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ABSTRACT

The highly collimated beams of energetic neutral atoms used in controlled
thermonuclear fusion research (CTR) require the virtual elimination of space
charge forces in the primary ion beam in order to minimise the angular
divergence. A model is presented which describes the behaviour of an intense

ion beam passing through a gas cell. This theory is used to derive the space
charge field produced by such a beam and shows how its effect can be minimised.
This model agrees well with experimental measurements and enables emittance

dominated beams of very high brightness to be obtained which could find

applications in fields other than CTR.
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1. INTRODUCTION

The injection of beams of energetic neutral atoms is one of the major
methods of auxiliary heating presently in use in the field of controlled thermo-
nuclear research (Cordey [1,ZJ and Kulsrad and Jassby [BJ)T These beams are
formed by electron capture of a positive ion beam passing through a gas cell,

In order to maximise the power transfer from the ion source to the fusion plasma,
and also to minimise the flux of thermal gas, the ion beam and therefore the

resulting neutral beam, should be highly collimated,

Part of the neutral beam injection development programme at the Culham
Laboratory has been specifically aimed towards elucidating the fundamental
limits to the divergence of ion beams passing through gas at low pressure.
It has been found that residual space charge expansion of a nominally space
charge neutralized beam was one of the major processes responsible for
divergence angles of the order of 1° observed in previous work. A model is
presented below which describes the processes involved in the space charge
neutralization of ion beams and, using the predictions of this model, ion
beams have been generated in which the divergence due to residual space charge
expansion is insignificant compared with that due to the finite temperature
of the beam ions.

Although developed for fusion research, these low divergence beams (v 0.2°)

12 mA cmj;aterfl may find other

which have a normalized brightness of 3 x 10
applications.

2. PHYSICAL PROCESSES

The model considers a non-relativistic ion beam, remote from any conduct-
ing walls, passing through a gas at low pressure. Electrons, produced by
ionization, are trapped within the beam by its own space charge resulting in
a decrease of the effective beam perveance, and hence space charge expansion, to
a value which is considerably less than that of the unneutralized beam. The
energy and particle balance of this system are explored in some detail as

functions of the various physical parameters of the primary beam and in



particular as a function of the ambient gas pressure. The use of Poisson's
equation enables a self-consistent description of the beam plasmé to be made,
including the radial dependence of the potential and particle densities within
the beam. It is the radial electric field of the beam plasma which is
responsible for the space charge expansion of the beam.

In previous theoretical treatments of space charge neutralization of ion
beams, either the continuity or the energy balance equation has been neglected
or Poisson's equation has been replaced by the plasma neutrality equation.

In the model described by Gabovich et al. [4], electron continuity is neglected
and plasma neutrality for a uniform density beam is assumed, thus losing all
spatial information. An alternative model developed by Hamilton [5] neglects
the effects of the slow ions formed by ionization and also uses the plasma
neutrality condition. The neutralization of ‘electron beams, which is very
similar, is discussed by Dunn and Self [6] who have solved Poisson's equation
by giving an analytic spatial distribution for the electrons and slow ions in

a uniform beam but they do not consider the energy balance of the plasma,

which controls the electron temperature. Green [7] has extended this model

of Dunn and Self to cover ion beams but does not consider energy balance.

The model presented here uses the continuity equation to describe the
slow ion and electron densities and the electron temperature is determined by
considering the overall energy balance of the beam plasma system. The potential we
can then be found by using Poisson's equation, thus completing the description
of the beam plasma. Unfortunately these equations are complex and involve
four nonlinear differential equations which would require very sophisticated
numerical techniques for solution. A slightly simpler approach is adopted
here which creates an approximate intermediate solution for the potential
which allows the four differential equations to be reduced to a single non-—
linear equation which still requires a numerical solution, but is considerably
simpler to obtain. This new solution replaces the intermediate solution and

also provides a comparison to ensure that the intermediate solution is a
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good approximation. An eyven simpler technique of solution is also presented
which replaces Poisson's equation by plasma neutrality and discards the
spatial distribution functions. This method obtains approximate analytic
expressions describing the axial potential and charge densities as functions
of the main beam parameters and is useful in understanding the general scaling
laws of the beam plasma.

The continuity equation is applied separately to each species of particle.
The slow ion flux is determined by an equilibrium between the rate of creation
by ionization and charge exchanging collisions and the rate of expulsion by
the radial electric field. The electrons, however, are trapped by this electric
field and can only escape by diffusion in velocity space via electron—electron
collisions until they reach the tail of the Maxwellian distribution and
escape.

The electrons formed by ionization extract energy from the primary ion
beam by coulomb collisions. The electron heating by the beam is controlled
by the detailed shape of the electron distribution at low velocities which
is modified by the presence of newly created electrons. The Fokker-Planck
equation is used to determine the electron distribution function which is
treated as a perturbed Maxwellian distribution. The heated electromns control
the magnitude of the potential well and hence determine the energy removed
by the escaping slow ions as they are accelerated radially outwards. This
energy is equal to the average binding energy of electrons trapped in the
well and if these electrons are to escape, they must absorb an equivalent
energy from the primary ion beam.

Green [7] has pointed out that the slow ions formed by charge exchange
are not involved in the above energy balance. The energy for this process
comes directly from the beam ions which are all decelerated by the space
charge potential shortly after they have left the emitter which is assumed
to be at the wall potential. In the absence of charge exchange, the beam

lons are re-accelerated to their full energy when they leave the space



charge well at the distant target (also at the wall potential) and there is no
net energy transfer. However, if a beam ion is converted to a fast neutral
within the well, it cannot be re—accelerated and the enmergy lost by the beam
ion entering the space charge well is removed by the resulting slow ion

when it is expelled radially. Hence this energy traﬁsfer is independent of
the beam parameters and does not affect the electron temperature.

3 THE CONTINUITY EQUATION

The densities of the slow ions and electrons can be derived from the
solution of the continuity equation in terms of the other plasma parameters.

The general form of the equation is:

./ot + V.F. = 0 T
BnJ/B E; 1)

where anjat is the creation (or loss) rate of particle j and Fj is the
particle flux. This flux describes the motion of each species which in the
case of slow ions is free fall under the influence of the electric field.

The electrons, however, are assumed to be borme with essentially zero velocity
and hence they are electrostatically contained by the fast lon space charge.
In this case the escaping electron flux is governed by their diffusion in
velocity space. These fluxes and their effect on the particle densities are
discussed in the next section.

It is assumed that the beam ions alone are responsible for the creation
of slow ions and electrons. The secondary electron energy distribution lacks
a high energy tail (see Section 3.2 and Fig.l) and hence the production rate
of ion-electron pairs by these electrons is very much less than that of the

beam for the experimental situation discussed here (ie, 10-6 <p<«< 10“2 torr).

3.1 TIomns

It is now appropriate to use the integral form of equation 1, obtained

by the use of Green's theorem, which gives:

an
Iv_aEdV= Js 2 8
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As the beam has cylindrical symmetry, the ion flux is purely radial and they
can only escape at infinity, there being no sinks for ions at finite radius
(the conducting walls are assumed to be at infinity). Hence for a creation rate

dn. /dt in an element of volume 2wmpdpdz and where these ions move to a surface
1

at r, the above equation transforms to:-

on.

i
—E 2mpdpdz

]

27 rdz Fi

21 rdz v(p,r).dni(r)

where v(p,r) is the velocity at r of those ions produced at p and

dni(r) is the contribution to the density of the ions at r. Integration gives:

(x) .—.ljrﬁ_ﬁf’__ (2)
ni r ), ot vip,r) T

The slow ions are created by ionization and charge exchange and move
freely under the influence of the electric field. (Scattering is unimportant
as the time they spend within the beam is typically the order of one micro-
second and is much less than the coulomb interaction time for pressures less

than 0.1 torr). Hence

r
n.b c‘vb n pdp

° Qe/m)-4)+4o))

1
ni(r) ==

&)

where ny is the beam density at p, vy is the beam velocity, n is the
gas density and ¢ is the sum of the ionization and charge exchange cross-—

sections.

It is shown in Appendix I that the only finite solution for n, at small

values of r 1is;

1 1
i = - = 2 2 CRCIEY
ilm n; (r} Nio = Tpol,on Vyms /(2e¢0) (4)

where ¢0 is defined as the first coefficient of the series

I'2 I3

~plr) =, Tt g T # e
2 57 I
o} (o}
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Hence the potential well has a parabolic form close to the beam axis. At
larger radii where 0y # n s the potential need no longer remain parabolic

and n; can be found by numerical integration of equation (2).
3.2 Electrons

Low energy electrons created within the beam are trapped by the space
charge of the fast ions. To the lowest order, electron—electron collisions
lead to the development of a Maxwellian distribution, characterised by a
temperature T(eV); diffusion in velocity space allows the electrons which
would have populated the high energy tail of the distribution to escape.
Hence the electron particle balance is governed by the rate of electron
production by ionization and the rate of escape which is determined by the
depth of the potential well, and the electron temperature and density.

The corresponding energy balance required to maintain this temperature is
discussed in Section 4.

Clearly the lifetime of an individual electron depends upon its
position in the well; an electron created near the beam axis, and therefore
at the bottom of the well, must diffuse much further in velocity space prior
to being able to escape than one created near the beam edge where the well
is relatively shallow. The electron density in velocity space can be
obtained in terms of the source function, electron temperature and potential
distribution. The electron density in real space can then be found by
recalling that the coordinates of real and velocity space are coupled via the
potential well.

Spitzer [8] has shown that the time for a sub-group of electromns to
increase their velocity dispersion by an amount v in the directions perpen-—

dicular and parallel to their original motion is:

T, = V2j<(UJJ_)2> & ‘Tjy = V2/<(m;|)2>

where <(m“)2> and <(mL)2> are the dispersion coefficients in these

directions. For a Maxwellian electron distribution of density ne(r), and

using Spitzer's notation, these are:



4
2 e’ n, &n A G(Rfm) N G(ﬁfm)
2 2 ) w T w

where w 1is the electron test particle velocity, If, as is thé case here,
the electron test particles in the sub-group are identical with the main dis-
tribution then mlf equals v1.5,

Since the initial velocities in the sub—group are randomly orientated,
neither the perpendicular or parallel directions have any special significance

and the two diffusion times may be combined to give a net time:

~
I

= Q/g + J/T”)"] _ v2(<(Li)2> + <(m")2>)

vzmjAd erf(/1.5)

The velocity dispersion coefficient may be considered as a diffusion
coefficient in velocity space with a magnitude:

erf(/1.5)A,  0.97 ot n, in A

D, = m = 2 2

= C.I‘le

This diffusion coefficient scales differently from the neutral gas diffusion
coefficient as it is proportional to the particle density.

The potential well which surrounds the beam relates the velocity of the
electrons to their radius of oscillation in the well. Hence diffusion in
velocity space is equivalent to radial diffusion in real space and the
source distribution function in real space causes the electrons to have an
analogous source function in velocity space. As it has been assumed that the
velocity distribution is Maxwellian throughout the potential well, it is not
necessary to use the full distribution function, f, for the electrons.

Instead, a simplified function, o, which describes the number of electrons
whose velocity lies in the range v to v + dv relative to a given

origin can be used. This velocity can be directly related to the binding

potential and containment time since the electrons spend most of their time
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at the turning points of the oscillation and they also conserve their random

kinetic energy.

The primary ion beam is assumed to be axially and azimuthally uniform with

no spatial diffusion in these directions, hence

2nrdr I

nv = e s ]2ﬂv dv
s S -

where v _ represents the velocity increment to escape. The diffusion

equation can be represented by:

dnv
v. (DVVDV) L = —&-t—
which in cylindrical geometry becomes:
dn
1 d VN _ _ 2rrdr
v_ dv (yr D, dy ) = ML93Vy 7y dy 32 ()
T r rr

Before further progress can be made the beam profile must be known.

The beam profile is assumed, a priori, to have a gaussian shape so that:

n =0 exp (- r2/r02) ... (6)

Hence the first integration of equation 5 can be made giving

dn nn, g.v, T
v o_ bo 1 b7o _ 2, 2
v. D dvr = 5 . exp(- x /rO Y + A iis ()

In order to integrate further, the transform relation between V. and r must be
determined.

There are two natural co-ordinate systems in velocity space, namely one
where the velocity is related to the potential energy associated with the radius
of oscillation so that v = 0 when r = O and the other where the velocity is
related to the binding energy so that v = 0 when r = «. The latter
co—ordinate system has a better physical basis as it is directly connected to

the confinement time and hence it will be adopted giving:

vi-28 = 22y s @)
e e

where V_ now represents the velocity required to overcome the binding energy
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when the electron is at its turning points (where it is most of the time).
A first approximation to the potential distribution with respect to
radius may be made by assuming it also to be gaussian but with a different

radius rOJB, so that
o(x) = - ¢W-[l - exP("(Br/ro)z) ] ... (8)

This approximation is strongly supported by experiment and also by the full
numerical solution of Poissons equation which replaces equation 8. Hence:

W25 (8w el ()

e o (o)

The other co-ordinate system for v gives an identical electron distribution,
but breaks down at large values of r because of the approximation assumed
for ¢.

Returning to equation 7, it can be seen that A must be zero and if the
dependence of D, on n, is included, then on integration the equation

becomes:

Cnv

8°(2/8% - 2) v v2

4 2
g _ By, 955 (vzz)”B :
When the transform is applied in reverse, the electron density in real space
may be obtained:
n 0.V 82v
2 _ "50%1Yb" "m

(278% - 2)

Cn exp (- r2/r02)-exP % (Br/r0)2

A
B
+ -ﬁz vm2 exp - (Sr/ro)2

%o
However, the electron density is expected to decrease more rapidly than the
potential, hence the numerical constant of integration, B, must be zero.
The final solution for the electron density is:
2

482w o 2eT : 2 (]+82)r2
n, = [ 5 -3 . = nnbooivbme¢w] exp - — e (9)
0.97(2/B° = 2) e ZrO

e  4nh
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This solution is hased on the assumptiqn that the potential well has a
gaussian shape of radius r_J8. Equation 9 aboye shows that the radius of
the electron disﬁriﬁution is, as wonld be expected, intermediate between the
beam radius r_ and the potential radius and is 'rb;(E/(l 63 32))%-

It has been assumed that the trapped electrons have a Maxwellian distribution
whereas in reality this distribution will be truncated at the velocity Vs which
causes the tail of the distribution to be lost. Virtually no electrons whose
velocity exceeds Y will be present as the electron transit time is shorter than
one percent of the collision time. The truncated distribution function can be

found using a method developed by Cordey [?] which gives:

e=¢ e'=¢
n =n J wc2 exp - /T dc’l L exp - e¢'/T dc
e eo

E=¢' / E':O

where € = mec2/2e - ¢ and €' = mec2/2e. This may be solved to give:

e eo

(/i ere (G5, F DD exp(s + 9 /T = /o + %)/T]
(ﬂ/&)% erf (/5;75) exp ¢W/T -V¢W/T

which is the truncated Maxwellian distribution of electrons in a well of finite
depth.

Curves of ne]neo are shown in Fig. 1 for several values of ¢W/T. A more
tractable form of the above equation is obtained by numerical approximation to
the above curves yielding

n, =, exp(/T). (¢ + ¢ /¢, ... (10)

This is also used in the numerical analysis discussed in section 5.

It is clear that the distribution functions in equations 9 and 10 must
be made identical. This is achieved through the correct choice of 8 which in
turn involves the consideration of the emergy balance of the system in order to

determine T. However knowledge of B is not required in the derivation of n

eo’

the electron density on axis which can be obtained by inspection. If
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equations 9 and IQ are comhined then;

2 1

2 TE i l b +
= . 4B 0 (ZeT) } $ ( ¥
n - ,- = Il Q'a'_v'm : i —— 0--.(]1)
© 10.07(2/g2-2) e gmp \ P/ | b07b du| =P 7 » )

The above expression shows that the value of B has only a small influence on

the electron distribution.

4. THE ELECTRON DISTRIBUTION AND ENERGY BALANCE

The energy balance of the beam plasma may be reduced to equating the energy
loss arising from the escaping slow ions to the energy absorbed by the electrons
arising from coulomb collisions with the beam. The energy removed by slow ions
produced by charge exchange does not enter into this energy balance because this
energy comes from the electrostatic deceleration of the beam by its own potential
well. 1In addition the electrons cannot remove their kinetic energy, eT, from the
beam as they escape when their energy just exceeds the binding potential.

The irreversible energy loss of the beam ions, when they pass through an
electron gas, is critically dependent on the velocity distribution of the
electrons and is maximum when the electron velocity is close to zero. 1In the
previous section the electron velocity distribution was assumed to be Maxwellian

with a cut—off at v2

=2e¢W/me. This cut-off occurs at a velocity greater than v,
and hence will not affect the energy absorption. However it is possible to show
(see section 4.3) that the energy absorbed by a true Maxwellian distribution of
temperature, T, during the containment time, is approximately an order of
magnitude smaller than that required to escape. This arises from the high
thermal veiocity of the electrons which has been measured to be approximately
twice the beam velocity.

Consequently another process is responsible for the energy absorption and
it will be demonstrated below that the electron distribution function at low
velocities is considerably modified by the presence of newly created electrons

which have low velocities and can hence act as good energy absorbers for the

whole distribution. However the number density of this group of electrons is
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low as they quickly thermalize with. the main distribution,

The density and distribution function of these electrons can he
evaluated from the Fokkar—Planck,eéuatiOn. This function can then be used in
the beam deceleration equation which determines the energy loss from the beam
and hence equated to the energy removed by the slow ioms.

A simple method showing the physics underlying this approach is shown
in fig. 2. The beam energy and newly created electrons enter the perturbed
distribution. These electrons gain energy from the main distribution and also
transfer energy and particles via the heated electrons which are absorbed into
the main distribution. In this way the total energy and particle content of the
perturbed distribution remains constant in time to give a steady state solution.
Finally the main Maxwellian distribution loses electrons which evaporate from
the beam and also remove their binding energy from the beam thus maintaining
the energy and particle content of this distribution.

4.1 The Fokker-Planck Equation

It is assumed in the following analysis that the electron distribution is

isotropic, in which case the general Fokker-Planck equation takes the form:

2 2

ofY T J.3 (e ,23h  fag) 12 237g
(Bt)c_ 2 { v (fv v Bv)‘ 2% 9 (fv 2)} e (12)

v v ov

which has been derived by Rosenmbluth et al.[10]. 1In this equation, f represents
the total electron distribution function and v is the electron speed. Hence

the electron density, n, s is:

Also the terms T', h and g are determined by the equations:

4 2

_ 2
['=c &nh/4m €, 1,

o]

N s
hiv) = § — {—— J f.y!'dy! + 4ﬂJ f-v'dv'} o s w LIDD
g nﬁ L v J



Ib

v
2os B 2 4 7 ' -
I fjv' Gv" +v'")ay" + ji-f fjv'(3v'2 + vz)dv{ <o (14)

o v

m
v

(%3]

gv) =)
]

It is impossible to solve equation 12 analytically for a general
distribution function, but, if it is assumed that the electron distribution
function is essentially a perturbed Maxwellian (because the containment time
is a few times the collision time for electrons), then the equation may be
linearized. The effects of the source of electrons created by ionization can
be viewed as a perturbation and the total distribution function can be

represented by

m \3/2 m vz
f = £ .n.exp—e *+ f

2enT e 2eT n
where fn'is the perturbation. The Maxwellian function is a stationary state
of the Fokker-Planck equation and hence it makes no contribution to the time
derivative on the L.H.S5. The perturbation distribution, fn’ is assumed to be
too small to interact with itself via the h and g parameters.

The time dependent part of the Fokker-Planck equation hence represents

the rate of loss of electrons from any element of velocity and real space,

which becomes, for electron creation in the ion beam,

dN

DEN o - —
2), =S g s 115}

where dNe/dt is the rate of appearance of new electrons per unit volume taking
into account their orbitals around the beam axis. The function S(v) represents
the velocity distribution of the new electrons at a point in real space arising
from their potential energy. It is shown in appendix II that dNe/dt depends
critically on the initial velocity of creation of the electrons which has been
measured experimentally by Rudd and Jorgensen [117],

In this instance (see appendix II)

dN ed

_e _ v hr_ o

at 405V Varr 2
(o] mevb

where is the potential at r .
o P o



The electron velocity distribution, S(v) can be derived from the beam
profile and potential distribution. As the main area of interest is near the

axis, the gaussian potential well can be approximated to a parabolic well so

that
2
mev mew
7 = &b+
, 2
- e¢0 ( 2 _ r2) & BV
2 ‘P 2
r
o]

where r is the radius where S(v) is determined and w is the initial electron
velocity. The probability of a velocity v depends on the distribution of

both w and p as shown in the equation below:

-
JO f(w) . g(p) dw
S(v) = 7 T v
4mv J J f(w) g(p) dw dv
oo

It is assumed that f(w) is 2wexp(- w2/w02)/w02 where v, is the characteristic
initial velocity (experimentally W, vb) and g(p) is exp - pzlro2 which is

; ; 2 .
derived from the beam profile. As Wy < 2e¢o/m, integration gives:

1 e \2 1 MV
8wl & —5p (—-—-—) . =5 . exp(— ——)
2Tr3/2 2e¢0 V2 2ep

which has some similarity to a Maxwellian distribution.
When equation 15 is combined with equation 12, the Fokker-Planck

equation becomes:

. 2
o 2y ed, m, 2 exp ( m v /2e¢0)
Vb * 2T 2 \2ed 2
™ "o v o v
eb
_I o 23h, . dg),108° [, 223’
2 v n v n av 2 2 nV 2
v ov v

It is possible to integrate this equation once by multiplying by 4wv2dv and

integrating over the range O to v which yields:
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ep r m v 2
e 2 3h 9
- nn.bcrvb —%— 2 r erf( ) = 4171"1— fn(v — + E‘g’-) +

T 2 2e¢O v

e'b

2
% (fnv2 3—&)} ... (16)

sz

The next integration depends on the functions h and g which can be derived from

equations 13 and 14 and the distribution functions of each species of particle.

4.1.1. The h function

There are three species of particles, namely the main electron distribution,

which is maxwellian, the slow ions and the beam ions.

of the electrons and beam ions are respectively:

2
m, 3/2 = mv
e e 2meT e 2eT

Hh
Il

Fh
|

= 6(v - v) 8(u - 1)/4m?

The distribution functions

... (17)

sow €18)

where § is the delta function and p equals cos B in polar co-ordinates. This

anistropy of the beam must be removed by integration over 8 before it can be

substituted into equation 12, but it is useful to perform this operation after

and g, have been derived in order to improve the accuracy of the expression.
b 1mp y

The slow ion function is more difficult to derive, but it will be shown

shortly that the dispersion caused by these particles is unimportant because

of the small value of n. . A simple form for fi is to assume it to be

Maxwellian with a characteristic energy of e¢0 so that the ion velocity is

far smaller than the initial electrom velocity. Hence

m. 3/2 m.v2
f. = n. = exp| — =
i 1 2we¢o 2eqb0

Substitution of these expressions in equation 13 gives:

2v2

zne 2 ; 2 (P \?
= —_—— E%
he == erf(mev /2eT) 2ne{7F (ZET)
h., = m_n./vm.
i e i’ 1

B

as v >> (2e¢ /m.)? and m. >> m .
[t i e

.—15-

T 3/

(ZZT)sz

cee (19)

)



]
(v- + vh2 - Zvvbu) 2

This last expression is derived from the expanded version of equation 13 given
by Rosenbluth et al [10]. However the dependence on p is inconvenient in the
assumed isotropic distribution, f,, and maybe eliminated by interaction over
all values of p from 1 to — 1. In this case

- U™

B e {Iv vyl = Iv = v, [}
b 8mbvbv b b’y

These three expressions for h represent the relative magnitude of the
deceleration of the newly created electrons by friction or scattering with
the beam ions, slow ions and the main electron distribution. In view of the
mass ratio which enters into this type of effect, it is to be expected that
beam ions are virtually ineffective in slowing down the electrons (the beam
ions are incapable of producing any deceleration until the electron velocity

exceeds that of the beam). In this case the value of v23h/8v is:

2 2 _Sne 3 (Me 3/2
voeh/3v = v ahefav = ;;;—v (EET) + .. ... (20)

4.1.2. The g function

Using the expressions developed above for fe, fi and fb it can be shown

with the aid of equation 14 that:

1
_ ZeT [4v [fe | exp TV
8e L2 \ 2eT P 7 DeT
' 2 2,
m v eV 3
+ 2(] + T )erf(zﬁ—) ]
n ! m v m v2 2
e (ZeT)2 {8 % 8 e 147 ( ”
4 \m, ';? 3w§ 2eT wé 2eT tee

(ST

1)}
R

n.v if v >> (Ze¢0/mi)

Oy 2 2 }
g, =3 07 vy - 2wt
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Hence;

o 3
By = T2wv, {|V + 3 - v - v

This last expression is obtained by averaging over all values of u.

Again the scattering effects of the slow ions may be neglected but the
scattering caused by the electron distribution and the beam ions are
comparable and both must be included. The scattering represented by the g
expression will cause the average energy of the newly created electrons to

rise. In the first order the dérivative of g with velocity is:

1
38/3v = 98, 4 ng _ 4ne mev\ 2eT\? N Oy (21)
v v BH% 2eT/ "\m 3vy Tt

4.2 The Perturbed Distribution Function

With the values of g and h in equations 20 and 21, it is possible to

solve equation 16 which gives on integration

2 325 .v'zah/av' + 3g/ov' dv' Tk
fh v 5 exp|- 2 > = 4 =
v v v'® 3%g/av! o

2 4

ed m_u 2 .

x-&— o erf(—— e exp(-g J v'oh/av? + dg/ov! dv') du = constant.

2 2 2e¢ u 2 .2 12
LA v o v a°g/ov

Substitution of equations 20 and 21 show that vzah/Bv is unimportant compared
with 3g/9v which suggests that the deceleration of the newly created electrons
is unimportant compared with the scattering collisions. In this case the
above equation may be simplified to:

2
£ Bzg N 2nn, ov, T “jg edy I erf[meu )2' du _

= constant
v 4#Fro v/ mevbz v \2e¢0

If u is small, then:

£ - ¢ -
n—b

nnboivbr' 8 (2e¢0)% onv [4ne/me )2 . o J—]
- T

4mlr
0
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The constant C is of some importance as no sink of electrons has been
postulated. A natural sink exists when Vv is of the order of the thermal velocity of
the electrons as then the two distributions cannot be distinguished. If f is zero

when v equals v then:

£ = An(v_/v)
n S

nn, 6.T 2 \3 4n. m_ 4 |
i d s B g (m 8 ) p [ € =) + b | iz (22)
2

m
4Tr
o

The total number density of these electrons can be found by integration
over velocity space which gives:

4 Av 3
s

v
n=JS 2
n fn.4wv dv = P

)

When ¥y is less than (2eije)% this density is considerably smaller than n .

It is difficult to determine the value of v precisely, but if v equals v when
the scattering time for these new electrons with themselves is equal to the
scattering time for collisions between new electrons and the main distribution,
then v_ is approximately é(ZeT/me)% although this velocity depends on the gas
and beam densities. An illustration of the distribution function is shown in
Fig. 3 where the perturbation appears as a spike on the Maxwellian distribution
function at v = 0. The effect of the uncertainty in the value of v does not
influence the energy transfer however as will be seen in the next section.

4.3 The Beam Energy Balance

The deceleration of the beam is governed by an equation of the type:

v,

- - 9H
ot b vy
_ 4 2z
where Fb = e RnA/4ﬂeo m
and
+m. v o
H(vb) - zmb—_J- ﬂ J b V'Zf-dV' 4 l}Tfl. R '<
j m v. j ] wv'f.dv
b b 7o vy ]
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The slow ions are ineffective in retarding the beam ions because of their high
mass but both electron distributions can cause deceleration. Substitution of
fm and fn in the above equation yields:

2 2 2
5Vb Vb '\)’S )]

- —— 41 vS/vb +

n 1
& 2 z _
[v erf @névb /2eT)* + 4mA ( 36 3

If the electron temperature is high then the contribution from the main
distribution is small (because w > vb) and hence can be neglected. Substitution
of experimental values shows that less than 10% of the total energy input to the
electrons comes from this channel. Hence, in this case, the rate of change of

beam energy is:

Wy, vy, v r
— — J{
T - vy g - - Amam b Thb o0 oy ase
3 m, \ s'"b
and
aw U /
& " Mwdr C3 M Tm b \ PRl 4/s) s $2

The value of v, has little effect on the energy transfer.

The last stage involves the integration of the energy absorbed in a unit
volume at r, represented by dW;/dt, over all radii which is equal to the total
energy removed by the flux of escaping ions. This balance may be represented

by the expression:

o 2.2 jw aw

J nn o vy e¢w exp - B ; . 2mrdr = EEE . 2mrdr
o r o

o}

This integration is necessary because the electron-electron energy transfer
time is considerably shorter than the containment time. It is not possible
to solve exactly the right hand side of the above equation, but the term A
can be expanded as a series function of the ratio nb/ne. Hence after

simplification:
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1 1
o ... 2.9 2T
L - o B (2ta(r /vy + 2/3)

1+82 @-@a=+8H/n 0

Y [1 _@3/2 - 8%/2) ﬁ“_b_g_(mzeqz ) N ]

_ L2 4 n 2
(2 - 89) eo ‘m v,

The higher order terms in nbojneD may be collected to give:

1 1

¢ 2 ¢ % T2 1
LI 2 5 nbo(un(vs/vb) +2/3) . [1 - L
1482 @-Q+8H/2) "eo

if B = 0.33 (see next section). The small value of nb/ne at large values of
r attenuates the second term considerably and at high pressures (greater than
4

10 * torr), it can be neglected completely.

4.4 The B Parameter

32 has been a free parameter in the model, although an exact theory could
determine BZ vis a mumerical solution of an integro-differential equation based
on velocity space diffusion and energy balance. The approach adopted here is
considerably simpler and offers a greater insight into the meaning of the R
parameter.

In section 3.2, 82 was to be determined by the equality between the radial
dependence of n, in equations 10 and 11. This demands that

_as+gh 2 % e
2 2 % Bl

T w
o

where ¢ is the potential relative to the centre of the beam. Hence, near the axis

where ¢ is small )
_ (1 +8)r” _ ¢

2r 2 T
o

¢ 8r\2
w-Tw(l —exp—(ro)) | . (28)

N

If LU is approximately equal to n and only the first term of the series
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expansion of the exponential in equation 24 is considered then the above equality

becomes:
2 , 2 g2 1 ?
_l_g_ﬁw - ( 280 + 8 )(]2_ B d x(zzn(vs/vb) + 2/3))
3 - 89)J2

The solution to this is 82 = 0.33 when vsjvb equals 1.4 although B is relatively

invariant to the value of vsjvb.

With this calculated value of Bz,it is possible to write:

2

- "bo w
¢, = 2.02 (n'bo) T (1 - 0'4E_v) so (25)
oo eo b

If this equation is combined with equation 11, it is possible to eliminate

T giving:

i
n__ = 0.33 Irsoz(,eme)2 no.v, ¢ 3jz/eB 2n(h) ... (26)

eo w

4.5 Radial and Axial Energy Transfer

It has been assumed, hitherto, that the beam is perfectly collimated and
the electron temperature is uniform everywhere. It will be shown here that a gaussian
beam profile allows the expressions developed for perfectly collimated beams to be
extended to divergent beams. 1In addition the value of 82 derived in the previous
section allows the local rate of energy absorption, dﬂ;/dt, to have exactly the

same radial scaling as the energy loss caused by the outward drift of the electrons.

4.5.1 Axial Energy Transfer

The effects of beam divergence cause an axial variation of ¢W, producing a
broad shallow well where the beam is wide which is transformed into a deep narrow
well near the beam extraction region. The electrons can move axially along the
well oscillating between contouzs of constant potential. The electron production

rate, Qe, in a zone d¢ at potential ¢ for a local beam density, o, is:

_ dr
Qe = noyovy . 2Tr % d¢
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For a beam and potential well which are heoth gaussian

B-
1l

b, exp - (Br/r )’

=n e - r2/r 2
bo =p o

P

/8%

n. (6/9.)

and dr/d([b

I

r02/2r82¢

where ¢ is in this case the binding potential of the electrons and is measured
from the remote walls which are at constant potential. Hence:
2
29 2
]
o0 = gy - o (L)

V, .
e 1 bob 2
° g%y

However the beam current remains constant along the beam axis so that
I, = v,e r g
b~ ™'k Ta

and ) noIb " ]/B2
Q = 35— 6 d¢
B ed W

Hence if the beam current and gas density are constant along the beam axis then
the production rate of electrons along a contour of constant potential is the
same irrespective of beam size. Hence there is no axial flow of electrons and
the energy balance of an axial segment of the beam can be considered as if it
were infinitely long and of the same radius. This arises from the gaussian
profile of the beam which in turn generates a similar potential distribution.

In this state the flow of particles (and hence energy) along the axis is zero.

4.5.2 Radial Transfer

The energy absorbed per unit volume by the electron distribution is
determined by the function dWé/dt. This energy is absorbed by the local
electrons and enables them to drift outwards against the electric field. If

the radial dependence of dWé/dt and the energy required to maintain this drift
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are the same then this implies that there is no temperature gradient because
the local energy absorption and loss are the same everywhere. From equation 23

the radial scaling of dw&/dt is:

dw 9 2 2 2

e _ r_ _ 2r” (1 +87) r
ac - C - T ex 7 - BT 3
0 r 9 g
s} (0]

where C contains all terms which are not functions of r. The energy required
for drift against the field is: neE.(dr/dt)d where E is the local electric
field and (dr/dt)d is the drift velocity. An approximate expression for this
velocity is:

(dr/dt)d = nbnoivbro/ne

Hence the radial dependence of this energy loss is:

26, a2r2 .2
loss rate = nn, O.ViT_ § 5 exp e ;—5
o o o

These two radial expressions are exactly the same provided:

1.5 - g%/2 = 1 + g2

9% 8% = 0.33
This value of 82 is in exact agreement with the value derived in section 4.4.
from a completely different concept.

Hence it can be seen that there will be a strong tendency for a beam of
any arbitary profile to relax into a gaussian shape where 82 is 0.33. This
profile eliminates any need for axial or radial energy transport and hence is

an equilibrium state for the beam plasma.

5. POISSONS EQUATION

The electrostatic potential can be derived from the charge densities
and electron temperature by two methods. The exact method is to solve the full
Poisson's equation in cylindrical geometry, which will be done in a following

section. A less accurate technique involves the assumption of plasma neutrality
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so that d2¢/dr2 and d¢/dr are neglected and Poisson's equation reduces to

which is the plasma equation. Harrison and Thompson [12]have solved the plasma
equation when g is zero and Green [7] has produced solutions where ny is finite
and uniform. This equation will give a detailed spatial solution when the
Boltzmann distribution for electrons is assumed (i.e. n,6 =mn, exp + $/T). The
validity of the plasma equation is doubtful, however, at low pressure because of
the dominant effects of the beam ions and the high potential gradients in the
plasma.

A much simpler solution of the plasma eqpatiOn is described by Gabovich et al
where only axial plasma neutrality is assumed and all radial variation in demsity
is neglected. This determines the magnitude of the potential well but not its
shape. A similar technique will be used in the next section to obtain an

approximate estimate for the scaling of 9,

5.1 Neutral Plasma Solution

The basic expression equates n,, ton;, oo, hence from equations 3 and 26

one obtains:

z(em)% v. 2
T, e/ MOV _ ( e ) b T B e

& Bl 2e¢w {1~ exp"BZ)

3/2
¢
¢35 K

+ LR e (27)

The above equation relates the potential to the gas density and beam density

and indicates that, at low pressures:

| DR
p = ( /n)2/3 [0 v, .0.33 e 2 (mee)i] 2/3 (28a)
w Mo i'b o e3 RnAJ
and at high pressures:
1
2 _ o (i Y e? gnn 1
% = ™o Yo g, ( - ) e ... (28b)
A N 0.33me,~ (1 - e7B%)
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These two equations show that ¢, decreases with increasing pressure
until a lower limit is reached, which is determined by the production rate of
the slow ions. Furthermore at low pressures, the beam potential depends solely
on the beam density and is independent of the beam radius. This scaling differs

completely from the scaling of the potential of a vacuum beam where

This effect may be exploited to produce an extremely collimated beam whose
divergence is only limited by its finite emittance. These results are mentioned
in Section 6.3: and are discussed in greater detail eles=where (Holmes and
Thompson [13].

At high gas target thicknesses, a large fraction of the ion beam (dependar.t
on cthe beam energy) will be converted into neutral atoms and this reutral atom
beam cannot create a potential well. This fast neutral beam is a source of
plasma and therefore a sheath appears at the plasma boundary (i.e. the walls).
Dunn and Self [6] have discussed this problem in detail for finite temperature
electrons in electron beams, This treatment has been extended by Green [7] to
intense ion beams. Hence by a simple modification of the model to incorporate
the relative magnitudes of n to 0 s the fast neutral demsity, it can be

bo

shown that:

n 2/3
no o]
. =¢ . (— at low pressure
wi W oo

S
1

nn +rLbD

=¢ . (=122 at high pressure

W
"o

wi

where ¢Wi is the potential generated by a pure ion beam of density (nbo + nno).

5.2 The Numerical Solution

Poissons equation in cylindrical geometry is of the form:
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where there is azimuthal and axial uniformity in potential. Each charge species
has a different spatial distribution which is described by equations 2, 7 and 1]
and these can be introduced into equation 29. This discussion is limited to a
gaussian beam profile which is the steady state solution following the arguments
advanced in sections 4.4 and 4.5. However it is easy to apply this technique
(assuming that the other particle profiles are independent) to other primary

beam profiles. For a gaussian beam, however, equation 29 becomes:

o (Lo, 120 )" % (0
e r dr b s 2e
.dr

T
[r n exp - a /ro ada

o (9@ - o)

Nl=

o

[N

+n,_ exp (- r2/r02) - ng, exp (¢/T). (¢, + ¢/¢W]

bo

This equation may be slightly simplified by the introduction of the

variables x = r/rO and y = ¢/¢0. Hence:
2

€ ¢ 2 n. x -x' £, ® v . .2
s O (E__X + ..l g'_z) = 0 Jr e T = ?‘X -n exp _o_- .(¢W ¥ y¢0\ + nb e = s
2 \g42 X dx £ dy iy = L eo T ———E————y o
er y -

It is possible to solye this integro—differential equation using a finite step
technique to approximate the differeﬁtiéls. However a single solution to
Poisson's equation is insufficient to determine the well potential because N.oo
T and n.o are all functions of ¢W. Hence a relaxation routine must also be
included in the numerical solution so that the value of ¢w derived from Poissons
equation is used to modify the initial estimates for 0, T and n. . The
final numerical solution is shown in figs. 4 and 5 where particle and potentials
distributions in both pressure regimes are shown.

It can be seen that the three charged particle distributions and the
potential well are all of gaussian form although with different radii. The
shape of the numerical potential well supports the arguments advanced in

Section 3.2.
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6. EXPERTMENTAL RESULTS

A series of experiments have been performed on a helium beam moving at
constant energy through a helium gas cell. An illustration of the apparatus
is shown in fig. 6. The beam is produced by a four electrode extraction systex
which has been described by Thompson[l4]‘and the current demnsity and divergeice
angle of the beam may be controlled by varying the plasma density in the sourc:-.
No magnetic focussing of the beam is used. The beam plasma is isolated from the
extraction electrodes by the last electrode gap which creates a potential to
reflect the electrodes back into the plasma. Thus the beam plasma is
surrounded on all sides by surfaces at a uniform potential (in this case these
surfaces are earthed) and electrons can only escape by velocity space
diffusion.

Two techniques are used to examine the space charge potential. Firstly
the plasma potential may be measured using a "hot" Langmuir probe, described by
Gabovich [4]. The bias voltage relative to the earthed wall required to give zero
wall current from the probe is equal to the local plasma potential. Secondly
a shielded probe with a grid may be used to make an energy analysis of the
particles which are expelled radially from the beam. This probe does not give a
spatial resolution of the potential well and can only determine-the electron
temperature and maximum well potential from the energy distribution of the slow
current. It has the advantage that it does not enter the beam and hence can
work at high beam energies.

6.1 The Potential Well

The plasma potential at a point in the beam is defined as the voltage
between the measurement point and the beam axis and is equal to the difference
between the floating potential of the probe at the two points if the electron
temperature is constant. Any thermionic emission from the probe caused by
beam heating is limited by the beam plasma density and hence the alteration in
floating potential is independent of position, However, the plasma potential

must be corrected for the effects of charge exchange neutralization.

_27-..



The Langmuir probes shown in Fig.6 have been constmnc ted of tantalum and
alumina to withstand the beam heating up to beam energies of the order of
25 keV., They have been used to measure the dependence of the potential on the
main beam parameters, in particular the gas density, beam radius and beam energy.

In figs. 7 and 8, the well potential is shown as a function of gas density
for helium beams in helium, hydrogen and argon. These curves show that the
potential decreases with increasing gas pressure and then remains constant at
high pressures. The experimental data and theory agree well over the entire
pressure range for each gas.

The change in the scaling of the potential with pressure occurs when the
slow ion density exceeds the beam ion density so that the electron density has to
neutralise the space charge of the slow ions instead of the beam. In fig. 9,
the theoretical peak slow ion and electron densities are plotted as a function of
pressure for the experimental beam used to obtain the data shown in fig. 7.

It can be seen that n._ increases almost linearly with pressure whereas LR

10

only rises slowly at low pressure and then more rapidly as n.. becomes greater

than oo

The limiting value of ¢, at bigh pressures scales as [ami%/ci]% which
depends strongly on the atomic species of the neutralizing gas. This scaling
can be used as an indirect test of the validity of the model by comparing the
values obtained from the well potential with published data on the cross-—
sections. Using the data from fig. 7, the low limit for ¢W yields the following

cross—section ratios, UIUiZ/UZGil’ which are in fair agreement with published data,

from references 16 and 17 where 01 and 02 are the sum of o and 0{0 for

the two gases used to derive the ratio,

Experimental Data Published Data
He /Ax 5.2 5.1
He/H2 6. 7.9
Hy /AT 0.76 0.64

The variation of the well potential with beam energy is shown in fig. 10.

The theoretical curve includes the effects of the variation of the cross-sections

with beam energy and agrees fairly closely with experiment.
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The dependence of the potential well on beam current and beam radius is
difficult to analyse experimentally because the beam divergence is a function of
the beam current for a given extraction system at constant beam energy and
pressure. However if the beam potential is measured at various points alone
the axis of a diverging beam it is possible to derive the potential at several
different radii and this is shown in Fig.1l. The beam radius is found from
the beam divergence, measured using a set of calorimeters, The experimental

dependence of the beam potential is virtually r-1'6 and agrees well with theory.

6.2 Energy Analysis

The main method of operation of this probe is to use the grid as a filter
so that only ions or electrons are allowed to reach the collector. The energy
of these particles which pass through the grid can then be analysed by biasing

the collector and measuring the collected current.

The electron temperature, T, may be easily found with this probe by
plotting current-voltage characteristic on log~linear axes and measuring the
slope. 1In fig. 12 the dependence of T on gas density is shown which has a
prenounced minimum at arcund pressures of 10"3 torr and agrees well with theory.

It can be seen in fig. 9 that the minimum value of T coincides with the pressure

where n. 15 "
e jo equa oo

The ion current-voltage characteristic can be used to obtain an estimate
for ¢W and 62. However repulsion of the electrons from the grid creates a
space charge potential which causes an offset between the collector potential
-and the ion energy. The shape of the characteristic and noting the potential
at which the current saturates, enables an approximate value for ¢w and 82.
to be derived,
The dependence of ¢W with gas pressure is shown in fig. 7 where it agrees
closely with the Langmuir probe data. In fig. 13 the depen&ence of B with gas
density is shown. The value of B derived from the numerical solution of Poisson's

equation is also shown on the same graph and fairly good agreement is obtained.
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The very slow chanpge of f with gas density 1s caused by change in tire value

of n ;’l'l

T from unity which can be scen in Fig.9. This would af

2 ; ; ;
velue of B° derived in equation 24,

6.3 Beam Divergence

Only a very limited description of the beam enveiope is presented here
and a more detailed discussion of the effects of space charge neutralization
on the beam envelope will be published later. The radial electric field
derived in Section 4 can be combined with the beam envelope equation developed
by Kapchinskij and Vladimirskij(lg) to provide a complete description of the
beam envelope and beam divergence. The form of the equation shows that the
divergence angle is approximately proportional to the radial electric field.
Hence it is possible to compare the relative divergences of a vacuum (or
unneutralized) beam and a neutralized beam by comparing the scalings of the

electric field. These are respectively:

Vacuum beam Exn 1
bo o 2/3
C Dho 1
Neutralized beam E = r— . =

o]

which shows that the field of the neutralized beam decreases with increasing
beam radius unlikg the vacuum beam. Hence it is expected that the divergence
will decrease with increasing beam radius at constant beam density. This
leads to the surprising conclusion that large diameter high current ion beams
have lower divergences than small diameter low current beams.

This conclusion has been tested experimentally using the apparatus des-
cribed in Section 6. The plasma source was a reflex arc source operated in
low magnetic field to produce a quiescent plasma. The divergence was measured
using a set of calorimeters Which eliminétes any uncertainties caused by

electron collection or emission when electrical measurements of divergence
are made. The results are shown in fig.l& and it can be seen that the diver-
gence of a helium beam decreases with increasing extraction aperture radius.
The perveance density (electron perveance) and gas density were approximately
constant over the entire series of measurements being respectively

—3/2cmf2

5.3 X10-7 AV and 6 ><10_4 torr.
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Thé scaling of the lowest curve with beam energy suggests that the 6 mm
radius beam has attained the fundamental emittance limit so that the space
charge forces are less powerful than the finite ion temperature, Tib’ which

1

causes a divergence of (T.b/Vb)i radians and results in an intense ion beam
1

2 2
with a normalized brightness of 3.101 mA/em” /ster,

7. CONCLUSIONS

A theoretical model for the behaviour of the beam plasma in intense ioa
beams including both the particle and energy balance has been developed, the
results of which are in good agreement with experiment. The behaviour of the
beam plasma has suggested methods by which the plasma potential can be reduced,
either by increasing the gas density or by increasing the beam diameter,

This last method is extremely useful since the residual divergence of the
ion beam can be reduced by increasing the perveance, The large 6 mm diameter
beam is virtually space charge free and of very high brightness., It can be

easily utilized in C.T.R. work for diagnosties or neutral injection.
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APPENDIX I

In section 3.1 it was assumed that the potential could be represented

by a series of the form:

2 rm+1 J._;11-1-2
Tl m e TRt b Ty by T e (1)
. T r r

o o] o]

providing ¢(0) = 0. Here it will be shown that the index, m, must be
necessarily two in order to have a physically meaningful value for the slow ion
density on axis.

As before, attention is restricted to a small region around the axis so
that only the first term in equation Al is dominant. The integral in

equation 2 becomes on simplification:-

n, onv, T 1 u-Om—Z)/m
n, (a) = 7 T - | T du
(2e/m)* (= ¢)" o m(1-u)?
where u = fm/ém. This integral may be solved to give:
— 1-m/2
50" o s LU = (@-2) /m) (A2)

n;(a) = T FG/Z - @2 /o)

l 1
(2e/m;)* ¢ *
It can be seen that if m is greater than two when a tends to zero, the axial
ion density tends to infinity. If m is less than two, the axial ion density
tends to zero. Both of these solutions are non—physical hence m must be
exactly equal to two to yield a non—zero finite value for n. and this has

been assumed in equation 3. Thus whenm = 2

Lio = nbocnvbrO/(Ze/mi)z ¢o%
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'APPENDIX TT

The Distribution of Newly Created Electrons

When electrons have been created by ionization, the beam ions give them
a small amount of kinetic energy. A theoretical model by Gryzinski [15] has
determined this velocity distribution which is proportional to the beam velocity,

v Experimental work by Rudd and Jorgensen [1l] has confirmed this velocity

b
distribution. It is assumed here that this velocity is isotropic and hence the
electrons will have an angular momentum of the order of pw about the beam axis
where p is the radius at which they were created. This forces the electrons

to have elliptic orbits around the beam axis if the potential well is parabolic.

The equations of motion for the electrons are:

m v 2 m v 2 m W2
e r e B e
= +
+ 5 el 2
and rvy = pw

where % and vy are the radial and azimuthal velocities and w 1s the initial

velocity of the electron. If the well is assumed to be parabolic in the

axial region then

9
2
A = —25 (™ - rz)
r
o
Hence:
2e
vr2 = 02 (p2 = r2) R
mr
e o
— (DZ - rZ) . (2&¢D _‘ri_‘?_:)
mr 2 r2
e o

The elliptic orbit intersects any given radius r, which is less than p, four

1
times during a single orbit whose period T is equal to 2 @mer02/2e¢0)2. Hence:
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{vel

B s | an i et 5 Dipd
dt o5V 2mev T pcp
T T
i
Jm 52 4(2e9,)* . pdp
= nn, exp - —= 0.V, . 7 T
. "bo 22 P one? - Bl @ )

w
f(w)dw

Jm
X T
o (2e¢0/mer02 - Wz/rz)2

. . . . , % - 2
where f(w) is the distribution function of the initial velocities and v

equals 2er2¢0/mer02. This function may be approximated by:-

f(w) = —25 exp - wzfvb2 . wdw.
b

This expression gives moderate agreement with the results obtained by Rudd
and Jorgensen except at low values of w.
If the above two equations are combined and 2e¢0r2/mer02vb is less than

unity which applies for r < ros then

e [*]

ae T 1 m v 2
o e b

dN 4nnbcivbr ed
= 1

The net effect of the finite velocity of the electrons is to transfer the
electrons from the centre to edge as their angular momentum prevents most of
these electrons from reaching the centre of the beam. The above relation
breaks down at radii greater than r  but as the most effective energy
absorption occurs at the centre where the containment time is longest, this

effect is unimportant.
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FIGURE CAPTIONS
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