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ABSTRACT

Stefan problems arise in a number of circumstances considered in reactor
safety studies. For example, if after a hypothetical reactor core meltdown,
debris penetrates through the bottom of the reactor vessel it will begin to
melt into the material beneath. The maximum volume to which the resulting
melt pool grows can be examined in a first approximation by assuming the pool
grows hemispherically. At early times when the pool temperature can change
rapidly, the Whipple equation is appropriate. At later times when the thermal
conduction front in the solid broadens and the pool advance slows, an isotherm
migration formulation is convenient. On the basis of suitable choices to
approximate the temperature profile in the vicinity of the melt front, one
can reduce the partial differential equations describing the system to an
ordinary differential equation for the melt front which represents its
temporal development well. These approximations can be easily generalised to
model the asymmetric growth of pools in several dimensions. In the hemi-
spherical case, satisfactory algebraic estimates of maximum pool size can be
obtained. Computer studies have been carried out for a wide range of Stefan
numbers to see how robust the approximations are.

A related problem concerns the stability of the melt front against the

development of ripples or fingering. A linear analysis for a plane interface
indicates that spatially localised modes are stable.

(Paper presented at the Symposium on 'Free and Moving Boundary Problems in
Heat Flow and Diffusion' in Durham, 19th July 1978).
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1. INTRODUCTION

A 'Stefan problem' in heat transfer is one in which a phase boundary is
not fixed in space but moves as one phase changes into another; locating the
position of the phase boundary as a function of time is an implicit part of
the problem. The melting of ice in contact with water is the archetypal

Stefan problem, studied by Stefan himself [1].

In a nuclear reactor under normal operation the location of solid/liquid
interfaces is predetermined. However in the conceivable, but highly unlikely,
event of a reactor core becoming significantly overheated then some part of
the core might become molten, and the hot material might come in contact with
core support structures or the bottom of the reactor vessel. In reactor
safety studies such hypothetical events are examined and their consequences
assessed to ensure that hot core material (which is heat producing because of
the fission products it contains) comes to rest in a satisfactory manner.
Clearly Stefan problems arise; for example overheated core material sitting
on a steel strut could melt some of the steel, and it is useful to know how
fast the melting front advances and what combinations of high temperature of
core material and thickness of steel will result in complete liquefaction of
the strut. A mathematical problem which arises from considering molten steel
overlying the solid steel of a partially melted horizontal plate is the
stability of the melting front shape against localized spatial perturbationms.

This is considered in §6.

If,after a hypothetical core meltdown,debris falls to the bottom of the
reactor vessel and then melts through, it will begin to melt into the material
beneath. This may be natural bed rock or a 'sacrificial' material placed
there against this eventuality. In eitfler case it is necessary to estimate
how large a molten pool of material will grow. We consider here only the
case where the molten debris and the sacrificial material are miscible.

Sections 2 - 5 are concerned with the growth of such a melt pool.

Other moving boundary problems may arise earlier in a postulated accident
sequence. Film boiling of the liquid coolant on overheated fuel pins is a
complicated Stefan problem - the water/steam interface in aqueous film boiling
is known to be a rapidly fluctuating highly irregular surface. Some kinds
of fuel pins consist of a cylinder of high melting point ceramic fuel encased
in steel; under what circumstances does the clad melt before the fuel does?
If molten fuel has escaped from a fuel pin and is flowing down the outer
surface of some steel structure, how quickly does the fuel freeze? (The flow

of molten wax down the solid perimeter of a candle must have been a familiar
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realisation of this problem prior to the widespread use of electric lighting).
In all such problems the ability to predict in awkward geometries the progress

of melting or freezing fronts is of ptactical utility.

The accuracy to which the answer is required depends on carrying out
some sort of error analysis to see which parts of a sequence of events contri-
bute most to the end result,in terms of time scale and magnitude. For the
molten pool problem considered in sections 2 - 5, accurate results are

needed for detailed design studies, but simpler approximations are adequate

for parametric material surveys.
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2. GROWTH OF A MELTPOOL

If it is postulated that a meltpool has formed beneath the reactor
vessel in'the solid substrate with which the molten debris is miscible, then

the energy balance is

_ [ T [ [
-F + t = 10 c T t + pLju.dS - k;VT.dS (2.1)
- Q(t) Jat | PaCy ]dv [ Ph s el
v 2 9]
4 4 4 4 4
Heat Transfer Decay Change in Pool  Advance Thermal Conduction
Upwards to Heat Temperature of into Bed
Coolantm Source (3) Melting (5)
(1) (2) Front
(4)
(see Fig. 1)

Here in the solid phase, p is the density, L is the latent heat of fusion and
k is the thermal conductivity. In the pool Py and c, are the density and specific
heat of the liquid phase. The pool volume is V and its lower surface is
denoted by Q. For conservative (over) estimates of pool growth the upward
heat transfer can be ignored and term (1) is set to zero. The pool is con-
sequently taken to have an adiabatic upper 1id. The decay heat source Q(t)
is the integral of a heat source density depending on the distribution of the
fission products within the pool. However the distribution of heat flux
along @ depends mainly on the shape and size of the pool through their
influence on convective motions in the pool, and depends only weakly on the
actual distribution of heat sources within the pool volume. The temperature

is represented by Tet) ,

The quantities of interest are the shabe and size of the pool when it
reaches its maximum extent and the time it takes to do so. Hence it is the
location of the melting front as a function of time which is required. The
temperature distribution within the solid substratum" is only of subsidiary
interest in this application. The size of the meltpool can be examined in a
first approximation by assuming that the pool growé as a hemisphere, using a
mean heat transfer coefficient from the turbulently convecting pool. §3 and
54 are concerned with this model. To model the changes in aspect ratio of
the pool properly, a full two-phase multi-dimensional formulation is required.
Nevertheless very useful indications can be obtained by assuming the pool is
ellipsoidal in shape and allowing both the scale and aspect ratio of the pool
to evolve in time, coupled with the Fourier equation in the solid substratum.

Details of results from this approach have been discussed elsewhere [2].
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2.1 Heating Source Term

After the shutdown of a nuclear reactor, the reactor is no- longer
critical and the chain reactions stop. Nevertheless heat continues to be
produced as a result of the radioactive decay of the fission products
generated by the nuclear reactions. Immediately after shut down,the decay
heat Q(t) is a few per cent of the nominal reactor power QO when in normal
operation, and Q(t) rapidly falls to less than 3% of Q0 within a week or so.
It has been found [3] that the decay heat Q can be expressed in the functional

form

Q(t) = 5(t) - fz(t+tq) (2.2)

where t 1is the irradiation time i.e. the mean time that the fuel has spent

under normal operation prior to shutdown, and t is the time since shutdown.

If one writes Qt) = Qof(t) (2.3),

then the functional form for f(t), the decay heating function, is

_ -a _ -
£(t) = fo(t [t+tq] ) (2.4)

where o= 15 according to Way and Wigner [3]. A conservative estimate which

envelopes modern data is o = §. t

The total decay heat generated up to time t is [ Q(t')dt' which can be con-
o J

. o
veniently expressed as Qor(t) where

8 f
t(t) = { £(t")de' (2.5).
(o]

1 is the equivalent number of full power reactor-seconds and is the measure of

total decay heat used here. f and t are sketched in figure 2. 1 is bounded
as to= by Téa f0 tq(l_a) = t_. Note that f is dimensionless and T has
dimensions of time.

2.2 Characteristics of Pool Growth

Four temporal phases can be distinguished for pool growth:

(i) an early period when the pool temperature can change rapidly; the
movement of the melting front,though rapid,is limited by the thermal
resistance of the boundary layer of the pool (the sum of terms (4) and (5)

in (2.1) is Wbounded,so term (3) is significant).

(ii) a period when the pool is close to its melting point and the melting
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front is advancing rapidly with the thermal leakage ahead of the front
acting as preheating of the cold bed. (Term (3) in (2.1) is negligible
and term (5) ®~ pcAT fu.dS where c¢ is the specific heat of the solid and
AT is difference between the melting temperature and the ambient temp-

erature in the solid phase far from the pool).

(iii) a period when the thermal conduction front broadens and the melting

front slows. The maximum pool size is reached at the end of this period.

(iv) a final period in which as the decay heating function continues to

decrease, the pool shrinks.

Fig. 3 shows schematically the evolution of pool volume and pool temperature.

2.3






3. RADIAL GROWTH OF A HEMISPHERICAL MELTPOOL

The main characteristics of the growth of a meltpool can be examined by
concentrating on a radial model in which the pool grows as a hemisphere whose
radius is a function of time. Consequently the following assumptions are
introduced; (i) the pool is hemispherical, of radius Rb(t);(ii) the top surface
of the pool is an 'insulated 1id'; this forces all the heat being generated
either to remain in the pool or be conducted into the bed; (iii) the pool is
well mixed by turbulence and has essentially a uniform temperature Tp,
together with a thermal boundary layer adjacent to the melting front which is
at temperature Tl;(iv) the heat transfer coefficient from the pool to the
melting front is independent of position on the melting front, and so is a
mean heat transfer coefficient. These assumptions are discussed further

elsewhere [2]. Fig. 4 illustrates the model.

3.1 Stage I

At early times, the pool grows rapidly, with negligible 'thermal leakage',
which means that heat conducted into the bed is soon absorbed back into the
pool by the advancing melting front (see §3.2 below). The energy balance

equation 2.1 can thus be written approximately as
. -
Qf = peVT, + p (L+cAT)V (313

indicating that all the heat generated goes either into pool growth or into
raising the pool temperature above its melting point. It is convenient to

introduce a length scale b defined by
b = QD/Zﬂk(AT) (3.2)

This is the radius of the hemisphere which in equilibrium would be able to
conduct away the full reactor power Qo' Defining the non-dimensional radius
Ro(t) by R0=r/b and the non-dimensional pool temperature eﬁ(t) by

6 = (T _-T )/AT 3.3

L= (T . 3.3)
we can reecast (3.1) as

_ 1 3_ 3 2 -1,/
kbf = /5 GP(RO Ry ) + R T(1 + 5 DR, (3.4)

in which S is the Stefan number c(AT)/L, and R, is the dimensionless initial
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radius of the pool,weighted to allow for the different values of thermal
capacity in the bed material and the initial pool material. Note that
Ro(t) > RO(O) > R, and that b is much larger than the maximum pool radius r

(typically b ~ 10 km, r ~ 10 m).

The heat used to advance the melting front is transmitted from the bulk
of the pool through the thermal boundary layer within the pool = and this

process can be characterised by a heat transfer coefficient. This leads to

-1.°*
pc(l + g )RO = g6 -1) (3.5)
P
where B is a scaled heat transfer coefficient. It is a function of the size,
temperature and thermophysical properties of the pool,via correlations

involving Grashof and Prandtl numbers.

Since t is the only independent variable in (3.4) and (3.5), one may
write ép = ﬁo(dep/dRo), which,when combined with (3.4) and (3.5) leads to the
Whipple equation [2]

de = |
dRp _ 3(; +8 ) (kbE(r) _ o 2) (3.6)
o]

xR, _R*3) \B.(ap—l) o/

which is a first order ordinary differential equation for BP in terms of R0
with a strongly non—-linear right hand side. The corresponding time is obtained
from (3.5), written in the form dt = dRopc(1+S_l)/[B.(8p—])]. The solution of
such an equation is straightforward using 0.D.E. packages currently available.
Fig. 5 shows a typical result for Bp(t). The mean pool temperature falls,to

be quite close to the melting point within ~ 17 of the time that it takes for
the pool to reach its maximum size. The result is insensitive to the avail-
able choice of initial pool temperature since the initial heat content of the
pool inevitably becomes a small fraction of that in the pool after only a few

minutes.

Thus for later stages of pool growth it is permissible to assume that all
the heated generated is transmitted instantaneously to the melting front, and
this enables what is properly considered as a two-phase Stefan problem to be
reduced to a one-phase Stefan problem. The delay in this transmission,
introduced at early times by the rise and fall of ‘the pool temperature, can be
compensated for by an appropriate small modification in the time=-dependence of

£(t).
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3.2 Stage II

In stage II when the transient involving the pool temperature has decayed,

the front is still moving rapidly. The Fourier equation in the frame of the

melting front can be written as

32y
ﬂ = u_ay + K—l
ot 9x 5x2 (3.7)

where y = r6 and u = ;0. This has a solution of the form

“ux

l"o ET (3.8)
...
T
provided %% can be neglected, which is the case if (i) u >> ﬁL and (ii)
: 0
ux << u?. The first condition requires that the front should be moving much

faster than a 'thermal diffusion speed'. The second condition implies that
the velocity is changing slowly. Since at a distance x %fréhead of the

front, 6 would be ~ 0.05, u s ud/3k is a sufficiently slow rate of change.-

Solution (3.8) is here called the 'fast melting fromnt solution'. In the

neighbourhood of the front it has the exponential profile § = ef%g;of the
asymptotic solution for a plane profile (since uy»> K=), and the flux at the
r
: y o
melting front into the bed is given by
~k AT -g%x =0 = pc (AT).u (3.9)
Hence the energy balance equation (2.1) becomes at this stage
Qf = 2mro% (L +cD) u (3.10)

where the r.h.s. of (3.10) is identical with the second term on the r.h.s. of (3.1)

This can be integrated directly to give

r 3 b3 T
= 3.1
® {T‘T’s] ty (341)
where the time scale tN = 2prb3 / (3Q0) (3.12)

which 'is the number of full reactor-seconds required to generate the latent heat
of melting for a hemisphere of bed material of radius b, As we shall see,it is

very . much larger than the time t  at which the maximum size of the pool is

reached (EYPicaiiy.tm N 1085, £ " 10!55). Equation (3.11) contains no constant

N
of integration since we may take r_ = 0 when t=0 for the initial pool size is

small,comparéd with the maximum pool size T
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3.3 Stage ITI

This stage occupies the period between the time when the fast melting

solution of §3.2 is valid and the time of pool maximum radius. Within the
bed material the Fourier equation holds, and can be written in the frame of

reference of the melting front as

0 _ [ 2c\36 328
— =iu + — + K——— (3.]3)
ot \ T Jox e
The Stefan condition at the melting front is
=9 21 af —08 2 .12 ’
Qof = 2mr kAT = + 2’rfr0 er0 (3.14)
x=0

where x = r-ro(t). Also 6=1 at the melting front.

There are a number of ways in which this Stefan problem can be handled
numerically [4]; a method giving satisfactory results and good agreement
with test problems is the Isotherm Migration Method [5, 6], which is the
basis for the ISOTHM code in radial co-ordinates [2, 7]. Fig. 6 shows a
typical set of isotherms produced by é run of ISOTHM for basalt with S v 2,
The bottom isotherm shown is that for the melting front, and at the time of
pool maximum the isotherms adjacent to the front are almost horizontal,
indicating that they too have only a small propagation speed at that time.

The non-dimensional forms of the equations solved in ISOTHM are

aR -1
_o°_ i.[ELE) + (35\ ] (3.15)
30 3 [R 2 ae}R=R0

for the Stefan condition and

-2
3R _ 1[32R{3R) ° _ 2]
S5 = 3[—(392 ﬁ) iy (3.16)

t/tN. For a given decay heat function £(t),

for the Fourier equation where o
these equations depend on only two parameters — the Stefan number S and the

scaling time t When f(t) has the form given by (2.4) with a=i, fig. 7(a)

N
shows the dependence of the (dimensionless) maximum pool radius Rm on S and

tN and fig.7(b) shows the corresponding ta
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In investigating a range of possible materials for beds beneath reactors
of different nominal powers Qo’ it is convenient to be able to estimate Rm and
the corresponding t without recourse to solving the partial differential

equations (3.17, 3.18) or their equivalents.

The following section (§4) is concerned with estimating Rm and tm in any

particular case,with less expenditure in computer time.
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4. APPROXIMATE METHODS FOR THE ONE-PHASE RADIAL STEFAN PROBLEM

4,1 By establishing two time-dependent upper bounds for the radius of a growing

melt pool, a simple upper bound for the maximum pool radius can be obtained.

To obtain closer estimates of the maximum pool radius, two different
approximate profiles for the temperature in the bed are derived heuristically

and the corresponding evolution of the pool compared with results from

ISOTHM.

4.2 A Simple Upper Bound

The 'fast melting front' solution discussed in §3.2 always exceeds the
true solution, since the growing thermal boundary layer in the bed restricts
the advance of the front. Defining

2 = b3tN_I(1+S)-1 (4.1)

we can express eq.(31ll) as
1
r (t) = at /3 (4.2)

On the other hand the minimum quantity of heat which will be conducted

aT

2 :
i i i —— AT)r
away from a stationary pool of radius r_ is 2mr Iea= rer_ i.e. 27k (AT)r

since 9=ro/r in equilibrium. The heat generated must exceed the minimum
requirement while the front is advancing. Thus Qof(t) > Zwk(AT)ro, and a

second bounding curve for the position of the advancing front is
r (&) = bf (4.3)

Now (4.2) is a monotonic increasing function, whereas (4.3) is monotonic
decreasing for decay heat functions of the form discussed in §2. Hence a

simple upper bound is given by their intersection ry which occurs when t=t,

satisfies
_ 3
-r(tB)/tN = (1+S)f (tB) (4.4)

Figs. 8(a, b and ¢) and Table 1 give (rB, tB) for different values of § for £

of the form (2.4) with ao=}!. For small SltB is underestimated by ~ 10%,

whereas re is overestimated by 30%7. TFor large SitB is overestimated by ~ 40Z,

whereas rp is overestimated by ~75%. For more general monotonically decreasing

decay heat functions,this indicates that I, may be an overestimate by as much
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as a factor of 2 and tB may be inaccurate to ™~ * 50%7. The solution of (4.4)
for tB is straightforward; there is only one root.and the forms of T and f
are explicitly known either analytically or in tabular form,with interpolation
rules. With regula falst [8] no more than 10 function evaluations would be

required to obtain ty to 3 significant figures, giving rp to the same accuracy.

4.3 The Exponential Ansatz

From the arguments given in §4.2, the maximum pool radius will satisfy
the simultaneous equations

1
ro(t) = )\atT /3

} (4.5)

ro(t) ubf

when L=t the time of pool maximum for some values of A and y in the range

(0, 1). The simple upper bound obtained in §4.2 corresponds in these

co-ordinates to r_ «= (AB, uB) = (1.1)

B
: : 2 96
From (3.15), at pool maximum r ~—=——|__ + bf = 0, so that
o} Brlr-ro
2 = _ a0 . . .
ro bf(tm) 3;]r=ro’ t=t_. .DeEfiflnatlon of p thus depends on evaluating

‘the gradient %% in the bed at the melting front.

The energy balance equation can be written as

r03(1+G) = a3r (4.6)

where G %s the ratio of enthalpy in the bed to that in the pool. Hence
A=(1+G) /3

on a local property in the vicinity of the melting front, whereas A depends

, and determination of A depends on evaluating G. Thus p depends

on an integral property of the whole temperature profile.

In the vicinity of the melting front (where 6=1), eq.(3.13) becomes

approximately .

2¢) 36 3%e
(U * E;y v + KEEE =0 (4.7)

: 90 X : ]
since =— & 0 and r =~ r, when - &k 1. This suggests as an approximate
o

profile, the exponential Ansatz
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8 = exp(=x/68(t)) (4.8)

where

1
5(t) ¥

Ale
AN

(4.9)

with u = fo. This profile + 0 as x -+ =, and gives 6 = exp 7%?), the fast
a6 1

'plane' melting front solution, when u >> %L. From (4.8) el

o
when x = O,so that § may be interpreted as the thickness of the thermal
boundary layer within the front. Another important property of (4.8) is that

6 is finite as u + 0, which is obviously true in reality.

Insertion of (4.8) in (3.15) and into (3.16) as R—>-R0 gives

u_gfbf _1 .
K r2 § (4.10)
0
u {1 2 ‘
— = b= =S 1
K \§ r ) : (4.19
o
Hence at pool maximum
1
pe = — 2
r, 28 5bf (4.12)
- 3 2”
The enthalpy ratio G = (%%g)(Z éiJ + 2[?21 + [éi}) when 6 has the profile
o o o
(4.8), which reduces to %?(ng when & = %ro.

Thus the pool maximum r, as estimated using the exponential Ansatz

corresponds to
1/
_ 1+ 173 1 3
(ar va) = ([515] , 2) 1]

where the time of pool maximum tA satisfies

T/ty =-§{1+ﬁ% s]f3 (4.1%)

A comparison between the results from this approximation and those from the
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ISOTHM code are given in Table 1., The estimate of the radius r, is good to

2.37% for 4 x 10_2 <s< 10?, while the estimate of the time ty varies from

being very satisfactory for large S to being much worse than tg for small S.
Fig. 9 shows the temperature profile for 6 as calculated by ISOTHM for a range
of different values of ty when S is large,i.e. latent heat is negligible; the
exponential profile is clearly an excellent approximation there. For $>>1,
(A, u) = (0.6, 0.5) and (4.13) is in good agreement with the time solution;

for S<<l| this is not so.

The result (4.13) depends on assﬁming that the exponential profile is a
good approximation for Q< x<w=, but only at the moment of pool maximum. An
alternative approach is to assume that the exponential profile is a good
approximation in the vicinity of the melting front only, but at all times
prior to pool maximum. In these circumstances (4.10)and (4.11) hold for all

t, and eliminating § we obtain

u =1 bf 2

—(1+S ) =‘—-—2 S -

K r8 (4.15)
This is an ordinary differential equation for the position of the front as a
function of time. This can be solved in a straightforward way using an ODE
solver package, and this has been carried out in a computer program called

SPHINX. Results for different values of S are shown in Table 1 and Figs. 8(a,b,c).

The results correspond to

¢ ]
(A 1.1)=”1—2f dt/bt l) (4.16)
o R e ] ’
As the figures show,(4.15) models the time dependent change of A from I at
early times towards the appropriate value at pool maximum quite well. The
actual estimate of maximum pool radius r. based on SPHINX is significantly
poorer (v 10% error) than the Ansatz estimate. The time error is smaller for

tC at small S but much worse at large S.

4.4, The Exp-Erfc Profile

An alternative temperature profile which may be considered is

E
6 = 7? exp (~ux/k)erfc(x/2/kt) (4,17
This tends to the 'fast melting front' solution (3.8) provided %% can be

neglected in (3.7) and to the external solution for a fixed sphere of radius T

A
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when ué% can be neglected in (3.7). (4.17) is not a solution of (3.7) but

is a hybrid containing significant features of a true solution.
If it is now assumed that this profile is a good approximation in the
vicinity of the melting front at all times prior to pool maximum, then the

Stefan boundary condition (3.15) becomes

\

@ =I. BE _ 1 1
(o] 0

This ordinary differential equation is a modification of (4.14) and can be
solved in the same fashion. The solution is here called SPHINX II, and the
corresponding radius and time of pool maximum are labelled rc' and tc'.

The values for the test problems are given in table 1. The pool sizes are
accurate to 5% for all values of S and the time of pool maximum accurate to
better than 25%Z. In view of the broad '"flat' nature of the maximum of ro(t),
this estimate tc' for the time of pool maximum is satisfactory. Unlike the
exponential Ansatz,the exp-erfec profile gives more accurate results as S
becomes small. Figs. 8(a, b, c) also show the time development of the solution
using the exp-erfc profile; it follows the true solution much more faithfully

than that generated by (4.15).

At pool maximum if we assume that (4.17) holds for 6 < x < = then the
. s \(6Y/Sc)/, % e e .
enthalpy ratio G = {——=||=)| —]J| 1--—| where § = Vwkt. This has as its
1+S/\~w r0 rO K

maximum value %% (ng "which is a reasonable estimate for G when § >, but

poor when S <<1. Thus the profile (4.17) is good at approximating the local

property %% at the melting front, and rather poor at approximating the
x=0

integral property G.

4.5 A Special Case : f=fot

Bl

The decay heating function f=fot" , besides being a good approximation to

that for a nuclear reactor with heavily radiated fuel, is also a particularly
3
simple case mathematically, for then T=fl3t“ where f]3 = 4f0/3. Equations

(4.2) and (4.3) become
1
2, = afl th
(4.19)

; i 2
which gives r_ " = abfof] 3 tB



U
Correspondingly the Ansatz point A is given by rp = AAPA Tp 3ty = (xé) tB
VA

where A, and p, are given by (4.13). Omne can show that the solution of (4.14)

A A
has the form ey ™ ubf where u is a function only of (gi) and has a series
B

expansion
S M) e

on the other hand (4.18) can be re-written when f=f0t— as

-

P T | I
Wlde T %o T [ p-p YO ] (4.21)
t 2 _4 8 . .
where ¢ = o and vy = ~ %8 thus showing that pu has the functional depend-
B
ence, u = u(S, E'---) in this case.
! ta )

This example provides a good test case for the external one-phase Stefan
problem, by means of which the effectiveness of different numerical methods in
two or more dimensions can be assessed over the whole range of Stefan number.
It can also be used to test two—phase codes by distributing the heat source
within the pool and assigning a very high conductivity to the llquld phase.
To avoid any starting problems, the small time solution r, = /3 should be

used,

4.6 Resumé

The analysis presented in this section (§4) can be summarized as follows:

(i) the maximum radius for a hemispherical cavity produced by decay
heating can be approximated to within 37 by the algebraic formulae
(4.13) and (4.14) over the whole range of Stefan numbers., The time of
pool maximum can be estimated to much better than 507 by the use of
(4.5). These formulae give this accuracy with 10 to 20 evaluations of

. 3 . . .
the function 1/f  which is assumed known,at least in tabular form.

(ii) Use of the exp—erfc profile (4.17) leads to a single ordinary
differential equation for the position of the advancing front as a
function of time. This ODE (4.18) follows the growth of the cavity for
several years resulting in maximum pool sizes accurate to 5% for all
values of $ and times of pool maximum overestimated by less than 25Z.
Roughly 700 steps are required with ©v 103 evaluations of £ and the

r.h.s of (4.17). This is at least an order of magnitude cheaper than
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solving (3.15)-(3.16) as a partial differential equation by any of the

available methods, but of course the accuracy achievable is limited.
-1 ' —

(iii) The heating source function f=fot “ provides a good test case

for the external one-phase Stefan problem.
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5. MULTIDIMENSIONAL MELTPOOL FRONT TRACKING

"In 83 and §4, the growth of meltpools has been considered when the
pool shape and the temperature profile within the solid phase are radially
symmetric. In practice, convection within the molten pool results in the heat
flux at the liquid/solid interface being a function of position on that
interface. The non-uniformity of the flux results in the pool shape and the
temperature profile within the solid phase becoming dependent on all the
spatial co-ordinates as well as time. A number of methods are available for
computing such a system including the enthalpy method [9, 10], the method of
lines [11], IMM [12, 13] and co-ordinate transformation methods [14].
Turland has recently shown how to express the IMM transformation in orthogonal
curvilinear co-ordinates [7] in an elegant 'flux conservation' form and this
is the basis of a version of IMM in spherical polars in which the finite
difference scheme can be put in conservative form. However the aim here is
to find effective approximate methods in the absence of radial symmetry.
Algebraic formulae analogous to (4.13) and (4.14) are not to be found, for
the pool will reach its maximum extent at different times along different
radial rays; but a set of first-order ordinary differential equations
analogous to (4.13) or (4.18) could track the position of the melting front

as a function of time.

Let r be the position vector, and fi(r) be the local normal to the
isotherms so that the vector field fi represents the thermal flux lines. The

_metric dI can be taken in the form
dz? = dn? + h22dv2 + h32dw2 (5.1)

where dn is the line element parallel to fi and v and w are some corresponding
orthogonal curvilinear co-ordinates. The Fourier equation can then be

recast in IMM form as

-1
ain _ _ K E__/ on
E WL \hzhs(ae) ) (5.2)

where 6 is the dimensionless temperature and the derivatives are taken with
v and w constant, The coefficients h2 and h3 are functions of position and
n is the distance along a flux line. Equation (5.2) is a specialization of

Turland's general form [7], and carrying out the differentiation we obtain

1l 21‘1 n—zr
L {%EZ (%g) - %-} (5.3)

tNote that (5.3) is exact since n is the distance measured along a curvilinear
flux line normal to successive isotherms (see fig. 10).
§ ) .
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where p is the total radius of curvature (which is the sum of the two

principal curvatures) given by

-1 . 1 9
p = div fi = T (h2h3)
Z2.3
in this metric. In strict spherical symmetry n=r and %-= 2/r,so that we

recover (3.14). For cylindrical symmetry %—= 1/r (ef [13]).

The Stefan condition is

an g (Bn =
_of . . 8 an
PL 3% o L =t (MT)\ae)Fn (5.4)
]

where @/27) is the heat flux from the pool to the melting front and is a
function of time and position on the melting front. Thus J/ gfi.dS = 2nf.

In terms of b and S, (5.4) becomes

Bn _l

—— = «kS(bg + n

—2 o0 (5.5)

Equations (5.3) and (5.5) are exact and can be made the basis of an IMM

numerical scheme in the same spirit as Cramkk and Crowley [13].

If the exponential Ansatz is assumed to hold locally in the vicinity

- of the melting front in the form

B = exp(-x/6) (5.6)
where x = n - no,(v, W, t) is the distance from the melting front measured
down a flux line and 8(v, w, t) satisfies

1 ; 1 ano 1
i = i e + s
8 K ot o}

o}

then (5.5) becomes

o | k8 o L, 5,79
dt T+5 ‘'8 Py ) *

Py is the mean curvature at each point in the melting front and profile (5.6)
satisfies the linearised equation B F éﬁn = 0. (cf 4.1). Knowing the
current position of the melting front, the curvature and direction of

the normals can be calculated, as can the appropriate flux function g from
other studies of convection in pools [e.g. 15]. Hence (5.7) can be used to

follow the advance of the fromt explicitly. Since only the meltpool front
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is tracked, a large number of 'marker particles' can be used to ensure that
curvature and normal directions are calculated accurately. In cylindrical

polars (r, ¢, z) for which dI? = dr? + r2d¢2 + dz2, with azimuthal symmetry
%5-5 0), the equations of motion for the ith 'marker particle' on the front
are, for an explicit numerical scheme (dropping the zero subscript since all

quantities are evaluated at the melting front),

_ KS =1
dni = (]_-l-g)dt (bg(ri’ zl) pi )
dr, = (az)) (dni)/(Asi) (5.8)
dzi = (Ari)(dni)/(ﬂsi)
= — = ’ - = - 2 =
wherezdni ni§t+dt) ni(t) ete, Ari L ri+1, Azi 2] zi_], (Asi)
(Ari) + (Azi) , and
Az, (Ar.)2 z -z, zZ,~2
-1 _ i ;| i+l 71 i 1=
Py T r. As. ol 3 r. -r T T.-t (5.9)
i1 (Asi) i+l 71 i "i-1

Equation (5.7) can be modified as (4.15) was modified into (4.18) to give

_kS /[, \
dt 148 \bg [§é3+ /TKE ]j (5.10)

which can be used to track the melt front in the same way as (5.7) by
appropriate changes to (5.8). Whether (5.7) or (5.10) is more accurate in

the absence of radial symmetry has not yet been properly assessed.
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6. STABILITY

In considering the advance of a molten pool into a solid substratum, or
the melting of support structures by overlying hot debris,it is usually
assumed that the advancing melt front is a plane or simple curved surface.
Penetration times based on this assumption would be overestimated if the
melting front were unstable to small spatial variations in the temperature
distribution,as then the interface could become very convoluted,leading to

increased local penetration and possible structural failure.

We consider here the linear stability analysis for a plane melting
front advancing steadily at velocity u into a solid as a result of a high
heat flux @ being applied to the liquid phase, normal to the front. The

liquid phase is assumed to overly the solid phase so that the liquid phase is

thermally stratified and-stable against:Bénard conyection. In the frame of

reference (x, y, X) moving with the front, the solid has velocity “u, = Cu.
After melting, the liquid moves away from the front with velocity - s, where
from mass conservation P U, = LY (pS solid density, PL liquid density).

For two semi-infinite plane layers the mean temperature profiles are

T, ) TS[exp(-qu/Ds) - 1] (x>0 : solid)

(6.1)

TL[exp(-uLx/DL) - 1] (x<0 : liquid)

where the melting temperature is taken as zero, the ambient temperature in the
id is - o = + . A ' j
solid is TS (as x7) and TL (cSTs L)/cL \1so DS gnd DL are the respective

thermal diffusivities.

Provided |x| << DL/uI?the mean temperature profile in the liquid
approximates to the linear profile - ¢X/kL. The solution becomes infinite as
X* —< and so some cut-off is appropriate. Physically this is consistent
with a source of heat flux @ at some fixed distance from the melting front;
esseﬁtially this is a case for a well mixed pool separated from the melting

front by a thermal boundary layer.

A spatial perturbation £ = Eo exp(imx - at) at the melting front leads

to corresponding temperature perturbations 8 = g(x) exp(imx - at), assuming
%; = 0. From the linearized Navier—Stokes (including viscosity) the

¥—component of velocity has the form.:yx = h(x) exp(imx - at) where

h(x) =v_ exp(mx) + v, exp(m;x)
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" : 2 . . . . . ..
in which ml2 =m - (a/v) where v is the kinematic viscosity of the liquid.

When the temperature equation, the Navier—Stokes equation for the
liquid and the boundary conditions (viz. (1) continuity of temperature
(ii) the Stefan condition (iii) the no-slip condition) are combined together in
linearized . form to eliminate the amplitudes of the linear perturbation,

the following dispersion relation results

=0 (6.2)

y(b-1) [ml(“L*'m*) _ml )

m,—m y+1

Lbmy + (I-L)ns* + nL* + 1

Y(I-o_])+m1/m

where b is the density ratio ps/pL and L is the modified Stefan number L/(cLTL).
Also ¢ is the Prandtl number (v/DL), ¥ is the dimensionless growth rate

e

- a/muL, m* = m-u /DL, m * = ml_uL/DL and nL* and ns* are given by

Bl

2 2 2
% = -
n uS/ZDS + (ug /ltDS + m a/DS)
1
nL* =—uL/2DL + (uL2/4DL2 + mz = on/DL)2
For perturbations which decay spatially as |x|+ @, it is necessary that

Re(ns*) > 0, Re(nL*) > 0, Re(ml) > 0, Re(ml*) >0, m>0, m > 0. (6.3)

The dispersion relation (6.2) has been examined numerically subject to these
constraints for ranges of Prandtl number, Stefan number, density ratio and
horizontal wavenumber, and all such localized modes are found to decay with
time. When viscosity is zero, Peckover and Turland [16] have proved
rigorously that such localized modes are stable. When liquid and solid

phases have equal densities, the dispersion relation reduces to
E = P % =
bmy + (1 L)nS + n 0

and Re(y) > O by imnspection.

When u - 0, the unperturbed temperature profile becomes piecewise

linear, and the decay rate a becomes real and has the explicit form

- uTZ{Z([m/uT]Z +0, ' "HE - @ 7+ ")

where up = @/pSL is the speed at which the melting front would advance into

a solid already at its melting peoint.
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The influence of constant temperature or constant flux boundaries at a
finite distance from the melting front has also been examined [16, 17]. The
placement of the boundary conditions closer to the melting front enhances
stability.

The conditions (6.3) mainly determine which sign is taken for a square
root, however m* > 0 implies m > uL/DL i.e. the horizontal wavelength must be
sufficiently short that the thermal diffusion speed mDL exceeds the flow
velocity u away from the melt front in the liquid. If this condition is not

satisfied such a Fourier mode will not be spatially localised.

The dispersion relation if of some mathematical interest. It usually
has two branches, one of which is completely unstable and the other is stable
except for small wavenumbers. The spatial structure of a mode of the form
exp(imx - at) is always the sum of terms of the form exp(Nx) where N can be
complex. Spatially localiged modes have Re(N) < 0 when y > 0 and Re(N) > 0
when x < 0 and these can satisfy boundary conditions which dictate decay in
spatial amplitude as |x| + @, Other possible modes of the dispersion relation
are those that oscillate indefinitely in space in the x-direction, and
spatially explosive modes whose amplitudes become infinite as |x| + «©; some
of these latter modes are stable and some unstable, but all must be excluded
if the boundary conditions at infinity are rigorously applied. The spatially
localised modes are all stable. It would be of interest for this linear
stability problem to be imbedded in a more general formulation where perhaps

the power of functional analysis could be utilised.
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7. CONCLUSTION

Stefan problems arise in a number of circumstances considered in reactor
safety studies. The growth of a molten pool in a solid has been considered
in some detail and approximate methods of tracking the movement of the melting
front devised. Detailed comparisons have been made for a wide range of
Stefan numbers in the case of spherical symmetry between results from full
solutions and those obtained by approximate methods. The comparisons suggest
that these approximate methods may be effective in multidimensional problems.
The heat source function f=fot_% provides a useful model problem for the
external one-phase Stefan problem. The stability of the shape of a melting
front against the development of ripples or fingers is an important practical

problem; the results of a linear stability analysis for a plane interface

are discussed.
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MAXIMUM POOL SIZE

S = E%I log ty ISOTHM Point B Ansatz SPHINX I SPHINX II
Point M Point A Point C Point C'
i i m = 10.67 m . rg = 1.32 1y T, =1.03r, = 0.88 L re' = 1.02 o
8 8.34 x 10% ty = 0.93 tn ty = 0.35 th te = 0.50 t, tc' = 1.13 t,
= 16.10 m rg = 1.66 T rp = 0.99 % re. = 1.05 ™ rc' = 1.04 "
2.10 14.4 _ ] _ _ _ -
e 1.45 x 10%s tB =1.26 tm tA =0.80 t tC = 0.66 t = 1.16 to
o 12.9 i 16.55 m . g = 1.75 o ra = 0.98 ry re = 1.10 L rc' = 1.05 o
n = 1.07 x 10%s ty = 1.38 t ty = 1.03 tn te = 0.73 £ tC =1.22 t,
TABLE T

The True Maximum Pool Size M and the Estimates B, A, C, C’
are also shown on Figures 8 (a-c).
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Fig.1 The melt pool. Its bulk temperature is T, and it contains distributed heat sources giving a spatially
integrated heat source Q(t). A total thermal flux Fyp is transferred upwards. The lower surface of the
pool £ is advancing at a velocity u(r, t).

log f log f
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t=tq

log t
Fig.2 The decay heat function f and the integrated decay heat function 7 as functions of time t when f

is given by eq.(2.4) with a = %. The irradiation time is tq. Fort <tq, f=fot” and 7= 4f.t/3. At
t=tq,f=fq=vofotq¥ and r=7q = 8fqtq/3 where o = (1-27%) = 0.16.
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Fig.3 Schematic diagram of pool evolution showing the four temporal phases of §2.2. (a) Pool volume
Vo as a function of t. The point M at point t,; represents the maximum pool volume Vy,. The dashed
line ----- indicates pool growth when thermal leakage is negligible. (b) Bulk pool temperature Tp as a
function of time, showing that its difference from T, is only significant in phase L
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Fig.4(a) Hemispherical pool of radius Rq(t), with adiabatic lid.
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Ro R

Fig.4(b) Corresponding temperature profile as a function of radius R. T is the ambient temperature
of the bed and T, is its melting point; Tp is the bulk temperature of the pool.
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Fig.5 Bulk temperature ofa hemispherical pool as a function of time calculated using the Whipple
eq.(3.6). In the example, the initial pool temperature is 1500K above the melting point and rises
rapidly before decaying, as shown. y
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Fig.6 The evolution of isotherms as a function of time t calculated by the ISOTHM program when
S~ 2. The lowest isotherm in the figure shows the location of the hemispherical melt front reaching
a maximum radius, followed by pool contraction. The remaining isotherms shown are equally spaced
in temperature. The dashed isotherm is essentially at ambient temperature; beyond it, the presence
of the melt pool has a negligible influence on the temperature of the bed material.
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Fig.7 (a) the dimensionless maximum pool radius Ry, and (b) the corresponding time t, as functions of
the two independent parameters that define the system viz the Stefan number S and the timescale ty
(eq.3.10). The irradiation time tq is chosen to be 10'°sec and a = % in eq.(2.4). When tm <tq, then
Ry = tN™/6 and t, « ty¥s; these gradients are shown by dashed lines.
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B S = 0.04 fy = bf " 30~ S=21
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Fig.8 The growth of the radius ry of a hemispherical melt-pool as a function of time t for three different
values of the Stefan number S viz (a) 0.04, (b) 2.1, (c) 105. In each case, the true solution is represented

by a heavy line ——, the solution calculated by SPHINX I (eq.4.14) by ........ , and that calculated
by SPHINX II (eq.4.17) by - -- - - - ; the corresponding maximum pool sizes occur at M, C and C’
respectively. The bounding curves (4.2) and (4.3) are given by thin solid curves —— and their inter-

section is the point B. The Ansatz estimate of maximum pool radius (eq.4.12 and 4.4) is given by point A.
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Fig.9 The dimensionless temperature § as a function of r at the time of pool maximum; rp, is the pool
radius. The dashed lines show the profiles calculated using the ISOTHM program for a range of different
values of Qo for tq = 10'°sec S™! ~ 0. The solid line is the profile 8 = exp(-x/8) where X = r—r and

8 =Y (see §4.3).
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Fig.10 Orthogonal co-ordinates system showing 3 isotherms (lines of constant §) and 3 flux lines (lines
of constant v). The third co-ordinate w is locally normal to the plane of the paper. The line element dn
and its integral n are measured along the curvilinear flux lines. The mesh is convected with the motion
which is always down instantaneous flux lines.
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