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ABSTRACT

"A Fokker-Planck treatment of the current induced by a beam of fast ions
circulating in a toroidal plasma is developed. The electron Fokker—Planck
equation is first reduced to an integro-differential equation which is then
solved analytically in the limiting cases of: (a) a large plasma 2
and (b) a large ratio of the electron thermal velocity s to the fast ion
velocity Vi In addition a numerical solution was obtained for the complete
range of values of Vé/vb and for several values of Z, It is found that the
resulting net plasma current has a very different functional dependence upon
electron temperature than that given by the conventional theoretical treatment
in which the electrons are assumed to be Maxwellian. In particular for v, > vy
and Z = 1, which is the limit appropriate to many present Tokamak experiments,
the net current is found to be in the opposite direction to the fast ion current.
The theory is compared with recent measurements of this current which were
made using the Culham Levitron, and agreement is found between theory and
experiment.
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1. INTRODUCTION

The possibility of maintaining a steady-state current in a plasma by the
injection of fast ions was first proposed by Ohkawa [1] and recent experiments
on the Culham Levitron [2] have confirmed the existence of this current. These
measurements revealed a substantial discrepancy between the measured current
and the theoretically predicted current, In particular, the measured current
was found to decrease more sharply with electron temperature than the theoreti-
cally predicted current and at higher temperatures the direction of the current
appeared to reverse (i.e. it was in the opposite direction to the fast ion
current). In this paper it will be shown that the conventional theoretical
model in which the electrons are assumed to be Maxwellian is incorrect, and
that a more exact Fokker—-Planck treatment of the electrons leads to a net
current which differs both in its direction and magnitude from the conventional
result. The new Fokker-Planck theory is also found to be in much closer
agreement with the experimental results than the simpler theory.

The original Ohkawa [1] Fheory together with other theoretical calcula-
tions [2] of this beam induced current have assumed that the electrons can be
represented by a displaced Maxwellian distribution., The displacement is then
determined by balancing the rate at which momentum is gained by the electrons
from Coulomb collisions with the fast ions against the rate of loss to the
thermal ions. This analysis has two major shortcomings. First, the velocity
dependence of the frictional force between the fast ions and the electrons is)in
generaleifferent from that between the thermal ions and the electrons. This
leads to the electron distribution being distorted in such a manner that the
distribution cannot be represented by a displaced Maxwellian, This distortion
of the electron distribution from Maxwellian is similar to that caused
by an electric field, which was discussed by Spitzer [3,4] and co-workers in

their fundamental papers on the calculation of the resistivity of a plasma.



The second weakness of the Maxwellian electrons model is that electron-
electron collisions are not taken into account properly. These two omissions
are particularly serious for the present problem, where there is cancellation
between the fast ion and electron currents, and thus a precise calculation of
the electron distribution is required so that the net current can be accurately
determined, In Sections2 and 3 of this paper the electron distribution function
is determined from a Fokker-Planck equation which includes electron-fast ion,
electron—thermal ion and electron-electron collisions. The resulting net
current is calculated in Section 3 and is found to have a different functional
dependence upon the electron temperature from that of the displaced Maxwellian
electrons model.

There have been other Fokker-Planck treatments of this problem, Connor
et al. [5], Cordey et al. [6] and Fomenko [ 7] but these authors considered
only the limit of the electron thermal velocity LA being much greater than

the fast ion velocity v Also electron-electron collisions were ignored in

b*
all of these papers and although this is valid in the limit LR it
cannot be justified when the inequality does not hold.

The present paper has the following structure. In Section 2 the electron
Fokker-Planck equation is reduced to an integro-differential equation in the
velocity variable v. Then, in Section 3, analytic solutions are obtained in
the limits of Z >> 1 (the Lorentz gas approximation) and vy 2 V. These
solutions are then compared with the numerical solution of the full equation
which is given in the final part of Section 3. A comparison of the numerical
solution with the results of the Levitron measurements of the beam induced
current is made in Section 4.

2, REDUCTION OF THE ELECTRON FOKKER-PLANCK EQUATION

To simplify the Fokker-Planck equation the usual assumption is made that

the number density of the fast ioms ny is much smaller than the thermal

particle density n. The perturbation of the electron distribution function

from Maxwellian is then small so that it can be written in the form:



f =F + f‘ eee (1)

where Fme is the Maxwellian distribution. The electron Fokker-Planck equation,
correct to the first order in f; may then be written symbolically in the form,

7 / =
Ceb(Eme’fb) * Cei(fe’ Fmi) * Cee(fe’ Fme) * Cee(Fme’ fe)"lo eee (D)

where C 1s the linearised collision operator. The reference frame is such

that the thermal ions are at rest, and fb is the fast ion distribution.

This distribution may be obtained from a fast ion Fokker-Planck equation in

the manner described by Cordey and Core [8] or Callen et al. [9]. Thus for the

purposes of this paper the fast ion distribution is assumed to be known and
taken in the form:
f,o=2a, () P (8) eee (3)
where £ = vllfv.
In the Levitron experiments the fast ion slowing down time was an order
of magnitude longer than the charge exchange loss time so that the fast ion

distribution was essentially monoenergetic, In this case the coefficients

a_. (v) become: pE B
nb (n +2) K, o (v vb)

a (V) = e e (4)
nb o v2
b
1
where Kn = J K (&) Pn(E)dE eee (5)
-1

and K (&) is the angular distribution of the fast ions normalised such that

1
J K(E)dE = 1. From here onwards it is assumed, for simplicity, that the
=1
fast ion distribution has the form given by Eqs.(3) — (5). Distributions which

are not strongly peaked may be easily handled using a Green's function tech-

nique with v, as the variable of integratiom.

b

Since all the distributions are symmetric about the field lines the
electron distribution can be expanded without loss of generality as a series

Legendre polynomials

f; - FmeZ an(v) Pn(g) £ e (B)



Similarly the Rosenbluth potentials h and g [10] which occur in the
collision operator may also be expanded as a series of Legendre polynomials

in the form
h = p3 hn(V) Pn(g) etc, s 8 (7)

Substitution of expression (6) into Eq.(2) leads to a set of uncoupled
equations for the coefficients an(v). Since we are only interested in the
current along the field lines, only al(v) is required. The equation for
al(v) is an integro-differential equation which can be expressed in terms of

the normalised velocity variable x = v/ve as

a{ + P(x)g& + Q(x)a1 = ;i%; [xIB(x)-l.Zx Is(x)-x4(1—1.2x2)
(I (x) =1 (=))] + R(x) sow ()
with -1 2
P(x) = -x - 2x + 2x &' /A » wem L)
Qx) = x 2 -2 @ + 6 - 2558 )/A ... (10)
B v:_z Q% x6 - 2x4) x < v:
R(X) = 7\- 5 6 %3 % s e (11)
(vb + T Vh )x x > vy
A=0 -x @' o« on (12
2 ¥ 2
O(x) = erf(x) = T J exp (-x")dx ees (13)
™ o}
X 2
IH(X) = J al(y)e y yn d'y' s s (14)
o

where v: is the normalised beam velocity defined as v: = vb/ve, n is the
plasma density, Z the effective plasma charge, Z = I n, Zi/ne, the dash is
the derivative with respect to x and the constant B = 4 K1 nb/n.

Eq.(8) is identical to that of Spitzer and Harm [4] except that the
term R(x), which drives the current, is due to the fast ions colliding with
the electrons., In the Spitzer problem, where the current is driven by an
electric field,

R(x) == 2 & 224 , ... (15)

The integral Io(m) may be determined by taking the first moment of the
2

Fokker-Planck Eq.(2) (this is equivalent to multiplying Eq.(8) by fAe™  and

integrating). Since electron-electron collisions cannot transfer momentum

they do not contribute to this first moment. Only the electron-ion collision
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terms contribute, these are the R(x) term and the part of the Q(x) term

which is proportional to Z. This gives

*
" 2

b
Io(w) 2 A [ V’k"2 J (1.2x6-2x4)e—x

2
7% . dx + O, 5(v +1, 2v )e ]

o}

which after successive integration by parts reduces to

I (@) = 3 B AG)/16zv. 2
c)()~~ T B (vb)/ zZvy, vee (16)

Using the above expression for IO(W),Eq.(B) can be rewritten in the

form used by Spitzer and Hiarm [4] for the numerical evaluation of al(x),

namely,
" 7 -
a; + B(x)ay + Qx)a, = 8 (x) + Ry eee (17)
where 16 % 2
b o
3TiA
and RN(x) now has tzfzform, ] x4(1-l ZXZ)A(V;) .
B vy (12x —2% ) - ) 3 X < vy
By = -7 Zvh oo (19)
3 i x*(1-1. ZKZ)A(V ) P
,(vb + 1.2vb )x - 5 3 x> vy
va

The boundary conditions for al(x) are that it be well-behaved at x = 0
and x = «. Examination of the behaviour of al(x) at these boundaries shows that
it must approach the series solutions of Eq.(7) at small and large x. These

solutions have the following forms:

. 8T (oo) 5
B ( v* 2 + ? ) [ x4 + 12x + __,} as x>0 ... (20)

a . (x) > - =
1 & b 3m? B ﬂ2 Z
and
I 1 (I () - 1. 21 ( )) E. * p V*3)1 .
1 (Z+2) 32 7 (% S I

yo X as x> .. @D
The small x solution is an asymptotic series, the terms diverging as
(n+2) ! (n+5)! . Thus to obtain an accurate boundary condition very small
values of x of the order 10_3 ~ 10—4 have to be used.
In the next section analytic solutions of Eq.(l7) are derived in the
limits of Z >> 1 and v: << 1, 1In the last part of Section 3, Eq. (17) is

solved numerically for a range of values of Z from 1 to 16 with values of

*
vb from 0.1 to 10.



3. SOLUTION OF THE INTEGRO-DIFFERENTIAL EQUATION
(a) Lorentz Gas Limit, Z >> 1
In the Lorentz gas limit electron—-electron collisions are neglected and
only electron-ion collisions are taken into account. The solution of Eq.(17)

in this limit (Z =+ «) is:

Fm *
¥, 2(l.2x6 - 2xa) 3 X<V
():..E. b b ‘ e (22)
R 2 ( o 1.2 V*B) X 1 ox > v*
g, e Ry . b
From this solution the integrals 13(w) and IS(W) can be evaluated,
3 ;
The electron current is given by je = -e fv” f; d”v and may be written
in terms of 13(m) in the following form
. he
==-—, v.nl,(x
le 3W% © 3
The expression for the total current (i.e., the fast ion current plus electron
current) is: i = e K ( v oy VEF'DI () ) (23)
H I = € 1nbb 3.]_.[-15-1{ 3 / s o
1

Eq.(23) may be expressed more conveniently by normalising with respect to the

fast ion current and thus we define
16 IB(W)
= 1 K = - r
F J/ﬂbE‘-Vb 1 i —-—;—-—r’ eee (24)
3m vb B

where F 1is the ratio of the net current to the fast ion current. Substituting

expression (22) for a. (x) 1in Eq.(1l4) to obtain I3(m) gives

16 v > ' %2
. - %2 7 %4 17 %6 N
_ 1 b v i =L -
F=1- e { 7-e b (7 + 7vb ey vy TRV 4vb )I
5 ™ Z LR (25)
%9 1
4 68 *3 *5 * -7 d %2\ 2 * 1
- L - b —_—
;T-g—z— {( 3 Vb 16 Vb + 2,5 Vb) e + (2.5 + 3 Vb ) 3 erfc(vb)j

The above expression for F in the Lorentz gas approximation is given by the

%
dashed curves in Figs.1-3 as a function of v 2

_ 2,2 _
4 (= ve/vb) for Z = 1,2,4,

. . *=2  _ : ;
(F is plotted as a function of v, (= Te/Eb) since the experimental results
in Section 4 are a function of Te.) An interesting feature on the Z = 1

; *=2 . y
curve 1s that for large wv the net current has the opposite sign to the

b
fast ion current., This means that the electron current actually exceeds the

fast ion current. Although, of course, the analysis of this section is not

strictly valid for the Z = 1 case it will be seen later that even when
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electron-electron collisions are taken into account, the current is still

i . *=2
negative over a wide range of Ve
Using the series expansion of the compleémentary error function Eq.(25),
*
in the limit of small vy , reduces to 2
Pol-lo122 a Voo, (26)
Z Z b LI

This form is identical to that of Fomenko [7] who assumed that the
Lorentz gas approximation was valid without justification and took vz << 1
from the beginning. In the next section the fuil Tq.(17) (including electron-
electron collisions) is solved in the limit vz << 1 and it will be shown that
the exact F does indeed tend to the Lorentz limit as VZ + (0, |
b) High Electron Temperature Limit v:(= vb/ve) << 1

This limit is important because most of the present neutral injection
experiments on Tokamaks satisfy the above condition (v: << 1), The objective
here is to obtain the met current correct to order v:3, and the procedure is
as follows, A particular integral of Eq.(17) is obtained correct to order

%3 « . T * %

Ve This integral has a discontinuilty at x = vy and to make the solution
continuous a prescribed amount of the general solution must be added to it.
The general solutions of Eq.{l7) are both very rapidly varying exponentials
and have the effect of replacing the discontinuity in the particular integral
by a very narrow transition region in which the solution changes continuously
but sharply between the two values of the particular integral on either side
of the discontinuity. Indeed the transition region is so narrow that the

solution in that region makes no contribution to the net current,

The particular integral of Eq.(l7) that was used has the following form

4 %9 *
I - B x/Z vy 7 x < vy

al(x) = 1 x %3 i } es (27)
B (vb + 1,2 v )x/2Z 3 x> vy

*
In the above equation, the expression for x < vy is just the first term
of the small x series solution of Eq.(l7) (given by Eq.(20)). The solution

* - . - -
for x > A is the Lorentz solution in this region. Substituting expression (27)

for al(x) into Eq.(17) it can be shown that this solution is indeed correct

t il s
o order v,



The part of the general solution of Eq.(17) which has to be added to
Eq.(27) to make al(x) continuous 1s now evaluated. Eq.(l7) is expanded in

. . *® . .
the vicinity of the transition region x = v, by making the transformation of

b

*
variable y = XV . Neglecting terms of order y and keeping only the lead-

" .
ing terms in Vi the homogeneous part of Eq.(17) becomes

1
» _ Ll.5T° -
af _:?;T_ a; 0 eoe (28)
b

where the dash is now differentiation with respect to y.

The general solution of Eq.(28) is

a,(y) = ¢C exp(By/v:3/2) + D exp(- By/v:3/2) eee (29)
where C and D are arbitrary constants and B = (1.5 ﬂ% %. The above
solutions are both strongly varying with a scale length of the order of v; 2
Since the complete solution must be well behaved at both x =0 (i.e. y = —vz

” .
and x = © (y =), the value of C must be zero for x > vy (y > 0) and the value

¥
of D must be zero for x < v; (y £ 0). That is, only the solutions which decay

exponentially away from the transition region are physically possible. The remaining
constants C in the region y <0 and:. D in the région y > 0 can be determined by
ensuring that a, and 31 are continuous at y = 0., As a result the complete

*
solution for small v 1s

b
b, %2 %9 K, %3/2 ' %
g 14 _ B 2% /vb + 1.5 v exp{B(x vb)/vb } 3 X < v
1 2z * * *
(v, + 1.2 v 3)x - 1.5 v 2 e {—B(x-v*)/v*3/2}- x > v*
b TtV e Ny, AR b’V X7V
... (30)

The integral I3(w) may be obtained from the above expression by quadrature

and then using Eq. (24) we find that the ratio of the net current to the beam

current correct to order V*Z is
L1 Y
F = 1 z 1.2 _'2"" O e a (31)

Interestingly this is the same expression as that given by Eq.(26) for
. .. * *
the Lorentz gas case in the limit vy *+ 0. Thus at small ¥ (high electron

temperatures) the solution of the full equation approaches the Lorentz gas

result,



c) Numerical Solution of Full Equation

The numerical solution- of Eq.(17) is not completely straightforward.
The main difficulty, as Spitzer et al, [3] ;howed, is that the complementary
function solutions are rapidly increasing and decreasing exponentials and so
direct numerical integration of Eq.(17) fails. The integration of Eq.(l7) is
in fact unstable for both increasing and decreasing x; i.e., a small deviation
from the correct solution increases so rapidly in the course of the integration
that any trace of the correct solution soon disappears. This behaviour is due
to the singular nature of Q(x) which varies as l/x3 for small x., Two
independent numerical techniques were developed to overcome this numerical
instability problem. The first method was identical to the variation of para-
meters technique wused by Spitzer et al. [3].. The second method which is
described in the Appendix was a two point boundary value technique. This
second method was found to be considerably more flexible than the first
technique in that non-integer values of Z could be handled.

The results from both techniques agreed to within 0.5% and the values of
I3(w) given in Table Al were obtained using the two point boundary value
technique and are accurate to four decimal places. The flexibility of the
two point boundary value technique also enables us to solve the Spitzer
resistivity problem for non-integer Z., In Table A2,values of Yg» the ratio
of the conductivity to the Lorentz conductivity, are given for a range of Z
values from 1 to 16,

Returning to the beam induced current problem, the ratio of the net
current to the fast ion current F, is evaluated using I3(Wl and is given in Table

A3. In Figs 1 -3 the parameter F (continuous curves) is shown as a function of
*=2
v,

b

Lorentz gas approximation and also with the corresponding curves for the

(= vi/vﬁ) for Z = 1,2,4. These curves may be compared with those for the

conventional displaced Maxwellian theory which is described in reference [2].
Points of interest in Figs.1-3 are first that the net current is in the:

*
opposite direction to the beam current for Z = 1 when vy < 1.35 and in the



opposite direction to that of the displaced Maxwellian approximation. Secondly,
there is, as expected,a significant difference between the Lorentz approxima-
tion curve and the exact curve for Z = 1. This indicates the importance of
electron-electron collisions for low Z plasmas. The effect of course becomes
less significant at larger values of Z.
4, COMPARISON WITH CULHAM LEVITRON EXPERIMENTS

In the Levitron experiments [2] a modulated beam of fast protons was injected
into a hydrogen plasma and the net circulating current was detected through
the voltage induced in a pick-up coil which looped the plasma in the poloidal
direction, The signal due to current flowing parallel to the magnetic field

lines was measured as a function of the plasma electron temperature and the

results obtained are taken from reference [2] and shown in Fig.4. The error
bars represent the statistical errors. Systematic errors in the absolute mag-
nitude of the points due to uncertainties in the absolute density and beam
intensity measurements are estimated to be less than 15%. The solid curves

are theoretical predictions evaluated for the average beam enefgy of 8.5 keV
and for uniform plasma parameters. The values of F, the ratio of the net
current to the fast ion current for these curves are shown on the right of
Fig.4. In the range of interest the displaced Maxwellian theory underestimates
the reverse electron current by a factor of two. On the other hand, the Lorentz
gas approximation predicts too large an electron current by a similar factor.
Much better agreement with experiment is achieved by the Fokker-Planck theory
of Section 3 which includes electron-electron collisions. The dashed curve in
Fig.4 shows the effect of incorporating the measured plasma density and
temperature profiles in the full Fokker-Planck treatment.

The above theoretical predictions take no account of the presence of
trapped electrons which serve to inhibit the reverse electron current, or of
the dependence of the Coulomb logarithm (&nA) on the fast ion velocity.

The effect of the trapped particles can be estimated using the expression of

Hinton and Hazeltine [11] for the analogous case of an electric field driven

_10-—



current. For the Levitron, the trapped particles are estimated to reduce the
predicted electron current by 7% at T; =1 eV and 13% at 4.7eV. Corrections

to the energy loss rates due to the dependence of fnA on the test particle

velocity have been given by Itikawa and Aono [12] and these indicate that
the electron current should be increased by 207 at T; = 1 eV and reduced by
3% at T, = 4.7 eV.
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APPENDIX
NUMERICAL SOLUTION AS A TWO-POINT BOUNDARY VALUE PROBLEM
The differential equation defined by Eq(8) to Eq(l4) was solved as a two-
point boundary value problem on a range a < x € b, where a was small and
4 < b <5, by the method of Lentini and Pereyra [13]‘using their algorithm
PASVAR which (in the version PASVA3) is in the Harwell Subroutine Library
under the name DDO4AD. In the case of the discontinuous forcing function Eq(11),

the discontinuity at x = vy was smoothed by replacing R(x) with,

-V
RG) = 3 [ R (%) + Ry(x) + (Ry(x) = R (x)) tamh xs oy } i
where Rl(x), RZ(X) are the forms for x < v; and x > v; respectively, and
s 1is a small number.

The initial mesh required by DDO4AD was generated with: a) constant
spacing 0.1 in 1og10(x) over the range a < x < 1; b) constant spacing 0.2
in x over 1 < x < b; c) 1in addition, eleven equally spaced points
centred on x.= v, with spacing 3S. A limit of N < 300 was set on the
number, N, of points in the final mesh generated by the program. The error
tolerance T was taken as a limiton the estimate of absolute error in each
solution component at each point on the final mesh.

The problem must be specified to DDO4AD as a first-order system

dy.

i .
g ke fi(x,yl,yz,...,ym), i=1tom eva (A2)

with boundary conditions
O = gi(Yl(a):---,Ym(a), yl(b)stt‘:ym(b))s i= 1l tom . e s e (AB)

For our problem m = 5, and the ¥, are defined as

vy =2 ()

y, = aj ()

vy = I,(x) eos (A4)
¥, = IB(X)

¥y = Ll L) = ,02)

- A1l -



so that the. functions (A2) are

£1=v
£, = R(x) - P(x) yz-Q(x) ¥y * S(x) )
2 s (A5)
fy=e " ¥ 5
3
f4 X f3
— 2 —
£, = (L.2x D f,
vhere O o A x4(1.2x2—1)(10(w)~y3<x»]
3 A(x)

and )

. 2

IO(M) == 355 J R(x) A(x) e X ax
0
/ 4
_éﬂ__gé A(v:), for (11)
162 Vb
= eas (AB)
1
;3%%&, for (15) | |

It was essential to choose the boundary conditions with some care since
a poor choice results in the introduction of complementary functions which
decrease inward from the boundary:and cause the computgd solution to differ
considerably from the true solution near the end of the range.

From Eq.(20) the dependence of al(x), for small x, is al(x)==0(x4)
(and similar for the Spitzer R(x)), so four of the conditions (A3) were

chosen as homogeneous ones derived from this fact, and have form:
\

0 =y,(a) - 4y (a)/a

0 =y, (8 - 8y,(a)/a" .
0= y,() +y,(a) ? .

0 =y,(a) - ay,(a)/5

It was then necessary to choose a condition at x = b, to control the comple-
mentary function which increases with X. Assuming that al(x) ~ ¢ x for

2
large x, the terms of Eq(8) are approximately (ignoring terms of order B )

- A2 -



a¥ ~ ¢ d(d-1) xd_z

1 )
P(x) a& ~ =2 cd xd(l + %x_z)
Q(x) a; ~ -c xd(Z(Z +1) - x_z)
’ S(x) ~ —.l§¥ ¥ () coo (A8)

32 0
—Bv;(l + 1.2 sz)x, for Eq(11)

R(x) = K
- 2Ax for Eq(15)

For Eq(11) we must clearly take d = 1, so that ai arises only from relatively
small terms of order (d - 2), and so is itself of relative order x_4. There-

fore we should get a good approximation to a suitable boundary condition by

ignoring a{ taking the condition as

Q(b) v, (b) + B(B)y,(b) + <22 y (b) - R(b) = O . co (49)

3m?

This worked adequately,but was not ideal because (with b in the range 4 to 5)
the neglected terms were still fairly important,

For the Spitzer problem Eq(15) we clearly have d = 4, and aﬁ is now of
relative order x—z rather than x—&. However, the same condition (A9) was
used, and again it worked adequately.

Most of the runs were carried out with the following parameter values:

a= 10-4

b =5

T = 10'_5

s = 2,100

Spot tests with larger values of a (up to 10_3), smaller values of b (down
to 4), or larger values of s (up to 0.01) confirmed the reliability of
computed values of IB(M) and their insensitivity to these parameters. Check-
ing y3(b) against Eq (A6) also gave valuable confidence in the results., We
also used smaller values of T in some tests, to confirm that a value of 10M5
was adequate. In some cases, especially at small VZ where the effect of the
discontinuity is relatively severe, it was necessary to relax the parameter

values, within the ranges quoted, in order to obtain a successful solution

within the bound on mesh size N.
_A.B_



These numerical experiments confirmed that the values of I3(m) quoted
in Tables Al and A2 are accurate to within one or two units in the last place
quoted, The corresponding values of F (the ratio of the net current to the

fast ion current) are given in Table A3.
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Table A2: Values of,I3(m)/A for the Spitzer resistivity
problem end the ratio cf the conductivity to

the Lorentz gas conductivity Yg @8 & function of 2

Z I5(=)/A Yg
1.0 1.74578 C.5819
: 1.62507 ' 0.5959
1.2 1,52184 0.6087
1.4 1.35392 0.6318
1.6 : 1.22252 0.6520
1.8 1,116k2 ' 0.6699
2.0 1.02865 0.6858
2.5 0.86288 0.7191
3.0 0.7LU556 0.TL56
4,0 0.58900 0.7853
5.0 0.48838 0.8140
6.0 0.4178k 0.8357
8.0 0.32495 0.8665

10.0 0.26625 - 0.8875
12,0 0.22568 0.9027
1k.0 0.19592 ' 0.9143
16.0 0.17313 0.923k

— A6 ~
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Figure Captions

Fig.1 The ratio of the net current to the fast ion current F, as a
. 2,2 _ #%=2 s
function of ve/vb (= vy ) for an effective charge Z = 1. The
continuous curve is the numerical solution of the full Fokker-
Planck equation, the dashed curve the Lorentz approximation and the
dot-dashed curve the displaced Maxwellian approximation [2]

*
(F=1-4 IO(W)/B vb).

Fig.2 The ratio of the net current to the fast ion current F, as a
. 2, 2 *-2
f = =
.unctlon of ve/vb( Vi ) for Z 2,
Fig.3 The ratio of the net current to the fast ion current F, as a

function of vz/vz(: v*-z) for zZ = 4
e’ b b *

Fig.4 Comparison of the theoretical temperature dependence of the net current
with the Levitron experimental results (reference 2). The full curves
show the predictions of the displaced Maxwellian approximation, the
full Fokker-Planck theory and the Lorentz approximation for uniform
plasma parameters. The dashed curve shows the effect of averaging

the parameter F over the experimental profiles in the case of the

full Fokker-Planck theory.
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