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ABSTRACT

On the basis of a high-B, long wavelength ordering, the C.G.L. equations
are used to discuss the dynamics and linear stability of a general aniso-
tropic, plasma-vacuum Tokamak. The multiple time-scale method is used to
derive a reduced set of non-linear M.H.D. equations. To lowest—order,

the perpendicular component of pressure, is not necessarily constant

P>
on the flux-surfaces, . We give a simplelexample of such an equilibrium,
and a heuristic treatment of the Fokker-Planck equation shows that equi-
libria of this type can only be established by near-perpendicular injection.
Comparison with the Kruskal-Oberman energy principle shows that the C.G.L.
principle never overestimates stability. For p =-%(p" + PL) constant on
flux-surfaces, the M.H.D. linear stability of an anisotropic tokamak to

long wavelength modes, is identical (within the ordering) to that for the
equivalent scalar pressure tokamak. A similar result has recently been

obtained in the limit of short wavelengths for fixed-boundary modes

(ballooning) [20].
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I. INTRODUCTION

This paper is concerned with the gross dynamics of a high-j3,
anisotropic pressure tokamak. 1In particular, we derive a set of
reduced non-linear magnetohydrodynamic equations of motion in the
long wavelength approximation. A thorough investigation of these
equations will require extensive numerical computations., Here, we
discuss only those features and results which can be obtained

analytically.

The present work has been stimulated by the current interest in
neutral injection. Apart from its use as an additional heat source
in conventional experiments, neutral injection has recently been
proposed as a method for "pumping-up" f in the flux-conserving
tokamak concept [1]; it is also fundamental to the counterstreaming-
ion tokamak (p” » pl) [2]. These applications lead to general
questions concerning the gross dynamics and stability of anisotropic

high-pressure tokamaks.

Our analysis is based on the single-fluid M.H.D. equations as
derived from the Vlasov equation by Chew, Goldberger and Low [3] in
the small Larmor radius limit. Use of the C.G.L. equations implies
neglect of energy transport parallel to the magnetic field, and would
appear to be justified only for rapid motions growing on timescales
short compared to a typical trapped-particle bounce-period [4].
However, we show that within the ordering to be described, linear
stability on the basis of C.G.L. generally implies stability in the
more refined Kruskal-Oberman theory [5]. Thus, as far as nearly-
marginal displacements are concerned, the C.G.L. theory does not over-
estimate stability; this suggests that the C.G.L. equations be used to

describe long-wavelength motions in general.

Defining a and Ro to be respectively the typical minor and
major radii of the plasma, the inverse aspect-ratio € = a/Ro is
assumed to be small. Then the time t0 in which a magnetosonic wave
traverses the minor cross-section is short compared to the time £y
(~ to/e) for a shear Alfvén wave to complete a circuit of the torus.
This separation in timescales may be used to simplify the equationms
of fluid motion in a large aspect-ratio tokamak. In the case of low

plasma pressure, with 3 ~ €2 , the scalar pressure M.H.D. equatioms



reduce to a set involving only two field variables, namely, the mag-
netic field and fluid flow, the pressure having been eliminated from
leading order [6]. By adopting the high-8 (~ €) tokamak ordering,
Strauss [7] has incorporated the effects of scalar pressure into the
reduced equations. Following the general ordering procedure of

ref. [7], we set P, ~P, ~ €B? , and for completeness, include a
vacuum region. In view of the wide separation between the "fast' and
"slow" characteristic times £, and t,; , we use the multiple time-

scale method to solve the anisotropic fluid equatioms,

On the fast scale the equations of motion yield a quasi-static
straight "theta-pinch" configuration where the dia-magnetic part of
the toroidal field maintains pressure balance. Perturbation of equi-
librium on this time-scale shows it to be marginally stable to
incompressible modes. The dynamical development of these modes must
be investigated on the slow time-scale. At this order the poloidal
magnetic field and toroidicity influence the motion, and we derive a
set of reduced equations for both the plasma and vacuum region,
together with boundary conditions appropriate to the plasma-vacuum
interface and the enclosing perfectly conducting wall. The plasma
equations are the same as in the isotropic case, but with scalar
pressure replaced by an effective pressure p = %(pl4-p“) . There is,
in fact, an interesting difference from the scalar-pressure case. 1In
the latter, if the pressure, p , is initially constant on a flux-
surface, then it remains so to the appropriate order. For the aniso-
tropic case we find an analogous result for By o and this ensures
that there is no toroidal acceleration of the plasma; for P, it is
not possible to deduce such a result. We shall show later, however,
that for P, to vary round flux-surfaces, the particle distribution
function must be strongly anisotropic. In particular, if we suppose
that such anisotropy in velocity space results from neutral injection,
then leading-order variation of P, round flux-surfaces can only
arise for large angles of injection relative to the magnetic field.
Thus, except for this special case, p will indeed be constant on
flux surfaces at all times, so that the plasma behaves as if the
pressure were scalar and equal to § . In these circumstances, we can

immediately infer, that within the long wavelength,high-f tokamak

= 2 a



ordering, the equilibrium and stability properties of anisotropic

systems are identical with those for scalar pressure.

The reduced equations possess an energy integral and linear-
isation in the flow variable leads to an energy principle (6WCGL) for
small displacements. The same result can be obtained by applying our
long-wavelength high-B ordering directly to the general C.G.L. energy
principle; for wall-on-plasma the result is the éame as that derived
by Strauss [7], but with scalar pressure replaced by § . It is of
considerable interest to directly apply our ordering procedure to the
more rigorously based energy principle of Kruskal and Oberman (BWKO),

and then to compare the result with &W In the event of per-

pendicular injection leading to a strongf; anisotropic distribution
in the trapped particle band, then we have been unable to draw any
definite conclusion. However, if the trapped band is, at most, weakly
anisotropic, then to leading-order we demonstrate that

=
E.WCGL BWKO *

where the equality sign refers to equilibria for which P is constant
on flux-surfaces. Thus for the present ordering, together with the
proviso on trapped particles, the C.G.L, principle gives the correct
marginal stability for p constant on flux-surfaces; for p varying
round flux-surfaces, the C.G.L. principle gives an under-estimate of

stability. !

In section II of our paper, we describe the basic notation,
equations and ordering. Section III contains the derivation of the
reduced equations and the boundary conditions. In section IV we
obtain the equilibriumequations and describe a particular example
with P, varying round flux-surfaces; the circumstances under which

neutral injection can produce such a situation are also discussed. In

I1e might appear that the above inequality is inconsistent with the

inequalities given by Rosenbluth and Rostoker [4] for scalar pressure
equilibria, namely,

GWMHD < BWKO = BWCGL T
In the long wavelength high-f3 approximation, however, their equality

signs now become appropriate, as does the equality in our result for

the case of scalar pressure,.



whe

and

section V we discuss linear stability and compare the C.G.L. and

Kruskal-Oberman energy principles. Section VI states our conclusions.

II. NOTATION, BASIC EQUATIONS AND ORDERING

The plasma-vacuum configuration is shown in Fig.l. We use
rectangular coordinates x,y centred on the point O , which is
distance RO from the major axis of the torus. Position in major
azimuth is determined by the angular coordinate ¢ . The inverse
aspect-ratio e(~ x/RO) , is assumed small, and is our basic ex-
pansion parameter. We suppose that the plasma has a sharp boundary
I" , which in general, is separated from the perfectly-conducting,
axisymmetric wall, W , by a vacuum region. The trajectory of a
point tied to the fluid at the plasma-vacuum interface, with initial
position vector p , will be denoted by Eb(tlgb) . Then from the

kinematics of the interface

dzb
50 = v(g,»t) (1)

where v 1is the fluid velocity. The family of such trajectories

describes the motion of the plasma surface.

The anisotropic M.H.D. equations are

0y,
p (5€ + (v . Yng) = -V.p+ 3jXxB (2)
8B
3t V X (z X E) (3)
VXxB-=j (4)
V.B=0 (5)
ap =
=+ V. {ge) =0 (6)

re the pressure tensor is of the form

{[ig=)

P= LPL * EE;P“ - pl) i



b = B/|B|

The components of p are determined from the Chew, Goldberger and

Low [3] equations of state, namely

ap

F&i+1-'\7pl= -pl[2V-yu— [b.W)v].b) (7)
and

apn _

F+E.Vp“— -p”[V.\L-i- 2[(R-WX]-E] . (8)

These equations are only valid provided that transport of parallel
and perpendicular energy along the magnetic field can be neglected.
As we shall see later, however, we only require Eqs. (7) and (8) to

hold up to 0(e?) , .

In order to model conditions in a tokamak, the poloidal magnetic
field B = ¢ X (B x ¢) 1is taken to be smaller than the toroidal
component by a factor of order € . We adopt the high-S3 ordering
pl/B2 n'p“/Bz ~ € , and as a consequence, the toroidal field contains
a diamagnetic term in first order; the demsity p is taken to be of
zeroth order. Normalising the plasma flow velocity v relative to
the characteristic Alfvén velocity, we take |v| ~ € , an ordering
which we shall show to be self-consistent. Our analysis requires

that the flow velocity be expanded as

1 2
=g()+2()+ ......

where the superscripts denote the order in € . The components of
pressure and magnetic field are similarly expanded. It proves con-

venient to write

B = (I + I)/R,
0] o

where the field Io/R is generated by the external winding currents,
I being constant, and I is due to diamagnetic currents. With the
ordering chosen for P, > I 1is of first order relative to Io . We
shall use a suffix V to denote values of a function in the vacuum
region. 1In parallel with the expansion of field quantities, we must
also expand the differential operators. Restricting the present

analysis to long-wavelength motions, we assume



po (e R)
Roacpo eax’eay ?
and, for example, the gradient operator can be written

(o) (1) (2)
v + VvV + V &

where

o} ~ 0 @) _ .
ax T 7 oy ’ ¥ ¢

8

V(O) =V = , etc.
il

13
R0 1]
The divergence and curl operators are similarly expanded.

Magnetosonic fluctuations occurring on the fast time-scale are
compressible and stable. On the long time-scale, however, incom-
pressible motions develop and can lead (in the presence of dissi-
pation) to the evolution of a toroidal equilibrium,and possible
subsequent long wavelength instability. The difference in time-scales
suggests use of the multiple time-scale formalism. Thus, we
replace direct functional dependence on a single time variable t
(normalised with respect to to) by dependence on a sequence of
variables [To yTy s ++es )}, each of which depends parametrically on

t according to

Clearly, changes on the . and t; time-scales are reflected in

the T, and T, dependences.

ITI. REDUCED EQUATIONS AND BOUNDARY CONDITIONS

(a) Reduced Equations

The pressure tensor p gives rise to the fluid volume force

V.p =%, +b[b.¥p -p )]+ (p -py) V.(bb)

where b is the unit vector along the magnetic field. Using our



ordering we expand Eqs. (2)-(6), and in lowest order obtain the fast-

timescale momentum equation

ov

— = 2
p Bfo VZ(PL + IoI/Ro) (3)
and induction equation
(,?I = -1 V.v. (10)
0Ty o 1 =

In order not to complicate the notation unduly, we have omitted the
first-order superscripts from v,p and I . Similarly, p denotes
the zeroth-order density, which by Eq. (6) is constant on the

To—timescale. From Eqs. (7) and (8) we deduce that

—% 5L = (11)

Vi =0 (12)

in first-order, where as before we omit the superscript from I .,
v

In the absence of skin currents, I is continuous with Iv at the

lowest-order interface; this implies that P, must vanish at the

interface. For equilibrium on the fast-timescale /87 =0 , so

that from Eqs. (9) and (10)

IOI
pl+§T=P(71: AR I(p) (13)
o
and
V.v=0 (14)
J- —

Applying Eq. (13) to the interface, and making use of the continuity

in I , we obtain

RZ
o]
IV =I_OP(T“ Irp) , (15)

which is compatible with the fact, that according to Eq. (12), L,

does not vary in the poloidal plane.



We now consider the response of the above equilibrium to small
perturbation on the fast time-scale. We find the subsequent motion
to be compressible and to correspond to stable magnetosonic oscil-
lations of frequency w2 ~ B2/pa? , where "a" is the characteristic
minor radius. To proceed further we make the physically-reasonable
assumption that such modes, if excited, have amplitudes very much
smaller than those of the slow-timescale flows. Thus, at all stages
in the slow evolution, the conditions of fast-flow equilibrium,

namely Eqs. (13) and (14), will apply.

The dynamical equations for the slow-timescale motion are
obtained in next order. We introduce a flux function V for the
first-order poloidal magnetic field so that

BL - V1¢ X o,
and making use of Eq. (l4), we define a stream-function U for the
poloidal flow in first order, such that

v =VU ><’c,b+v(p(l)q3

By removing terms secular in To from the second-order momentum
equation, and annihilating the transverse gradient operator with

©.Vx , we obtain

_d_ 2 .@.{.J.. 2 l 2 2
p 1VLU+Vp.\7 l-cp.VpX{ZV_L(VJ_U) -V VU

dr oT
= (1) o2 2 0P
(B.9) VL¢-+RO By (16)
where
d 9 (1) (1) (1) Boa
= 57, + i1y , and (B.V) BV 4+ E_ 9g

The equation of continuity in first order, is

de - (17)
dﬁ

From the transverse components of the induction equation, Eq. (3),

removal of secularity in 7_ at the second order, leads to

o

2

= 8.9y (18)

Q
—

T.

where we have chosen an appropriate time-dependent gauge for V.



Similarly, the toroidal component of Eq. (3) leads to

2v (1)
a - &v£ﬂ2>— z -l<gvﬂ1>v<ﬂ} (19)
o} R B 0]

a7,
o o

As observed by Strauss [7], this is in fact an equation determining

V.v to lowest non-vanishing order, for by axial magnetic flux con-
servation, it follows that

I3 II
dap d o)
L =2 o) = 20)
ar, lePL -+ R: 0 (20

Equations (7) and (8) lead to

ap dpu

— =0 and — =0 (21>
dr,

in second order. Using the first of these it follows that

Thus Eq.(19) determines V.v up to second-order. A consequence of
Eq.(20), is that for initially axisymmetric configurations (of interest
here), P 1is constant. Thus, redefining IO if necessary, we can set

P = 0 without any loss of generality.

Making use of the dynamical equilibrium condition, Eq.(13), the

toroidal component of the equation of motion yields

dv(l) 1
p_¢ =-(§.V)()p (22)
Tt ]

Following the discussion for scalar pressure in ref.[7], we can make use

of Eqs.(18), and (21) to show that

g 14

7 i@ - Dyl =0 (23)
Equations (22) and (23) reveal an important property of the first order
equilibrium necessary for consistency in the ordering of the toroidal
flow: if initially, (B. V)(l)p]l # 0, a fluid element will experience a

constant toroidal acceleration, so that on the T; - timescale v¢ will



grow without limit. Thus, it is a necessary condition that

(B . V)(l)p" =@ (24)

We note, however, that although

d

(1) -
Ty [B.v 'pl=0, (25)

v

; 1 .
there is no ' counterpart to Eq.(22), and thus (B . V( ))pl is not

Py
necessarily zero; we shall return to the consequences of this feature later

in the paper. 1If, as we shall assume, there is no initial toroidal motion,
(1) _
¢

first-order flow. Finally, since the vacuum magnetic field is curl-free,

then v 0 on the slow-timescale, and U completely determines the

we have
2 3
Vva 0 . (26)

In summary, Eqs.(16), (17), (18) and (21), together with the
supplementary condition Eq.(24), give a closed description of the plasma

dynamics on the slow timescale.

(b) Boundary and Interface Conditions

Having prescribed the initial conditions, the subsequent motion is
fully determined once the matching conditions at the interface, and the

boundary condition at the conducting wall, are specified. We note that the

p(0)

motion of the zeroth-order interface, , 1s given by Eq. (1), that is

1
E%T 550) = ¢ %EéO)aTl) (27)

As observed previously, in the absence of skin-currents, pil) must

r(©)

. In addition, we shall make the physically reasonable

(0)_

vanish on

1 . . 3
assumption that pﬁ )vanishes on T Thus, dropping superscripts

P_L(Eb:TI) = P“ (Eb,Tl) =0 (28)
By continuity of the poloidal magnetic field
by ,T1) = b, (gysT1) - (29)

_10_



At the interface it only remains to prescribe the free-boundary condition
for U. From the equation of motion, Eq.(2), and the kinematics of the

interface, we deduce

U) = 408 . v [VU[Z+ (2. Eil))Vitp (30)
for points on F(O), where fi is the unit vector both normal to P(O)
and lying in the poloidal plane; & = A x $ is tangential to the inter-
face cross-section. The normal component of magnetic field vanishes at
the conducting wall, and by an appropriate choice of gauge (consistent

with that which led to Eq.(18)) we may write this condition as

1 =0 (31)

Given the initial shape of the interface F(o), and initial values
for the profiles of U, ¥, 1 and P, > the latter satisfying Eq.(24),
the subsequent motion is determined by Eqns (16), (17), (18), (21) and
(26), subject to the matching conditions (27)-(30) and boundary condition
(31). Note that U 1is obtained from a Poisson equation with a Neumann
boundary condition determined by Eq.(30). An arbitrary ¢—dependent
part of U which is left undetermined, may be specified in any convenient

manner; for example, by setting U = O along the geometric axis.
IV. EQUILIBRIUM ON SLOW-TIMESCALE

(a) MHD Equilibrium

Setting 3/3t; = 0 and U =0, we derive the condition for

toroidal equilibrium. Thus from Eq.(16),

(Mg2y 4 2 32 _
(B . V) Vlw * R 5y - o,
o
. 1 ; .
where p, must satisfy (B . V)( )p” = 0. For the interesting case of

axisymmetry, the equidibrium condition may be integrated once, and

employing the usual (¢,¢,¥) coordinates we obtain

2, +2X 9p . 3g _
Vlm + RD 3 + 5 0 (32)

- 11 -



where

p, = p,(¥) (33)

and the function g(y,x) is undetermined, but must satisfy
=== (34)

For constant along B, that is p, = pl(¢), then g = g(y¥),

P
and in thislcase Eq.(32) is just the B ~ e approximation of the Grad-
Shafranov equation, with the scalar pressure p(y) replaced by p(y).
Eqs. (32)-(34) can of course, be directly obtained by an e-expansion of
the general axisymmetric equilibrium equations for anisotropic plasma
[8]; the dynamical equilibrium condition, Eq.(13), can be similarly
obtained. As for the scalar pressure case [7], we expect that the addi-

tion of some velocity damping to the equations of Section III, would

give a simple and direct means of computing high-B toroidal equilibria.

We now turn to the question of equilibria with p, mnot constant
along B, that is, P, = pi(w,x). In particular, we outline a simple
analytic model of such an equilibrium. We choose the linear forms

= ¢B2p = o 2.5 : -
P, EBoHI(¢/¢0)’ and Py sBopl(l + o a)(m/wo) Awhere wo is a con
venient normalisation for the flux function 3 P > ﬁl and o are
constants; and we require that y vanishes on the plasma boundary, which

is of circular cross—section and radius 'a'. Then consistent with the

choice of P, and Eq.(34), we may set

_oon2 Wfa 1~ x)?
(o -1 (2)).

where G is a further constant. Substituting these choices into Eq.(32)

leads to

viw + 2Px(1 + lex) + G =0 (35)

where we have expressed lengths in units of a, ¥ in units of ¢O = eBoa,

and we have defined P = %(ﬁl + ﬁ"), and 8§ = —= . Since the toroidal

~

=]

i . P i .
current demnsity_.  j, = - EEQ Vi , the total current is given by

¢

_12_



eB
I=- ( _EE )ﬁa2G(l + 1ké)

where we define k = P/G. The solution of (35) subject to the given
boundary condition is easily obtained, and employing polar coordinates

with X =rcosb, y =rsinbd, we find

1 _@(a-1? L gz[8 2 2 ]}
Y = Za a 7 Tko) {1 + krcos® + 3 k5[4 (1L + r4) + r“cos2f (36)

where the 'mean' safety factor
2maeB
q o —————s
q i
The effective pressure

D = EBS B(1 + sx)y (37)

2 o
so that if we define a poloidal beta by Bp - B2 J prd6dr then BP =
2

e~ lk(1 + k8/3)/(1 + k8/4)2. Thus k is a meaéﬂre of BP. The equilibrium

has a B-limit due to the stagnation point in the poloidal-flux entering

the plasma. This occurs if

1
k> oA

Surfaces of constant pressure and flux surfaces are shown in Figure

2 for the case k = 0.5, § = - 0.2. The current profiles for equilibria

of this type are of a rather idealised form, for

B {l + 2krcosf(1l + iﬁrcosﬁ)} .

J =
¢ LA+ 1ks)

We see that the current density varies only in the direction of the major
radius, and in the low-B limit becomes constant. When & = 0, so that

p = E(w), the equilibrium (36) corresponds precisely to that of the iso-

tropic plasma with scalar pressure equal to p [9]. Variation on magnetic
surfaces of P, occurs for 8 # 0. It will be shown in the next Section that
¢ 1is related to the intensity and angle of neutral injection, and is generally

small. From the condition that P, 2 O we see that

- 13 -



|8| < 1/(1 + B /) .

Negative & produces constant p surfaces displaced inwards relative to

the flux surfaces; positive & corresponds to an outward relative shift.
(b) Equilibrium Velocity-Space Distributions and Injection

We now discuss the implications of equilibria with P, = pl(w,x),
as regards the properties of the component distribution functioms, fj(g,g).

The parallel and perpendicular pressures at a given point are

1
B
| zmjzr[
j To=- IVn[

1
pl = § m. Z [T——T uB f dudw

ae]
Il

2
v“fj dudw

and

. S . .
where mj is the j h species particle mass, w = jv2, p = %VJ_/B2 and

1
vy = 0(2[w - uB])? is the velocity parallel to B. Recalling that in

equilibrium, fj depends on v only through w,p and o, and that

B . ij = 0, it follows [10] that

~

(p, - p“)
B.Vp, + ——7——B.V(}B%) =0 (38)

and (2PL + )
E.Vpl——Bz———B.V(%Bz} =0 (39)

where we have introduced the pressure — like moment C, defined to be
B of .
C = Z mj J — (uB)? —J | dpdw

Applying our previous ordering, the lowest order part of Eq.(38) immediately

leads to Eq.(24). Similarly, making use of Eq.(13), Eq.(39) yields

B.Vp, = Wond . NN V= 4 0(e?) (40)
~ (1 + C/Bz)

Thus for leading-order variation of P, along B, the pressure-like
moment C must be a zeroth-order quantity. If fj is quasi-Maxwellian,
C cannot be zeroth-order; for even if P, # P, then C ~ P> Py in

all situations. C can only be large for distributions which are strongly

_14_



non-isotropic in some part of velocity space. We now discuss how neutral

injection might lead to such a distribution.

Consider the anisotropy produced by injection of enérgetic ions with
sufficient intensity that the beam-ion energy density is comparable to
the background plasma pressure. The density of energetic particles will
always be much smaller than that of the bulk plasma, so we assume that
fb’ the hot-ion distribution, is small compared to the background, Maxwellian
distribution. If it is also assumed that vi-« v v, for the hot ioms,
where V;» V., are thermal velocities of the background ions and electronms,

then the Fokker-Planck collision operator for fb simplifies to [11]

. £
_b 11 fis, s g (vc33 _23)J
3t i [ ww vc)fb} Y \¥) W (1 -89 4% (41)

where £ = v”/v is the cosine of the angle between the magnetic field and
the velocity vector, T, denotes the hot-ion slowing-down time, and m.,
m ~ are the background ion and hot ion masses, respectively. The first

term in Eq.(41) represents the frictional drag of the background plasma

4 m,
mainly due to the electrons. The effect of pitch-angle scattering is

on the hot ions, which for velocities greater than V= ve{

represented by the second term. By neglecting the guiding-centre motion

perpendicular to B, the drift kinetic equation [12] for hot ions is

simply
3, N
ik - Ve (uuzso) = 2 | 10 F S - v )8(E - €) 8(x - Ko (42)

where the second term on the right represents a source of hot ions, which
on a flux surface ¢ = constant, are created at position Y = Xy in

minor azimuth, with some distribution of speeds § about v The ions
are all produced with the same pitch angle EO(¢). With the exception of

a very small group of particles whose drift trajectories are at, or almost
at, the transition between trapping and circulation round a flux surface,
the hot ions will travel many times around their drift orbits before slowing
down appreciably. Of course, there will also be some pitch-angle diffusion
during a slowing down time, but particles scattered into the transitional
band will diffuse rapidly out of this region of velocity space. Thus, we
may solve Eq.(42) by expanding in 1/(wtrrs), where w denotes the

tr
transit frequency. Then to lowest order,

_15_



h . VféO) = 0, S0 féO) = éO)(wawsu;G)

Since the orbit topology of circulating particles is not sensitively-
dependent on pitch angle, we can follow Cordey and Houghton [11] and
neglect the pitch-angle scattering term in Eq.(41) for velocities v > Vo
when the particle source lies outside the trapped band. In this case,

the first—order part of Eq.(42) leads to
ZJ(QJ,XO) £ V2 "é" dv

T (__——)m-m (43)
I(}\O) Ts 00, (V3 & vg) o

féO)(m:A,w;U) =

where J = B is the jacobian, 9, denotes the sign of v, for- the .source
|9y | [vx]
; _ _ 1 2
ions, A = p/w, A = —"+-—(1 - EO) and
B(,X,)
I(x) = {——-‘TBdX :
vl = AB

On the other hand, if the injection source lies inside the trapped-particle

zone of velocity-space, the A-variation of fb cannot be approximated by

a delta-function; for the latter would give rise to a divergence in the
density (and other moments of féo)) at the turning points of the injection
orbit, X = Ao . We shall not examine this case further, for it will be
shown later that the presence of strong anisotropy in the trapped-particle

band can lead to important differences between C.G.L. and Kruskal-Oberman

stability. For circulating particles, we can use Eq.(43) to evaluate Py
and C directly. Thus we find that
(A B)?
1 o (1
C 2 {(1 — XOB) } Py (e) (44)

(1)

where p;. is the beam—ion perpendicular pressure, which is of first order
in e. We exclude the narrow transitional layer in velocity space where

=T < 1. Clearly then, for C to be 0(l) we require 1 - ADB ~ 0(e).

Injected particles satisfying this condition have vu/v ~ O(E%), showing

that can only vary significantly on flux surfaces if the angle of

Py
injection is high. Physically, the pressure variation arises from the
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fact that circulating particles move around their drift orbits with variable
speed (since v, = IVI/T*:—IE), so that on average, particles 'spend' more
time in the region of high magnetic field than in the low-field region.

For this modulation in pressure to be comparable in magnitude to the surface-
average, fractional variations in IVHI must be substantial. This is the

case only if !Vul v gy,

Variation of P, round flux-surfaces cannot belproduced with parallel
or low-angle, oblique (EO v 0(1l)) injection; under these circumstances, the
plasma behaves as if the pressure were scalar and given by p(¥). We note,
from Eqs.(39) and (44), that if large-angle injection is applied such that
C ~ 0(l), then pi,increases imwards on flux-surfaces, provided that the dia-

magnetic well is not of sufficient depth to reverse the direction inwhich B increases,

For the model equilibrium described in Section IV(a), it is clear that
only negative values of § are compatible with Egs.(40) and (44) and that

IGI decreases as the angle of injection becomes smaller.

Furthermore, in the limit 1 « T2 < ¢~! yhere £6=T(¢)e%, the modula-
tion of P, becomes small (but still of leading order in <€), and noting
that 1 - A B = eT2(1 + 0(1/T2)), we find that Bip, = eBg P (@) (L + 0(1/T2)),
and C = PJ_b(IIJ)/ZT2 + 0(1/T*). Using this value for C in Eq. (40), it is

seen that P takes the form

b, = & 8o, + 2y (1 - 755 X))+ o(k),

where EBépo denotes the pressure of the isotropic background plasma. The
parallel pressure remains unaffected at leading order because of the high
angle of injection, and is also given by Py When P, and Py, are
linear functions of %, and T 1is constant, we obtain the model forms
leading to the equilibrium of Eq.(36), where we now identify £ = ﬁl/ﬁ“ 5

and § according to

K -k AE = 43
E=1+ pJ_b/pD’ and § = 572 (¢ + 1)

We see that £ 1is a measure of the injection power; and &, which determines
the amount of variation in 5 round flux surfaces, depends on the angle of

injection as well as on the injection power.
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V. LINEAR STABILITY

The linear stability of anisotropic equilibria to hydromagnetic dis-
turbances may be tested at two different levels of approximation. In the
simpler of these, the C.G.L. equations are used to construct the potential

energy (8W.. ) associated with small displacements of the fluid [13]; the

necessary Sig sufficient condition for stability is SWCGL > 0. A more
sophisticated theory, due to Kruskal and Oberman [5], takes into account
the transport of energy along field lines. In obtaining their necessary
;gd sufficient condition, SWKO > 0, Kruskal and Oberman assumed that
rri 0. Given the latter restrictions they also deduced the inequality

WCGL p ‘WKO (45)

which indicates that use of the G.C.L. theory leads to an overestimate of sta-
bility. Using neutral injection, however, the ion distribution will not be a
monotonic function of w, and thus Eq. (45) is inapplicable. Although Grad [15]
has shown that a necessary condition for stability of a guiding centre plasma
is %%(m,u,z) <0 % the pertubations which grow as a result of non-monotonic f
do not preserve the single-particle, second adiabatic invariant, J = 6 v, d&.
For the long wave-length modes of interest here, and for growth rates small
compared to a typical particle bounce frequency, we can assume the adiabatic
invariance of J, and in this case Andreoletti [14] has derived GWKO without
restriction on the form of f. We now demonstrate that, within our ordering,
and provided the trapped band is only weakly anisotropic, then GWCGL g 6WKO.
The reduced equations, Eqs.(16)-(26) of Section III, possess anenergy integral,
which is constant on the. toroidal Alfven timescale. This is 0(e2)

wCGL’
and given by

1 1 2x - 1
WCGL=J d'r{-z-|‘?l1p|2 * = B [le|2—§-—p}+J' dr§|vl1p|2
v 4 v
P v

where vp and v, denote the zeroth-order plasma and vacuum volumes,
respectively. Linearising about a given equilibrium, we obtain the energy
principle (to 0(e?))  for small-amplitude disturbances with exponential

. T
time—dependence eVl

2 5 -

We note that a similar condition, namely,-%% (w, u, J) < 0, has been shown
by Tawlor [16] to be sufficient for stability to interchanges, the theory
applying in the limit of low-B.



= g J p |V,U[% dr = 25 wééﬁ:[ dt {'V{(']éo . vy P2
v v
po po
+ {(,B,0 : v)(l)U}(Vqu;o x V,0) . b
+Ri—g¥ (V,p, x V,0) . &}} + f de|v y |2
o} ¢
VVO
2x ( 3u \? - 38U (1)
—st{k"(ﬁ) .V, + Ty 5g By - V) U}}-
p@ °
’ (46)

Here, U is related to the displacement £ by & = VU % ¢, equilibrium
quantities are denoted by the subscript 0, and réo) denotes the zeroth-
order interface, to which fi 1is the outward unit normal. Derivatives along

éo) are denoted by 9/3%. If the plasma

the minor cross section of T
touches the perfectly conducting wall, then the vacuum term vanishes, as
does the surface integral, since £ . i = 0 implies %%—= 0. In this case
Eq. (46) reduces to the result given by Strauss, with scalar pressure
replaced by p. We note that the last term in Strauss’ result is missing

a factor 2.

The first term in Eq.(46) is stabilising and represents the work
done by the perturbation in bending the field-lines. Kink modes may be
driven by the current-density gradient and this effect is contained in the
second term. If we rewrite the third term in the form - 2(5‘. i(l))(é.' VE),

where 5(1)

= - 5C/R0 is the curvature of the magnetic field to leading
order, then it is clear that this contribution represents the interaction
of field curvature and pressure gradient; this can give rise to the

interchange [17] and ballooning [18] instabilities.

Let us now compare the CGL result, Eq.(46), with the more complete
Kruskal-Oberman theory. 1In zeroth order, SWWJ is positive-definite, and
vanishes only if V¥ . E = 0(e). This enables us to introduce a stream
function U as before. Now the so-called trapped-particle, or kinetic

term in 6%@3 is given by [10]
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of :
—Jf dt Zm ”' L Bcj <vﬁ ENIC +uB(V.§J+£.£}>2

Yii

where the velocity space integration is performed over the trapped-particles only,

Ol o7 i

ul an

is the field-line average of g, and «k 1is the curvature vector. We assume
that neutral injection, when present, does not create strong anisotropy in the
velocity distribution of trapped particles. 1In this situation, the kinetic
term is 0(e’?) for minimising displacements whereas the remaining contri-
butions to 6W are 0(e?). Thus, we can neglect the kinetic term, and at

0(e?), mlnlmlslng over the value of (V. E)( ), we obtain
(0),9
2 . ) C B (1 au\?
= SWoor * C o dt (47)
KO B§+c°) R, 3y

v
pPo

where 6Wéci is given by Eq.(46). In deriving this result we assume that

the 'mirror' stability criteriom, I + (2p, + C)/B? > 0, is satisfied [10]. At

leading order, this is equivalent to

(o)

B2 + C >0 (48)
From Eq. (44) we see that this is always satisfied since C(0)> 0. Thus,
2
GWéGi is never greater than %8, the two expressions coincide if

p = p(w)} There is no conflict between this conclusion and Eq.(45): if

%é—# 0 then Eq.(45) is inapplicable, whilst if %£-< 0, then p = 5(¢) and
our result agrees with the equality of Eq.(45). Thus given the restriction of
weak anisotropy in the trapped band, then SWééi S 6W%§3, and use of the CGL
formalism never over-estimates stability. We note that the above discussion

is applicable to the general plasma-vacuum configuration.

Although pl—variation round flux—surfaces.is not expected to be
important for gross modes, it isknown that such equilibria can lead to
interesting results as regards stability to ballooning, that is, modes of high
toroidal mode number [19],[20]. Thus, beneficial stabilising effects can be
obtained by an inward weighting P For such a configuration to be possible,
the total B must increase towards the major axis, despite the diamagnetic

effect. Now the dynamic equilibrium condition (13) leads to
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e B,
B.VB =- g.v(
- ¢ 1+ c(o)/Bg)

b

) + 0(ed)

which together with Eq.(48), ensures that B¢, and hence B, increases

inwards as required.

In discussing the relationship between 6WCGL - and 6Wyo we excluded
the case where injection deposits hot ions in the trapped particle band.
This enabled us to neglect the kinetic terms. Under the same conditionswhich
lead to C ~0(1l), anisotropy within the trapping zone gives rise to kinetic
terms which are of the same order as the fluid terms, that is O0(e2). For
the model distribution function [10]

£ = g0 OB . )",

which can be taken to approximate the case of exactly perpendicular injec-
tion on the outside of the mid-plane of the torus, where B = Bmin(w), it

is easily shown that

C=- (8 + 2)plb + 0(e)

where is the beam perpendicular pressure. Then C ~ 0(1) for

Pl
2 ~¢e-l, and is always negative, so that apart from uncertainty over the
effect of the kinetic terms at leading order, the sign of the second term
in Eq.(47) is negative. Thus it is possible that for injection into the’
trapped zone, use of CGL equations could give an over-estimate of stability.
Also, for the model considered above we see from Eq.(40) that maxima of p_L
can be situated on the outside of the torus, a situation which expected to
be unfavourable for stability against pressure-driven modes. For the above

reasons the CGL equations are unsatisfactory for the description of plasma

dynamics with perpendicular injection into the trapped band.

VI. CONCLUSIONS

On the basis of the B v e, long wavelength ordering, we have used the
CGL equations to discuss the dynamics and linear stability of a general
axisymmetric, anisotropic, plasma-vacuum system. In particular, we have
derived reduced equations on the toroidal Alfven time-scale. They can be
used for the numerical investigation of non-linear motions in tokamaks;
addition of velocity damping would provide a simple means of evolving

axisymmetric equilibria.



To avoid toroidal acceleration of the plasma, it is necessary that Py
be constant round a flux-surface, that is p = p"(w). If this condition holds
initially, then it is satisfied for all time on the toroidal Alfvén time-
scale. For P> however, there is no such restriction, and p, can take
the form P, = pl(w,x). We have found a simple analytic example of a tokamak

equilibrium with a x—dependent A heuristic discussion of the Fokker-

By -
Planck equation shows that equilibria of this type can only arise from
large-angle injection; it is required that the trapped band be only weakly

anisotropic to avoid trapped particle effects in the energy principle.

We have derived an energy integral from the reduced equations, and
linearisation leads to an energy principle for small displacements; this
is identical with the B ~ e, long wavelength version of the CGL energy
principle. We have also applied our ordering directly to the Kruskal-
Oberman energy principle. If particles in the trapped band are weakly

anisotropic, then

GwCGL

A

dwKO ,

where the equality sign refers to equilibria for which E is constant on
flux-surfaces. Thus, given our ordering and the above proviso on trapped

particles, the CGL principle never overestimates stability.

For p constant on flux-surfaces, the MHD linear stability of an
axisymmetric B " €, anisotropic plasma-vacuum configuration to long wave-
length (n v 1) modes, is identical to that of the equivalent scalar pressure
system, as has been shown also for fixed-boundary modes in the limit of large
toroidal mode number (n>>1) [19, 20]. Note that both these results are

independent of the degree of anisotropy.
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Fig.1 Coordinate systems.
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Fig.2 Flux (solid lines) and constant p surfaces (dashed lines) for equilibrium with k = 0-5 and
6 = —0-2. The major axis lies to the left.
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