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ABSTRACT

A systematic account is given of the derivation of the dispersion relation for
Helicon waves in a uniform cylindrical plasma bounded by a vacuum, By retaining
finite resistivity in the equations, boundary conditions present no difficulties,
since the magnetic field is continuous through the plasma-vacuum interface. Two
unexpected results are found, Firstly, the wave attenuation remains finite in the
limit of vanishing resistivity. This is due to the energy dissipated at the inter-
face by the surface currents required to match the plasma wave field to the vacuum
wave field. Zero wave attenuation for zero resistivity is recovered if electron
inertia is included. Secondly, it is found that waves with azimuthal numbers m
of opposite sign propagate differently, but the sense of polarization at the axis
of the cylinder is independent of the sign of m.

The argument of the dispersion function is complex and numerical results were
obtained using a computer. The method of programming is described, and results are
given applicable to propagation in metals at low temperatures, or in a typical gas

discharge plasma for the m = O and m = * 1 modes.

An example of the amplitude of the wave fields as a function of radius is given
for the axisymmetric mode and of amplitude and phase for the m = * 1 modes.
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1. INTRODUCTION

The name Helicon, proposed by Aigrain (1960), will be used to describe low frequency
electro-magnetic waves which propagate in a highly conducting medium such as a metal at
low temperatures, or in a gas discharge plasma, in the presence of a strong applied magne-
tic field. In the presence of the wave field the initially straight lines of force of the
applied field become helical. The distinguishing feature of such waves is the minor role
played by charged particle inertia; the energy density of the wave field is almost entirely

that associated with the magnetic field of the wave.

In an ionized gas, waves with this property are found in the frequency range between
the electron and ion cyclotron frequencies, and are often referred to as high frequency
compressional Alfven waves, or as low frequency whistlers, the latter name being derivéd
from the falling pitch in the audio frequency range which is observed in ionospheric
studies (Budden 1961). Barkhausen (1919) first drew attention to atmospheric whistlers,
Eckersley (1935) and Storey_(1953) extensively investigated this phenomenon. The disper-
sion relation for plane waves is given by the Appleton-Hartree formula (Ratcliffe,1959).
More recently helicbns have been observed in metals at low temperatures; a necessary condi-
tion for propagétion being that the electron cyclotron frequency be much greater than the
collision frequency, (Bowers, Legendy and Rose, 1961). ‘Since the latter date, a number of
papers on helicon waves have appeared (see Bibliography), but the problem of boundary con-
ditions has been avoided by assuming the dispersion relation appropriate to an infiniée
medium. In the experiments of Chambers and Jones (1962) it would seem difficult to justify
their neglect of vacuum fields to the accuracy implied by their results, but the surface
effects described below are not present in the experimental configuration used by these

authors namely where the medium is infinite in extent perpendicular to the applied magne-

tic field.

In all the low frequency experiments involving metals the ions are immobile, while in
a plasma the 1nequality f%T « f%- (see appendix I) is usually satisfied and strong surface
currents flow when f%w » 1 (r@, ; electron and ion gyrofrequencies respectively, T is
the collision time for electrons,  is wave frequency). In the theory given by Aigrain
(1960), Bowers et al, (1961) and Cotti et al. (1962), their results are correct only in
the 1limit of plane waves when the surface currents, which they ignore, become small.
The boundary conditions of Bernstein and Trehan (1960) and Stix (1962) are for a plasma

and f%T = w. In this case (see appendix I) displacement of the plasma boundary greatly

reduces the surface currents., However, their theory is inapplicable when rém « é% where
i



surface currents are important. Propagation of magnetoionic waves has been studied in a
cylindrical plasma by Formato and Gilardini (1962). Cylindrical waves for which f%r » é§1
have been studied by Woods (1962,1964),

It is the object of this paper to obtain the dispersion relation for Helicon waves
propagating in a cylindrical medium bounded by a vacuum, in the regime where f%w is
large compared to unity but small enough for ion motion to be negligible. To solve the

problem it is necessary to retain finite resistivity in the equations. The boundary con-

ditions are then continuity of all components of the wave magnetic field.

2. THE MODEL AND ASSUMPTIONS

For the case f, » w and v fluid equations may be obtained from Boltzmann's equa-

tion (Spitzer 1962), and the modified Ohm's law is:-

>

e ud s+l (we-FxB)-nd
+V x B+ go e -J xB)-nJ-

e
0)’0}
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where only the last term is linearised and where:-

B, is the total magnetic field

‘ 3 is the current density
g is the electric field
N is the electron number density
mg is the electron mass

Pe is the electron pressure

n is the electrical resistivity

v is the plasma mass velocity
The units used are rationalised M.K.S. A cool plasma will be considered for which electron
pressure may be neglected. Ion motion will be omitted so that the Vv x B tem in (1) will
be dropped. The range of conditions for which this assumption is justified, assuming a

uniform plasma, is discussed in appendix I.

Perturbation about-a zero order state in which the current and electric field vanish

gives the linearised form of (1):-

{
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where E is the perturbed electric field and the other quantities are denoted by the
appropriate small letters. B is the applied magnetic field. Equation (2) is to be used
in conjunction with Maxwell's equations which, with neglect of displacement current (see

appendix I), are in linearised form:-



- -
curl b = p _j . aew (3)
> 3B
curl E=a_t cse (4)

In practicé a plasma may be magnetically confined and the consequent steady surface

currents may affect the wave propagation. Appendix II discusses the conditions for neglec-

tingz this effect.

3. BOUNDARY CONDITIONS

The general solution of the fourth order equation (14,15) is the sum of four Bessel
functions each multiplied by an arbitrary constant. The general solution of the second
order equation (22) describing the vacuum magnetic field is the sum of two Bessel functions,
each multiplied by an arbitrary constant making a total of six arbitrary constants. In
general, six boundary conditions are necessary to eliminate these arbitrary constants to
find the dispersion relation, The conditions that the magnetic field of the wave be
finite at the origin and vanish at infinity requires two arbitrary constants to be put
equal to zero in the solution for the plasma fields, and one abr;trany constant to be put
equal to zero in the solution for the vacuum field. Thus three additional boundary condi-

tions are required to eliminate the three remaining constants,

Integration of the equations

and
>

1 b '
cur Hod

across the boundary leads to the result that the Jjump, [b], in the magnetic field in cross-
ing the boundary is given by:-

- -

[n.b]l=o0

-> - Lk

[n xb] =y
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where n is the unit vector normal to the boundary and J  1is the surface current density.
With finite electron mass or finite resistivity the current density j is finite and so

surface currents of infinite density cannot occur.

The boundary conditions are therefore:-—

(bp] =0
[bg] =0 sas LH)
[bz] =0



The components of the wave field b., bg and b, are therefore continuous across the
boundary at r=a. By matching the vacuum field and the plasma fields at the boundary

the three remaining constants may be eliminated and the dispersion relation found.

4. THE DISPERSION RELATION

The equations to be solved in cylindrical geometry are:-

- J—,'xﬁ > Mg a;
E -~ Ne —rlj nﬁ? —E =0 e n (6)
Vxb=pd eas (1)
-> a-’
VxE:"ll .o (8)

at

Solutions of the form:-
i ->
b=B(r) exp i(md + kz - wt)

are considered.

Taking the curl of equation (6) and using (7) and (8) yields:-
2

(w+iv}VxVxB—k%V:¢g+%’?g=O oo (9)

where c¢ is the velocity of light.

2
v = E%—B is the electron collision frequency
e

and

Ne2 'é
w = ( “ET‘) is the plasma frequency.
P Eo'e

It is convenient to define a collision interval <t such that

KE
QET=—\)—=-N;;.

Equation (9) may be factorized and written

(curl - g,)(curl - p2)b = 0 ... (10)

where B, and p, are the roots of the quadratic

(w + iv)p® - Qek[3+—0z—u§=o. wee (11)

The general solution of (10) is therefore the sum of the solutions of

= d ->
curl b= p1 b eee (12)

and

ves (13)
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Since Vb = o equations (12) and (13) may be written:-
v = - g% , cee (14)

and

> ->
v = - g , ves (15)

: : :
51,2=ﬂﬁm[1;J1_4£%%1 w—:g]. ---.(16)

The negative sign is to be taken with B, and the positive sign with By

where

The solution of (10) for the z component, Bz(r), which is finite at the origin is:-

b,(r) = AT (Y,r) + AT (¥,r) e (17)

where A, and A, are amplitude constants, Y® = B? - k?, Yz = 52 - k?, and J, is the -

Bessel function of the first kind of order m.

Equation (14) may be used to obtain the components Br and Ba in terms of Bz' These

are:-
. iA, mp : =]
= — ]
b, = 2  Jp(far) + kv J!(Y, r)
+ —éiA il J(r.r) + kv, J'(Y r)_ (18)
‘Y.‘1 r m 'z 2 "me | e
P A; mk 5 i -
—_ - — !
By = T I, r) + By, Iy, r')_
A—%' —‘—"k J (v,r) Y. Iy )_ (19)
= i r dnler) + BaYq m'T) | . cee

Equations (19) and (20) will be represented by:-

br = 1A.Lfr + iA2gr' sevw (20)

by = Afy + Ag, .« e (21)

In the region exterior to the medium displacement currents are neglected and there

are no conduction currents so that:-

-
curl b = o,

therefore _
b= V¢ where ¢ 1is a scalar.
Since
v.B = o,
therefore
V3¢ = o. wee (22)



The vacuum fields are therefore given by:-

b. = A kK (kr) eos (23)
> im

by = T AaKm(kr) ee. (24)
b, = ikAK (kr) v (25)

where Km(kr') is the modified Bessel function of the second kind, such that

Km(kr) > 0 as Kkr - w.

By applying the boundary conditions (equation (5)) of continuity of br’ be, bz at r = a,

the arbitrary constants A, A, and A, may be eliminated to give

f‘1"' gl"
Ty 8g
Jm(Yia) Jm(YEa)

|
—aka(ak)

me(ak) = o. .o (26)
aka(ak) j

The determinantal equation (26) is the required dispersion relation.

5.

DISPERSION AND ATTENUATION OF THE AXISYMMETRIC WAVE (m =

o)

The attenuation of helicon waves in the limit ﬂer -+ «» shows an anomalous behaviour

which we illustrate for simplicity with the m = o wave.

tions defined by equations (20), (21) and (22) take

Form= o0 the f and g func-

the simple form

fl"= -%Ji (Tj_a), g]‘= _‘%Jg_(Yga)s
’ ses (27)
. B . B
fg = oo J,(v,a), 8= ¥, J; (xa).
The dispersion equation (26) then becomes
Y dolra)  ¥p Jlra) a1 Kolak) 28]
g, J,(x,a) B, J, (v,a) B, B / K,(ak)
When ﬂeT » » a further simplification may be made by expanding B, and P, in povers
of (Qe'c)-l. Thus, when v » w
Neapg -1
By = 5 + o(nefr) , oo (29)
and
. “Ho -1
B, = - ikt - —5=— + 0(n 1) . ... (30)

In the limit Q7 > «, |Ek3| + o and Y, * f,; ap, =

number provided:

ak » (Qe'l:)m1 .

iaer'c is therefore a large imaginary

vee (31)



When (31) is satisfied, the Bessel functions Jo(Bza) and J, (Bya) in equation (28)

have large imaginary arguments, and since

IJm(pza) .
j;(ézLaj->1 as ip,a * » for all m and n,

equation (28) reduces to

Em_l=_ﬁim e (32)

The occurrence of i in equation (32) implies that k has a non-zero imaginary part
for real w. It follows that in the regime where ﬂe'r » 1 » % and ak » (Qe'r)-l, wave
attenuation remains finite but independent of Qefr. In Fig.1 an example is given showing
the attenuation curve labelled C extrapolated to Qeq: = « and this may be seen to be com-

parable to the residual damping arising from volume currents,

When % » 1, electron inertia determines the structure of the surface currents and the

’ + w
wave attenuation vanishes as ;— 2 ® .

6. THE METHOD USED FOR NUMERICAL SOLUTION OF THE DISPERSION RELATION

Numerical solutions of equation (26) were found for m = o and m = 1 waves of low
radial wave number which satisfy the inequality Qe » v » w, For travelling waves the real
and imaginary parts of k are required for real w, ar{d for standing waves the real and

imaginary parts of w for real K.

The computational procedure will be illustrated for the travelling m = o wave. The

parameters w, Qe, v, wp are assumed to be specified.

If k = kr + iki then the dispersion equation (26), represented by D(w, k) = o can be

expressed in the fomm

D(w, k) = U(w, ki) + iVlw, k., k;) = 0 ee. (33)
and the relation between w, kr and k.i must be such that U and V are simultaneously

Zero.

By choosing a sequence of values of kr and ki and calculating the corresponding values
of U, a polyhedral surface may be constructed. A different polyhedral surface exists for

each w. The intersections of surfaces with the U = o plane give closed curves on which

Ulw, k_, ki) = 0. A similar procedure yields the value of kr and ki for which V = o, i.e.

r

the curve V(w, kr’ ki) = 0. Superposition of these two sets of closed curves gives the

relation between kr_ and ki which simultaneously satisfies U= o, V = o, These curves

.



intersect in pairs at right angles at two pbints. The intersection of these curves locate
the poles and zeros of the dispersion relation, together with the branch points in a speci-

fied region of the complex plane.

The two sets of curves U= 0, V = 0 were plotted and superimposed by an automatic graph

plotter.

Guidance in the choice of values for kr and ki was obtained as follows: if the attenu-
ation of the wave is small, solutions are expected to lie in the neighbourhood of the points

for which B, is real.

If B, is assumed real, then equation (12) can be written
w@E 23 5
—z ki -kk = +—M§E = i ees (34)

When w « v, (35) represents a hyperbola in the k plane defined by

Kk = you: B

Similarly for standing waves [, is real along a parabola in the w plane
v 2
Wy = kzﬁc"‘ “r »eo (36)

B, = B, is a trivial solution of the dispersion relation for all m. For this case the

wave fields vanish, and the solution corresponds to a branch point in the complex k plane.

The solutions of equation (17) for P may be regarded as functions of six independent

parameters,
wp Wi v w
aﬁ:aﬁ(ak,ak.,—,-—-,—,—), ves (37)
r i I% S% (% w,
where
5 B
o nepoa”

The parameter X appears only through the electron inertia which, under the condi-

Q
tions studied (v » w), can be neglected. The parameter %% accounts for the attenuation
e

of the waves, but only affects the dispersion curves to second order in this parameter.

Fig.2 shows the m = 1 dispersion function in the complex w—-plane; the first order
poles lie on a parabola and thé simple zeros of the function lie near the poles. The
poles were distinguished from the zeros by plotting the contour U = constant (indicated
by 3 in Fig.1) as well as the contours U = 0, V = o (indicated by 1 and 2 respectively in
Fig.1). Since D and D+ constant have the same poles but different zeros, the contours 1 ard

3 cut 2 in the common pole and in two other points which are zeros of D and D+ constant,

oy



Fig.3 shows the m = o dispersion function in the complex k plane. The poles and
zeros lie near a hyperbola. The point C is the branch point of the dispersion function
and the line CD along which the contours of real and imaginary part run together is
determined by the choice of the negative real axis as the branch cut of\/i'in the Z plane,
This method gives good starting points for iterative solution of the dispersion relations,
and if necessary, can produce arbitrarily accurate results by looking more closely at any
desired root with a finer mesh of points. More accurate soiutions of the dispersion rela-
tions were found by iteration using Muller's method, in which the function is approximated
| by a quadratic, by the rule of false position, and using a bilinear approximation to the
function. The results for travelling waves are shown in Figs.4, 5, 6 and for standing
waves in Figs. 7 and 8. These methods have been incorporated in a multi-purpose program

for solving general camplex eigenvalue problems, McNamara (1964).

7. THE RADIAL VARTATION OF THE WAVE FIELDS FOR m = o

It was not possible, a priori, to determine the boundary conditions for the case of
zero resistivity because the magnitude of the surface currents are not known., However,
by allowing f%T to tend to infinity the radial variation of the wave fields in the neigh-

bourhood of the plasma vacuum interface can now be obtained,

Using equations (17) to (21), (23 to 25) and assuming continuity'of the wave field
across the boundary (f%r finite) the constants A,, A, and A, may be evaluated in terms of

the f and g functions at r = a. For the case m = o the three components of the field

arei-
ik J.‘l. (Tir) ik Ji (Ygr)

f o2 o m 2N
r By Ju(¥,a) P J:LtYBa)

J, (v,r) J,(v.r)

o Ji(Yia) ~ Jy(¥qa) oo (38)

¥, Jol¥,r) T, Jol,r)
z By Jal¥sa)  Ba J.(Yza)

An amplitude factor common to each component has been omitted.

In the limit f%T = «» the terms containing B and Yz simplify since ifg = w, if,; = .

For instance .
J, (v,r) -ak 0 t(1-5)
e 3 i A T
by 7, (¥.) e e a’. .es (39)

The resistive field is finite only in a boundary region of thickness

~ 1 . wavelength
o~ b~ e .+« (40)



and can be written in the limit Q7 »w as a delta function, &(a~r), where

1 if a=r

5(a-r) (1)
ees (41
0 otherwise.

Thus as (%r > » (38) becomes

a ik Ji(Yil")
b o= - it
r [31 J:{(Yia)

L (far)
f)ez m‘&(a—l") asa (42)

Y Jo(Yg_P)
= 4 - 1 -
Bz A CArY) id(a-r)
It is seen from equation (42) that both be and bz change discontinuously at the plasma

boundary, the terms involving the &-functions giving the magnitude of the jump.

For finite (%1 the fields vary smoothly through the boundary and computed magnetic
field profiles are shown in Fig 9 for the case f%T = 10 and m = o. The modulus of the
fields 1is plotted since there is a phase difference between the two terms of the expression
determining the field. The large field gradients near the boundary are apparent and corres-

pond to large current densities near the surface.

8. WAVE POLARIZATION

In an infinite uniform plasma containing a uniform magnetic field there exist two
waves of opposite polarization; the right-handed one is a propagating wave and the left-
handed one is evanescent in the limit r%¢ -+ x. In the plasma cylinder considered here both
types of disturbance couple together to produce the resultant wave which propagates accord-
ing to the dispersion relation (26). This dispersion relation is even in ak and so, for
a given azimuthal mode number m, the same wave can be propagated up or down the magnetic
fieid. However, the dispersion relation is not symmetric in the sign of the azimuthal mode

IO

' m' modes for

number, so that negative 'm' modes propagate differently to positive
m # 0, As a right-handed co-ordinate system has been chosen, changing the sign of m is

entirely equivalent to changing the sign of the magnetic field.

In considering the polarization of these cylindrical waves it is necessary to distin-
guish between the m-number and the polarization. The former determines the direction of
rotation of the field pattern, and the latter the direction of rotation of the magnetic
field vector in the r, © plane. This is demonstrated in Fig. 10 where the amplitude and
phase of each of the three field components of an m = 1 right-handed Helicon wave with one

radial node are plotted as functions of radius. In the interior of the cylinder the phase

- 10 -



of the azimuthal field is seen to lead that of the radial field representing a right polar-
iéed field at every point. The phases of the azimuthal and axial fields change rapidly near
the boundary where the resistive field contributes appreciably to the total fields. For
negative m-numbers competition is to be expected between the right-handedness of the basic
propagating disturbance and the left-handedness of the field pattern. This is illustrated
for an m = -1 Helicon wave in Fig.11 where it is seen that the field is right-polarized near
the centre of the cylinder, changes through a region of left polarization to very nearly
linear polarization for the rest of the interior of the éylinder, and finally becomes left
circular polarized in the region of the boundary. Finally because of the competing effects
of the field polarization and direction of rotation of the field pattern it is reasonable

that solutions of the dispersion relation for negative m must have at least one radial

node.

The field patterns given in Figs. 9, 10 and 11 and the dispersion and damping curves

given below are completely representative of the infinity of possible solutions of the dis-

persion relation (26),

9. DISCUSSION

The dispersion relation given above (equation 26) was derived by including finite
resistivity in the generalised Ohm's law (equation 6). It will now be shown that if both
electron inertia and plasma resistivity are omitted from Ohm's'law, by setting Mg equal to

zero, then the dispersion relation cannot be found.

From the linearised Ohm's law, which is

-

= ->
E - .XB=0,

s
Ne J
and Maxwell's equations with displacement current neglected, an equation for 3 may be
found. The previous analysis yields this equation by putting me =0 in equation (9). For

fields finite at r = o the solution for the field components involves one arbitrary con-

stant Ai.

The magnetic field components in the vacuum are as given in equations (23) to (25)
and involve another arbitrary constanf A,. With neglect of electron mass, infinite surface
current densities are permissible and the boundary conditions on the © and 2z components
of b (equation 4) involve unknown surface currents j: and j; . Therefore there is only
one determinate boundary condition on the magnetic field, namely continuity of br‘ How-

ever, there are two constants A, and A,. The remaining boundary condition (on the

=il



tangential component of the electric field) plays no part in determining the dispersion
relation when displacement current is neglected, but serves only to eliminate the third
constant in the vacuum electric field. Therefore the number of constants exceeds the

number of boundary conditions, and the dispersion relation cannot be found.

The boundary conditions on the tangential electric field have not yet been considered
because, with neglect of displacement current, they do not affect the dispersion relation.
To complete the analysis of helicon wave propagation, however, this boundary condition must

be introduced to determine the vacuum electric field.

Integration of the equation

across the boundary gives
= e
[n xE] =0
where n is the unit vector normal to the boundary. The tangential electric field is

therefore continuous across the boundary and the vacuum electric field can be determined.

Woods (1962, 1964) has introduced a perturbation dipole layer of density < on the

boundary in which case the boundary condition is (Stratton 1941)

[Kxéj:LnxV'r-
EO

However the electric field of the wave sets up a charge separation which may be des-
cribed by a volume polarization analogous to that in a dielectric (see appendix I for the
dielectric tensor). An additional and arbitrary dipole layer is therefore superfluous to

the theory and so must be discarded.

A noteworthy result is that there are conditions where wave attenuation is independent
of the collision frequency, provided electron inertia and ion motion can be neglected, i.e.
le w

v » w and 5 « Qi.

The characteristic distance z, for the wave amplitude to decrease to 1/e of its
initial amplitude is z, = 1/ki. The curve C in Fig.1 for m = o and rg¢ 2 «» has a value
for akirwhich does not fall below O.1 over a range of frequencies, 1< ii < 100. The
characteristic distance for attenuation over this range of frequencies ig , therefore, never
greater than 10a. This anomalously large attenuation is due to the energy dissipated in
collisions by surface currents of high current density. It would not be present if the

plasma was bounded by an ideal conductor.

- 12 -
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APPENDIX I

CONDITIONS FOR NEGLECT OF ION MOTION AND DISPLACEMENT CURRENT

The complete set of linearised equations to be solved when the ion motion and dis-

placement current are taken into account and plasma pressure neglected are:-

-
V.. = =2
Po3c =J xB e (A1)
> 1 =» > a_') - ->
LA g >, me dj _
E=gedxB+ni+gs-VxB, ees (A.2)
3b
-
VxE:—a—t, eee (AL3)
- - BE
Vob=ypJ+ e, 5o eoo (AL4)
Vb = o, i (AuB)
where Po is the equilibrium ion density and {f) the plasma velocity.
Write (A.4) in the form
- a o2
Vxb=pe 3= ((_I__+7é) E}, ... (A.6)

where X 1is the polarizability tensor for the magnetised plasma and £ is the unit tensor.

Consider a perturbation with a time dependence of the form elwt so that (A.1) becomes

=

, > 2
,|_wp0V=JxB.

Substituting this result into (A.2) yields

fws B = (5 +18,)7 + 16,3 x 8, - 8,(8,. 1B, s (0 7)
where
i 0 9%
61=w(v;-1m2 , 5a=i"_2_e , 53:71. vos (A.B)
“pe “pe “pi

and 8 , 1is a unit vector parallel to the magnetic field. The dimensionless parameters,

8, represent electron inertia and resistance, the Hall effect, and ion inertia respec-

tively.

:]‘) may now be elimirated from (A.4) using (A.7) so that the elements of the polarisa-

tion tensor are:-

x 1 X _ x 53 +j-61
11 < 151 ’ 22 aa (53.,.151)&-5; !
ces (AL9)
15,
Xpg = = Xgg = - (53.,_151)2_,5: ’ x12=x21=x31=x13=0'

- 14 -



It is evident that ion motion may be neglected if 61 » 8. Written in terms of

characteristic frequencies this is

9]
w . le
q, el «eo (A.10)

In a high temperature fully ionized gas in which a strong magnetic field is present it is
9]

not uncommon for ‘;g to have values exceeding 100. In this case ion motion continues to

play an important role under circumstances where the displacement current can be neglected

and the wave frequency is 100 times the ion gyrofrequency.

Equations (A.1) and (A.2) are based on the assumption that the ion mass is much larger
than the electron mass which is not necessarily true for an electron-hole plasma in a semi-

conductor.

The conditions for the neglect of displacement current is é » ;. Since the unit

tensor I has diagonal elements only, it follows from (A.,9) that the required conditions

are:-
| - &y + 18,

1. e (A1
(5, +16,)2- 62 | el 1)

|61[ « 1 and

For the waves studied here it is assumed that |61| » & and (A.11) reduces to

5
|8, ] « 1 and | =—2—| » 1 soe [A:12)
2 Gf+6:

The following two examples illustrate circumstances for which the inequalities (A.11)

are satisfied.

Typical values for the frequencies involved for Helicon wave propagation in metals at

liquid helium temperatures, are:-

9 1 16
w= 100, v = 107, f% =2 x 10 and ube =4 x 10

so that

-25 8,. 25
~ 10 — ~ 10 .
81 and 5f .

For Helicon waves propagation in partially ionized argon gas, the following fre-

quencies are typical:-

w = 10-'_', v = 105, Q=2x 10°, W =6 x 1010
Q =3 x 10" and W,y = 107
s0 that
§ %3 x 107, Ay 1 0, ~ 2 x 10°,

(6, +18,)%- 82

- 15 =



It remains to determine the restrictions on the phase velocity of the wave Vb = Yk

for the neglect of ion motion and displacement current.

The electric field can be eliminated from (A.3) and (A.6) to yield

V x ((; + &)TIV x B)) —vmgeopo b i G,

Some further manipulations yield the following equation for the z-component of 3:—

2

k2(82-5,(5, +158,))
. - 2 2 . . 2 a3 1
{ 181(634-161+-T:TE;:7I3:)D +| eop0w2(1..161(63-+161)) + 3

1+63+161

k® 8
- 2(d 2 g — 3 =
EoHo® (161uoeow + T35, B, } b, =0 e (A.13)

_ g2 2
where D = V*° + Eoto® e

Inspection of equation (A.13) yields two further well known conditions on the phase
velocity of the waves. For ion motion to be negligible, the phase velocity must be much
greater than the Alfveén speed, that is,

... (A.14)

2 2
Vp » B /popo .

For displacement current to be negligible the phase velocity must be much less than
the velocity of light in vacuo

%
Vp « (1.105:0) .

Finally, it can be seen that if either the displacement current or ion motion terms

are small compared with the resistive terms so that

16,1 216 eee (A,15)

—_—
st +63I
then the highest derivatives in (A.13) will be of the form v?V* and there will be an
appreciable contribution to wave attenuation from surface currents. With the extra condi-

tion ]61| « |62| i.e, Qe » v this was the case discussed in the above paper.

— 16 =



APPENDIX II

CONDITIONS FOR NEGLECT OF SURFACE CURRENT IN A MAGNETICALLY CONFINED PLASMA

We consider a cylindrical plasma with a small electron pressure gradient and carry-
ing a small steady confining current ‘.T,o in addition to the wave current 3 Ohm's law is
then as follows:-—

- 1 -> - - = 1
E_Ne|:30xb+JxBO:|+T]J—NEVPe ans G 1)

where the usual linearisation has been eff‘ected._

If & = thickness of current layer confining the plasma
(in practice JO would be mainly a surface current when (r » 1),

) =boundary layer thickness of Helicon wave when (r » 1,

1
B~ kOF
then the most stringent conditions on Jo will clearly obtain when 6c > 6B . Comparison

of the terms in ‘_T)o with those in 3 in equation (A.1) gives:-

|_T_3 B |
Ne Yo * g HoJg I |
SRR S o r < a—BB
| nJ| 0
HoJo
NRBO a>r>|a-6B|
L3 B
lNe o I ~P0J0 | -5 |
1 = KB R L
Iﬁ-gjxﬁol (o]
1 HoJo
R e a>r>|a-6|
Qe-r:k.BO B

We have used that ratio b/j found in the above theory for ‘Io = 0. The terms in Jo

are then .negligible compared to those in j provided

“OJO' -1
<
KB, ( Qe'r_ )

This is the restriction to be placed on J " if it is not to affect helicon propagation.
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CLM-P55 Fig.1
The ordinate is the attenuation constant for travelling waves. The wave amplitude
decreases to 1/e of its initial value in a distance z = 1/k;. The wave frequency o
is expressed in terms of wg = B/nepopa®. Curve A: Attenuation constant for m = o
and Qar=20; curve B: Attenuation constant for m= o0 and {er=20 when surface
currents are ignored; curve C: Attenuation constant due to surface current alone
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CLM-P 55 Fig.2
The dispersion function D = U + iV (equation 33) in the complex
w plane for a standing wave with m =1 and Qg7 =10
curve 1: contours of U =10
curve 2: contours of V=20
curve 3 : contours of V=0.1

0 akp 1.9

CLM-P55  Fig.3
The dispersion function D = U + iV (equation 33) in the complex
k plane for a travelling wave with m =1 and Qgr =10

curve 1: contours of U =10

curve 2 : contours of V=20

curve 3 : contours of V=0.1
Curve AB: Contour corresponding to the trivial solution for which

wave field vanishes, i.e. 8; = 82
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CLM-P55 Fig. 4
The dispersion relation for travelling waves
curve A: plane wave
curve B: m=0,n=1
curve C: m=1, n =1 (first radial mode)
carve D: m=1,n=2
catve E: m=-1,n=2
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CLM-P 55 Fig. 5

The attenuation constants for travelling waves with m =0 and 1 and two values
of Qer. For Qer> 10, linear interpolation in (Qer)" may be used
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CLM-P 55 Fig. 6
The attenuation constants for travelling waves with
m=1adm=-1,n=2 and Qg7 =30



20

15

10

CLM-P 55 Fig.7
The dispersion relation for standing waves with
m=0,m=1and n=1
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CLM-P 55 Fig. 8
The attenuation constant for standing waves with m=0,n=1
Linear interpolation in (Qer)"] may be used
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CLM-P 55 Fig. 9
The amplitude of the magnetic field components as a function of radius for
m=0,n=1, Qer= 10, for travelling waves. The dotted curve F to G is
the amplitude of the by components in the absence of surface currents. The
by field due to surface currents is referred to as the ‘skin field’. The
modulus of the total field is the curve from F to H
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CLM-P 55 Fig. 10
Amplitude and phase of field components for m=1, n =2, Qer= 20, akj = 2.56 and (—3—3- = 14.5.
The top graph shows the phase ¢ of each field component as a function of radius. N%te that
bg leads by by 90° over most of the radius. The lower graph shows the amplitude of the field
components as a function of radius
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CLM-P 55 Fig.11

Amplitude and phase of field components for m=-1,n =2, Qqr=20, akj = 2.0, %= 14.5,
The top graph shows the phase ¢ of each component as a function of radius. Note thatb
leads by by 90° up to r =0.2a but lags behind by by 180° for r > 0.2a except at the boun-

dary. The lower graph shows the amplitude of the field components as a function of radius









