @ <27 to the

infinite domain -0 <0 <o . In this Appendix we describe some properties

of this transformation.

(1) As mentioned in the main text, the transformation (Al) can be regarded
as made up of three steps. In the first, the periodic function ¢(8) is

represented by a Fourier sum. whis introduces the Fourier coefficients

po
_ 1 im0
a == j;e p(8) df | (A2)

for integer m. Then in the second step this definition is extended
to all m. For any well-behaved function o(8) this is equivalent

to defining the function a(s) to be

afi & g nllmedia] (A3)
T/ ,m (m-s)
m
Then a(s) takes the value a whenever s is integer, and is
continuous between the integers and conforms with (A2).

(ii) It is clear that if £ is a differential operator with periodic co-

efficients, then ¢(8) will be a periodic solution of

w T



£(8/20) (0) = X (0 , (AL)

provided ¢ 1is a solution of

£@@/3m) p(n) = A , (A5)

in the infinite domain -o < < o ., For, by direct substitution, followed
by partial integration (assuming ¢ satisfies appropriate conditions at

+ @ to ensure convergence)

- .
<£,(a/ae)- 1>¢,(9) = ZJ““Q/ em“<n(a/an)- l/\ o) (A6)

m -0
(iii) The demonstration of the converse result - that all periodic solutions
of (A4) can be obtained from solutions of (A5), is somewhat more involved,

If (£-X) ¢(6) = 0 then, from (A6), by Fourier's theorem,
o
isn - ;
] e (£L(d/9n) -1) ¢(m) dn = 0 when s = integer . (A7)

-0

Consequently it must be possible to write
@

/ eisn(Sn-l) @(n) dn = q(s) sin =s . (A8)

-0

where q(s) is bounded when s is an integer. Then Fourier integral

inversion of (A8) shows that it can be expressed as
(£-2) o(n) = Q(n+7m) - Q(n-m) . (A9)

Thus it may at first appear that the vanishing of (L - M) p(0) does not
necessarily imply that (£-2X) g(n) is zero, but only that it satisfies (A9).
However this is not so. If § were any solution of (A9) corresponding to

Q # 0, then because £ is periodic this solution could itself be expressed

in the form

o(n) = R(n+7) - R(n-7) (Al0)

= T



and in the transformation (Al) this would give ¢ = 0 whatever the function
R(n). Thus any non-zero periodic solution of (A4) does indeed correspond to
some solution of (A5),

(iv) An alternative view of the structure of the solution ¢(6,T) generated
by (Al) can be obtained as follows. We write, assuming appropriate con-
vergence properties,

(a3}
r
e(8,x) = _/ Z:axp(—im(ﬂ-n-)) o(n,z) dn . (A11)

-0 m

Then we can regard the summation over m as the definition of an (improper)

periodic function

—
yexp( -im(6-7)) = Z?(B -n- 2mN) (A12)

= N
and hence write (All) as

0] = 2‘()(9 - ZWN,J:) (A13)
N

Recalling that the structure of p is

n
$(m,x) = F exp(-in [ vdn) (A14)

now brings out the fact that ¢ is indeed an infinite sum of 'quasi-modes’

as mentioned in §2h

w O



APPENDIX B

HIGHER ORDER OPERATORS

The full set of operators i and M appearing in (19) are given by

5 | 1 R

LOF=5;JT=BE[1+< f”
X
23p" ® B2\ 1Ip’ / ra.) OB2
MR T a_\!r<p+'2_>h B4 _/dea_s;}’ (e1)

5 R2B2 . 5

MoF = X7p2 1+ TX jv'dy F (B2)
X
yO

R2B2 /Y 52
= 230 [ X ’ F

= 2i— d
L,F lay [JBZ (/v y) Byox

_ iIp’ 3B2 HF
B¢ 9y 3% y (B3)

JR2B2 1% .
MF = 2i _B_zl</ vidy|— (B4)
YO
R2B2 3 R2B2 Y
L2F=-—a—- X aF+:|.—8-——8---—-—-21 8F+1—a—(c'F)
dy | JB? Oyox? dy | 9V \ JB2 9 9y
YO
~ ip’ b g L8 ; 24 o [ 12 [T 5P
- — Q - — 4+ i = ! - r g 195
e oy B2 Oy * oy [sz _/ v d)) a:l oy [szBi '/ v dy) yj’
o] YO
R2B2 /3 ’
. 9 x( [ 3 2F ilp’ 9BZ? &F
ta By[ JB? (/” dy) Bllﬁy] " TB4 By av : (B3)
yO
JR2B2 JR2B2 % JR2B2 /¥ .
- X% . 3 ' , .\ aF
HoF B2 ox? © 3y ‘_BTX]VdY F+ 2i — 4 [v'ay 3V (B6)
Yo yo
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where

y
= ¢ 2 oF
IB? Q = By ( v d)—-—-
= ___Z.( ’ av)2E B2~ yR2B? /A
P c:'F+vBz fvdyay
Yo yo
If we write L, and M, in the form
~ 82 =5 x 82 -
LZ - ]'_.2 —"'xz + Lz 5 M2 = MZ —a—;{ + MZ ; (B']‘)

= 1 3 (!1 81‘0) I N N (_,_L._B_M_O>
2 [ 3 2 - 3
2v (yo) 3y, \V (yo) 9y, 2v (yo) By, \V (yo) 9y,
(B8)
then the only quantity of interest which involves fz and ﬁz is
I = <fo|f2+w2 M, £, - (B9)

It can be shown by integration by parts over y that the terms in this
expression involving P and Q wvanish and that the remaining terms can
be cast into the form

i dw?

CE|D, +w2M,|£5 -3 5 CE M| > (B10)

_ i
I=3 2 oV

B
oV
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APPENDIX C

FQUATION FOR MODE ENVELOPE A(zx).

It is of interest to note that,if one accepts that the 'envelope' A(x)

of the mode must be determined from an equation of the form

€2 424 81 ga
aa o 2 _ 42 =
n dx? +?’2: + (0 w?) A 0, (cl)

then the coefficients g, and g, can be deduced without recourse to the

explicit operators Li’ Mi . For the complete perturbation X is of the
form
~ -~ 1 -~
XSE T E A e (c2)
o] n2
where
R y
X = exp (- in [ vdy) fo(y;yo,¢0 A(x) . (c3)
¥y
o

Under the transformation

¥

i
oT Yot I, s AM - A exp (inty)) | (05
n

the lowest order term in the expansion of X remains unchanged (any change
% A

being 0(1l/n®) and part of X,) . The equation for A(x) must reflect

this invariance. Introducing the transformation (C4) in (Cl), and

equating powers of y, and y? in the limit n - © then gives

L]

2,42
—-——-—% i l 2 (c5)

ig, = - yo) 5;; > 82 T z(y'(yo))z ayoz .

For the most unstable mode we must then select ¥, S° that g, =0

and the result is (36) of the main text.

— I
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