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Abstract

We have investigated the equilibria of plasmas maintained by a
quadrupole field in straight and toroidal geometries. Using asymptotic
analysis we have studied the uniqueness of uniform-current straight
systems for rail, point and rectangular limiters. Assuming a family of
simple current profiles, numerical work has revealed the possibility of
threé types of bifurcation; our asymptotic analysis is fully confirmed.
The value of b/a at bifurcationm depends strongly on the current pro-
file and poloidal beta, b and a being the maximum height and width
of the plasma cross-section, respectively. For non-zero current density
at the plasma béundary (jB # 0) the bifurcation b/a can approach
unity, For a profile with jB = 0, however, bifurcation disappears through
the intervention of the separatrix; there is then a maximum value of b/a,
which, for an aspect radio of 5, is approximately 2.0 irrespective of

poloidal beta.
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1. INTRODUCTION

The present paper is concerned with the MHD equilibria of plasmas
maintained by a magnetic quadrupole field. Numerical investigations
of plasma configurations maintained by external conductors involve the
determination of a free-boundary, and are, therefore, necessarily non-
linear. Although many such investigations have been reported in the
literature (see, eg. Refs. [l -4]), the essential non-linearity leads
to considerable "trial-and-error". In general, the number of solutions
that can arise is unknown, and further, if a trivial solution exists,

then constraints must be applied if this solution is to be avoided.

In a previous paper [5], we have studied a very simple equilibrium
namely, a plasma with uniform longitudinal current and confined by the
field of a straight symmetric quadrupole. The simplicity of the model
enabled us to investigate both analytically, and numerically, the
possible solutions which can occur, their relationship to bifurcation,
and the role of certain constraints in determining uniqueness. In
particular, we obtained vertical ellipses and demonstrated the existence
of an 'infinity' of bifurcation points; the first bifurcation point

occurs at b/a = 2.9, where a and b denote the semi-axes [6].

Our objective in the present paper is to show, for both straight
and toroidal plasmas, that the latter bifurcation point is strongly
dependent on the form of current profile; we also investigate the
effect of the choice of constraints upon bifurcation. The forms of
current profile which we have adopted here, were suggested by work on
TOSCA [7]. In running this experiment as a quadrupole, reasonable
agreement between observation and computation [7] has been obtained
assuming 'flat'or 'peaked' currents, as appropriate to the stage of the
discharge. Thus we consider current forms intermediate to, and
including, these two extreme cases; we assume toroidal current

density profiles which are linearly dependent on the poloidal flux.

Apart from modelling experiments and generally improving our basic
understanding of the application of numerical methods to equilibrium
calculations, there is a more fundamental reason for interest in the
present problem. It is well-known that the MHD stability of a config-

uration can be greatly influenced by the presence of ellipticity (and/
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or triangularity) see, eg. [8]). Hence, it is important to know whether
or not a specific set of conductors and given plasma current profile can
set an intrinsic limit on the b/a that can be achieved. This might
very well depend on the way the plasma is formed and/or constrained.

In particular, such a limit could be set by the appearance of a bifur-
cation; the interpretation of bifurcation points as marginal stability
points for ideal or dissipative axisymmetric modes was referred to in

our previous work [5].

2. ANALYSIS

We begin by developing those features of our previous paper [5]
which are relevant to the present work. Consider the straight config-
uration shown in Fig. 1. The longitudinal current density in the
plasma, j, is assumed uniform; the four wires carry a current of
magnitude, I, and have a half-separation distance d. Asymptotic
analysis shows the existence of elliptic equilibria, and in particular,

leads to the relation
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\Plasma boundary
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Fig.1 Elliptic equilibrium and coordinate system.
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Fig.2 Plot of 2;2 against b/a for a straight uniform current plasma as obtained from
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asymptotic analysis.
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Plotting the left-hand side of Eq. (1) against b/a, we obtain the

curve shown in Fig. 2. Following Strauss [6], the point A is a bifur-

cation point (b/a = 2.9); for j < 4'd2£;I there are no solutionms,

241
4 3‘; one solution, and for j > 4.21;1

are possible.

two values ‘for b/a

for j =

4,24 1
d?
value of b/a corresponds to an infinity of ellipses. Thus in order that

For j > , it can be shown from Eq. (1) and Fig. 2, that each
an equilibrium calculation be determinate, further information must be
prescribed. In our numerical work [5] this was achieved by constraining
the plasma boundary to pass through the prescribed point Y shown in

Fig. 1. The philosophy of the constraints used in the numerical method

is evident from our asymptotic analysis. We can rewrite Eq. (1) in the

forms
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where I and A¢p are the total current and poloidal-flux within
the plasma, respectively. Plotting the left-hand sides of Eqs. (2)
and (3) against b/a we obtain the curves shown in Figs. 3 and 4.

Thus we can immediately draw the following conclusion:

For fixed equilibria corresponding to points on the curve

I
da%?
in Fig. 2 are uniquely determined by specifying Y (geometrical con-
straint in Fig. 1), and either the total plasma current, or the
poloidal-flux within the plasma; no a priori knowledge of j is

required.

The point Y can, of course, be interpreted as a rail-limiter.
We further note, that within the ordering, there is no upper limit
on the value of b/a that can be obtained. For a fixed I and d, and
prescribed I_, there is an upper limit to b; this occurs when b/a = w,
Thus from Eq.(2), b - Qngv. We note, however, that for a fixed I and
d, and prescribed A‘J'p, the quantity b is unlimited (again within the

ordering).

From the above discussion, it might be supposed that uniqueness
could be ensured by specifying Ip or Awp, together with any geometri-
cal constraint. That this is not the case can be shown very simply.
Thus suppose we take the point X in Fig.l to be the geometrical constraint

(a point limiter). We now write Eqs.(2) and (3) in the alternative forms:
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Plotting the left-hand sides of Egs. (4) against b/a we obtain

the curves shown in Figs. 5 and 6. It is evident that prescribing IP
or A¢p together with the point X, does not lead to a unique value of
b/a. We now find new bifurcations at values of b/a somewhat lower
than 2.9, namely b/a = 1.84 or 2.41. Furthermore, for a given I_ or
Amp there is a bound on the positioning qf the point-limiter; from

Figs. 5 and ? we observe that therzuare upper limits on 'a' given by
\I
a =0.,18 d '%1 and a = 0.73 d -ij , respectively.

Since the above discussions of the point and rail-limiters are
based on the same equations, it is obvious that the two approaches are
intimately connected. Indeed, if we take the results of a rail-limiter

2
calculation where a and b are both known and plot either %E%T or

Ia? . . .
AV d2 against b/a, then we are again led to the curvesP shown in
Figg.S and 6. From our earlier argument, however, only one point on
each curve is compatible with the known a and b, and in this case the

points B are not to be interpreted as bifurcation points; the rail

Pt

limiter must also set the same upper-limits on 'a' as observed for the

bounds on the positioning of the point-limiter.

Having considered a plasma with uniform current and maintained by
a straight quadrupole, it is now of interest to study non-uniform current
profiles, and subsequently, to take account of toroidicity. Using the
asymptotic analysis as a guide, we shall use numerical methods to re-

investigate the phenomena of uniqueness and bifurcation.

3. NUMERICAL WORK

We now write down the equations appropriate to the straight and
toroidal calculations. Denoting the poloidal flux by V¥, we define the
plasma-vacuum boundary to be V¥ = 0. For the straight system, we choose

a model such that the flux in the plasma (¥ < 0) satisfies the equation
VH = - j[\!’O s ] (5)

where j and VY are constants. Since Ky jz(¢) = BB;(w) + pop'(w),
the model describes all p and Bz profiles consistent with the right-
hand side of Eq.(5). It follows that our calculations for the straight
system are for arbitrary total beta (or poloidal-beta), For the vacuum

region (V¥ > 0)
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Viy =0, (6)

For our toroidal model, the equation for the plasma (V¥ < 0) is

ARy = - §[M+ N+ p R2(P + QP)] {7

where j, M, N, P and Q, are constants. This particular form of current,
which embraces both 'flat' and 'peaked' profiles, has been found to yield
reasonable agreement with observations made in the TOSCA experiment [7]{

The flux-equation for the vacuum region (¥ > 0) is
A%y =0, (8)

Equations (7) and (8) are solved in the usual toroidal coordinates (R, o,

Z) based on the axis of symmetry; the operator A* is defined by

10y a2m
aR ROR/)™ 3z2 °

For the toroidal problem, calculations depend on poloidal-beta, BI,

which we define as

_ 8m/pds
Br =

I? ?
Hs o
where the integration is over the plasma minor cross-section.

The details of the numerical method being given in an appendix,

we now go directly to the results for the two systems.

3.1 Straight Quadrupole

In the results reported here, I and d are fixed, and b/a is
to be interpreted as the ratio of maximum height to maximum width of
the plasma cross-section. Following the asymptotic analysis for the
uniform current, we give our results in terms of the quantities discussed

in Section 2., Since the prescription of AM% is difficult to implement

'We define a profile to be 'flat' if the current demsity j or j is
independent of V. A 'peaked'-profile is defined such that ®j$ or” I
is zero at the boundary, whilst a 'mixed'-profile is V-dependent and non-
zero at the boundary.



in an experiment, we only present results for the case of prescribed Ip.
Numerically, however, prescribing AWP is expected to yield results
completely analogous to those given below. We shall only quote

results for the rail-limiter for reasons to be discussed later.

Fixing I and striding through a succession of prescribed b
values for different current profiles, our results lead to the
curves shown in Fig.7. The curve for the uniform current case agrees
very well with that deduced from the analysis (see Fig.2). Each point
on a given curve corresponds to a different value for b. We observe
a decrease in the value of b/a for bifurcation as the current density
at the plasma boundary, jB’ decreases. For the peaked profile, jB = 0,

the advancing separatrix has removed the possibility of bifurcation.

Somewhat surprisingly, if we fix b and stride through a succession
of prescribed values for Ip, for the same current profiles as before,
our results take on a different character, Plotting 2I/jd? against
b/a we now obtain the curves shown in Fig.8. Each point on a given
curve corresponds to a particular wvalue for Ip' As before, the b/a
for bifurcation decreases with decreasing current density at the
boundary. Now, however, b/a can approach unity, and finally, in the
limit jB = 0 the bifurcation point disappears. The flat-current
curves in Figs.7 and 8 are identical.

We now give a simple intuitive argument which suggests that the
different limiting behaviour of the peaked current in Figs. 7 and 8
is indeed correct. Thus consider a plasma with the equation
V2= - j¥, Suppose we fix the quadrupole current, I, and increase
the plasma current, I ., For sufficiently lafge I the plasma cross-
section tends towards a circle, and j - (if) » vhere Zo is the

%

infinite I the plasma cross-section remains unchanged and hence j

first zero of Jo(j r) and b is the radius at the limiter; for

is unchanged. Thus in the limit b/a = 1, the asymptotic value of
2I/jd? is finite. Altermatively, suppose we fix Ip and reduce the
quadrupole current, I. For sufficiently small I thf plasma cross-
section becomes circular, and again, j approaches (jf) . In this
case, however, as b/a = 1 the quantity ?%2 - 0. Although the
latter procedure was not actually followed in the calculations, the

arguments are very suggestive. Furthermore, for the flat-current,

I
both these processes lead to the limit ?Ez - 0.
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By analogy with Fig.3, we now take the results from Figs.7 and 8
and plot ZIb’-/Ipd2 against b/a for the various profiles (see Fig.9).
The curves indicate that fixing b and Ip leads to a unique solution
for current profiles described by our model; this result strongly

suggests that fixing b and Ip can ensure uniqueness for any profile.

Our analytic work suggests that we should take the above results
(Figs.7 and 8) and plot them in yet another form. Thus plotting
ZIaZ/Ipd2 versus b/a we obtain the curves shown in Fig.10. As described
in Section 2, the figure is interpretable in two ways. Using a rail-
limiter, the points B are not to be interpreted as bifurcation points.
With a point-limiter, however, the points B denote a second type of
bifurcation. As for the first-type, the b/a values for bifurcation are
profile-dependent. We note that for the peaked profile (jB = 0) the
bifurcation point has vanished due to the intervention of the separatrix;
the maximum attainable value of b/a for this profile is 2.1. Given
I , we see that the point B for each profile implies a corresponding
1

upper-bound on the value of 'a' attainable. In the case of a point-

limiter, this sets a bound on the position of the limiter.
3.2 Toroidal Quadrupole

In order to maintain a plasma in toroidal equilibrium, it is
necessary to supplement the quadrupole with additional current
carrying conductors; adjustment of the current, Iw’ in these windings,
allows the plasma to be centralised with respect to the quadrupole.
Details of the complete configuration of conductors, which models that
used in the TOSCA experiment, are given in the appendix along with an
outline of the numerical procedure., As for the straight case, calcula-
tions have been performed using the rail-limiter only; results for the

point-limiter are inferred.

For a given I and d , and fixing IP and Iw’ we stride through
a succession of prescribed b values for both flat and peaked current
profiles; assuming an aspect-ratio of 5 and setting BI = 0, our results
are shown in Fig.ll., Each point on a given curve corresponds to a
different value of b . The results suggest that as the current at the

edge of the plasma, jg, is decreased, the value of b/a for bifurcation
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falls to about 2.1. For jB = 0, the advancing separatrix removes
the possibility of bifurcation. Overall, the above results are very

similar to those for the straight quadrupole (see Fig.7).

For a given I and d, and fixing b, we now vary Ip and IW
(together) from run to run. Plotting 21/jd? against b/a we obtain
the curves shown in Fig.12. FEach point on a given curve corresponds
to a particular pairing of Ip and Iw' Again, the results are for
an aspect ratio of 5 and BI = 0. As for Fig.ll, the b/a for bifurca-
tion decreases with decreasing current demsity at the boundary. Now,
however, as in the straight case, b/a can approach unity, and finally,
in the limit jB = 0 the bifurcation point disappears. The flat
current curves in Figs 11 and 12 are almost identical. It is clear that
all these results are very similar to those for the straight quadrupole.
It is also interesting to investigate the effect of raising BI. For
BI = 0 and a particular 'mixed' current profile, we find bifurcation
at b/a = 1.6. Taking essentially the same current profile and setting
BI = 0.5, however, we find the b/a for bifurcation to be reduced to

1.32. Our results are summarised in the appendix.

By analogy with Fig.3, we use the results of Figs.ll and 12 (BI = 0)
to plot ZIbZIIpd2 against b/a for the various profiles (see Fig.13).
The curves suggest that fixing b and Ip leads to a unique solution

for any current profile described by the present model with BI = 0,

We now reconsider the BI = 0 results of Figs.ll and 12. Specifi-
cally, we evaluate ZIaZ/Ipd2 from both figures and plot this quantity
against b/a; we obtain the curves shown in Fig.l4. As described in
Section 2, the figure is interpretable in two ways. Using a rail-limiter,
the points B are not to be regarded as bifurcation points. Using a
point-limiter, however, the points B denote a second class of bifurca-
tion, the b/a values for which, are profile-dependent. Given IP,
we observe that the point B for each profile implies a corresponding
upper-bound on the value of "a", For a point limiter, this sets a

bound on the limiter's position.

Finally, maintaining the same current profiles as for BI = 0,
we have repeated the runs shown in Fig.l4 but for increased poloidal-
beta. Our results, which are presented in Fig.l5, indicate the value
of BI to be relatively unimportant for the point limiter. Once again

we find that fixing b and IP leads to a unique solution.

s Tk =
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4. SUMMARY AND DISCUSSION OF POINT AND RAIL LIMITER RESULTS

We have studied the equilibrium properties of plasmas maintained
by a quadrupole field in both straight and toroidal geometries. In
particular, we have restricted ourselves to longitudinal currenis
which depend linearly on the poloidal-flux V. Although we have dis-
cussed both point and rail-limiters, the principal numerical werk
has been for rail-limiters only. For the toroidal calculations, it
is necessary to introduce current (Iw) carrying conductors over and
above the quadrupole windings, if an equilibrium is to be established;
such conductors are present in experiments like TOSCA. A comparison
of the straight and force-free (BI = Q) toroidal calculations show

the results to be virtually indistinguishable.
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For a quadrupole of given dimension, d, current I, and plasma
aspect ratio 5, we have investigated two alternative schemes of solution:
(a) we fix the total plasma current, Ip, and Iw’ and stride through
a succession of prescribed limiter values, or (b) we fix the limiter
and stride through pairs of values for Iﬁ and Iw' Plotting 2I/jd?

(j is defined in Eq. (7)) against b/a we have found that the two
procedures lead to different results. TFor a chosen j, both schemes
reveal, that in general, there are two values of b/a compatible with
the equilibrium equations and boundary conditions. The bifurcation
points which occur depend on both the form of current profile and BI.
With scheme (a) the bifurcations (Type I) run from b/a = 2.9 ('flat'
current) to approximately 2.2 for a mixed profile; for the profile

which vanishes at the boundary, the bifurcation point disappears through
the intervention of the separatrix. For scheme (b), however, the bifurca-
tion points (Type II) can approach unity; the limit of b/a = 1.0 is
reached for profiles which vanish at the boundary. We note that the
Process whereby the bifurcation points vanish, is very different for the
two schemes. We further note, that the flat-current is degenerate, in

the sense that both schemes yield identical results for this profile,

It must be emphasised that the above types of bifurcation are
observed when the results are analysed in terms of j. When the
quantity ZIbZ/Ipd2 is plotted against b/a, however, the resulting
curves increase monotonically for all current profiles investigated.
Thus we conclude that for all profiles described by our model, fixing
a rail-limiter and prescribing the total plasma current gives a unique

solution for the equilibrium.

Interpreting our results in terms of a point-limiter, that is,
plotting ZIa-"-/Ipd2 against b/a, we again find that there are two
values for b/a which satisfy the equilibrium. The bifurcation points
(type III) run from approximately 2.1 to 1.75; for the flat current
b/a = 1.8. These results are found to be very insensitive to changes

in poloidal-beta.

We further note, that for our peaked profile (jB = 0), which is
probably the most realistic and for which we found no bifurcations, there
is a maximum value of b/a. The latter is approximately 2.0, irrespective

of BI, for a plasma of aspect ratio 5.
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We now relate the present work to that of earlier authors.
Feneberg and Lackner [3] have published results for a 'flat' current
profile in the belt pinch. Although apparently very different, asymp-
totic analysis for the straight analogue, shows their system of con-
ductors to behave essentially as a quadrupole. This is supported by the
fact that they found a bifurcation at b/a ~ 2.9. Using a fixed
toroidal plasma current and varying the position of a rail-limiter,
we have repeated their work, and find a bifurcation at b/a ~ 1.9; this
clearly corresponds to our b/a = 1.84. Cenacchi et al [2] have dis-
cussed a toroidal, flat-current, circular cross-section plasma with a
point-limiter; they show that for convergence of an iterative scheme

such as our own, the limiter must be placed on the inside of the torus.

Computations using the point limiter have been performed for the
uniform current. It has been found that only equilibria with bla < 1,15
are computable, and that the iteratioms diverge when we seek equilibria
with b/a >1.75. With the point-limiter, it is clear from Eq. (4) that
g% (b/a) » o as b/a — 1.84, and hence convergence difficulties must
be expected. It is for this reason that extensive computations using a
point-limiter have not been carried out. A similar convergence phenomenon
was found in the preliminary calculations reported by Papaloizou et al
[5], where using a rail-limiter, equilibria with b/a > 2.9 were not comput-
able. These two observations suggest that if particular constraints
produce a formulation in which the solution is not unique, then using
standard numerical methods, the range of computable solutions will

always be limited.

Papaloizou et al [5] have considered a plasma with a ©&-function
current distribution. They found no bifurcation and showed the maxi-
mum value of b/a to be 1.95; this corresponds very closely with b/a = 2.1
for the peaked current used in the present paper. It has been suggested
[5] that there is a critical profile above which bifurcation cannot occur,
Since bifurcation is very dependent on the form of profile, further investi-
gation is required to elucidate this feature. We note in passing, that
Field and Papaloizou [15] have considered a straight cylindrical vacuum-
plasma configuration with j, =V, and maintained by a perfectly conducting

wall. They find the solution to be unique for j, = 0 at the boundary.

= LB =



5 RECTANGULAR-LIMITER

In producing vertical elliptic plasmas, TOSCA, which has a point
limiter, shows two distinct types of configuration; the plasma either
contacts the limiter or it touches the enclosing steel vacuum vessel
at top and bottom. This suggests that we reconsider our analysis of
Section 2, taking account of the above observations. Thus we invest-
igate the equilibrium of a straight plasma with uniform current in the
presence of a rectangular limiter. In fact, Toyama et al. [9] have
B/A ,

I

carried out experiments using such a limiter. Defining E
where A and B are the half-width and height of the limiter, respect-
ively, then for b/a <E the plasma touches the sides, that is a =A4A;
for b/a = E, however, the plasma touches the top and bottom, that is
b = B. Now we have shown that all equilibria must satisfy

ZIaz/Ipd2 =0.067 , and therefore for the plasma to touch the sides

2IA2
D m———
p 0.067 d? (9)

From Fig. 3 and Eq. (2), for a plasma to touch the top and bottom of

the limiter, we must have

<2IB? (1 + E)(1 + E?)

p d2RE? (E - 1) : (10}

I

Combining Eqs. (9) and (10), we see that the complete range of b/a

is permissible provided that

B =1
8.067.% ;T psi—reu, » (11)

As can be inferred from Fig. 5 and Eq. (2), the above condition is
always satisfied.
We now consider the implications of the above discussion; there

are two separate cases, namely, E <1.84 and E >1.84. Given I,

d and I , and a limiter with E <1.84 » We examine the uniqueness
P

properties of the solution. From the arguments of Section 2,
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there is one solution with b = B and one solution with a = A, We
must ascertain whether both these solutions can occur (non-uniqueness),
or whether they represent one solution in different regimes of equili-

brium. Thus by Egs.(2) and (&)

B b
a 1) (K - 1)
2 (12)

Setting b =B

('2')2 5. 1) __ENE-D (13)

(l +§) (1+§a3.2) (1 + E)(1 + E2) ~

Since the left-hand side of Eq. (13) is a monotonically jincreasing
function of 1/a, there is only one solution, namely, a = A.

Similarly, setting a = A, Eq. (12) gives

(2-)
H=d - - (14)

(1+E)(1+E2)"( b)( b?-)'

1 + N

This also has only one solution (see Eq. (4) and Fig. 5), which is

b = 8. Since consideration of Eq. (12) has led only to the degen-
erate solution a =A, b =B, we conclude that for a prescribed
plasma current (I and d fixed) with a rectangular limiter such that
E <1.84, then the solution is unique. Whether or not the plasma
touches the top or sides of the limiter depends on the magnitude of

I .
P

Finally, we consider the case F = 1.84; the appropriate parts
of Figs. 3 and 5 are shown in Figs. 16 and 17. For a given Ip such

that

2
212 _ F(E)

0.067 > T=37 > g7~ >
P

(15)
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| I | '
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| ' |
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[ 1 L ] > L | —
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big b/a
2IB? 2IA?
Fig.16 Plot of Ind? against b/a showing the Fig.17 Plot of Ld? against b/a showing the
range of values otp b/a for which the plasma range of values otP b/a for which the plasma
boundary touches top and bottom of a boundary touches the sides of a rectangular
rectangular limiter, _ limiter,

then there are two solutions which touch the limiter sides. Thus for
(b/A), <b/A <E the solutions are not unique. For B/a >E there
is one solution which touches the top and bottom of the limiter, and
for b/A < (b/A), there is one solution touching the sides. Again we
have to ascertain whether or not both these solutions can occur or

whether they represent one solution in different regimes. Since we

have
& (-
2IB? _ a/ \a . _E2(E-1) _
I d2 B B7\” (T+E)(1+E7) ~F ()
P 1+ —‘) (l % =
a a
and (16)
(z-1)
2IA2 _ A & E-1 _F(E)
I d2 b b2\" (1+E)(1+E?) ~ E?
P (1 +A) (l +A2)
then
2182 218
i;‘ﬁ = F(E) Ipd2 . - (17)
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Since (17) can only be satisfied by the equality signs, we are again led
to the degenerate solution a = A, b = B. Thus we conclude that for a
prescribed plasma current with a rectangular limiter such that E = 1.84,
then we can obtain unique ellipses with b/a < (b/A), and b/a 2 E;
whether or not the plasma touches the top or sides of the limiter depends
on the magnitude of Ip . For (b/Aa), <b/a <E the solutions are not
unique. Computations for the straight, uniform current plasma with a
rectangular limiter, have confirmed our analytic conclusions. We note
that Berger et al. [10] and Cenacchi et al. [2] have given examples of
toroidal calculations using rectangular limiters. They have not, how-

ever, attempted any analysis of the type presented here.
6. CONCLUSIONS

We have considered the equilibria of plasmas with simple current
profiles and maintained by a quadrupole field. For the straight uni-
form-current, model, we have used asymptotic analysis to investigate
the roles of point and rail-limiters. We have found that prescribing
the plasma current, IP, with a rail-limiter always ensures uniqueness,
whereas prescribing IP with a point-limiter does not. Numerical work
confirms that the same conclusions can be drawn for non-uniform currents.
Furthermore, computations reveal the existence of three types of bifurca-
tion. The corresponding values of b/a depend on the current profile
and poloidal-beta. For non-vanishing current at the boundary the bifurca-
tion b/a can approach unity. For a vanishing current however, bifurca-
tion disappears through the intervention of the separatrix; there is then
a maximum value of b/a attainable, which for an aspect ratio of 5 (TOSCA),
is approximately 2.0 irrespective of poloidal-beta. Finally, we have
investigated the straight uniform-current plasma in the presence of a
rectangular-limiter. Asymptotic analysis shows that there are two
cases to be considered: (a) E =<1.84 and (b) E = 1.84, where E 1is
the ratio of height to width of the limiter. For E <1.84, prescription
of E and IP ensures uniqueness. Whether or not the plasma touches
the sides or top and bottom of the limiter, depends on the magnitude
of Ip' For E = 1.84, however, there is a range of b/a for the plasma

for which the solutions are not unique.
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APPENDIX

CONDUCTOR CONFIGURATION AND NUMERICAL WORK

The filamentary conductors used in the TOSCA simulations are
shown in Fig. 18. The plasma current, Ip’ is chosen to be negative,
and the four vertical field winding currents are of the same value,
namely, IW. The latter currents correspond to the vertical field,
as calculated from Shafranov's formula [11], required to maintain a
centred circular plasma in equilibrium. The quadrupole currents, I,
I,, I,, are selected such that the quadrupole field vanishes at the
centre of the plasma. Experimentally, this ensures that the plasma
is not moved sideways as the quadrupole windings are energised. Since
the decay index of the vacuum field is negative for b/a > 1.05, we
would expect TOSCA (in the absence of feedback) to be unstable to

axisymmetric modes [12], and this has been confirmed experimentally.

Computational
grid boundary
10} @1,
z O
(cm)
Vacuum vessel
-10f ®lw
-20 I |
10 50 60

R(cm)

Fig.18 Disposition of conductors as used in computations to simulate TOSCA.
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The computations are performed using the discrete conductors MHD
equilibrium codes as implemented at Culham, see [4] and [13]. These
codes work in a manner similar to that described by Lackner [14]. The
Bunemann algorithm is used to solve Poisson's equation and the boundary
conditions are computed by Lackner's Green's function technique. As
pointed out by Cenacchi et al [2], symmetry about z = 0 has to be
imposed in order to obtain convergence for significant values of b/a.
The initial shape of the plasma is always taken as a circle although
this is not essential for convergence. Two constraints are always used -
a limiter (pointor rail) is introduced and the plasma current has a
specified value. As confirmed by Cenacchi et al [2] the point limiter,
if used, has to be on the inside of the plasma (on z = 0). At each
iteration, the flux at the plasma boundary is defined as the flux at
the point limiter position and the plasma boundary is the contour
V¥ = constant which passes through this point. When a rail limiter is
used, the flux at the plasma boundary is defined as the minimum value of
the flux (IP being < 0) along the specified z = constant plane. This

definition ensures that the plasma boundary touches the rail limiter.

Finally, we give the actual parameters used in investigating the
variation of bifurcation with current profile. Assuming a rail-limiter
at z = 0.05 metres, the disposition of conductors and their associated
currents are shown in Table I; the vertical field currents are appro-
priate for Ip = - 18 kKA. For other values of Ip’ the vertical field
is suitably adjusted by simply scaling the currents, I, in Table I,
the current in the quadrupole windings being left unchanged. Taking
the current form defined in Fq.(7), a few typical settings of the para-
meters M, N, P and Q are listed in Table II, together with the corres-
ponding values of b/a for bifurcation ((b/a)crit) and IP erit’ With
one exception, the results quoted are for the force-free case (p=Q=0).
For P =7.0 X 102 and Q = - 107 the poloidal-beta is approximately
0.5.
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Table I Details of Conductor Configuration

R(m) | Z(m) I(ka)

525 .09

.325 .19 ]

325 | - 19 4,05 (1)
525 | - .09 J

.3 .13

3 I } - 2.5 (1)
i 0 3.06875 (1,)
43 0 1.93125 (1

Table II Variation of Bifurcation Point ((b/acrit) as a function of
current profile (1 : is within 0.25 kA of the true

p crit
value, results having been obtained by fitting a quadratic

between 3 values close to the bifurcation point),

M N P Q Ip o E (b/a)crit
1 0 0 0 - 1.5 kA 2,89
3.10" -11]o0 0 - 1.75 kA|  2.65
2.1074 -11{o0 0 - 1.75 kA 2,54

10-4 -1 (o0 0 - 2.25 kA 2,07
9,103 -1 1|0 0 - 2.5 kA 1.97
8.10°5 -1 0 0 - 2,75 kA 1.82
7.10°5 -11]o0 0 - 3.5 kA 1.60
7.1075 -1 |7.10%| - 107 | - 6.25 kA 1.32
6.5.10"% | -1 |0 0 - 4.5 kA 1.45
0] -1 0] 0 no bifurcation
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