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ON THE EFFECTS OF CRACKS WITHIN SACRIFICIAL
BED MATERIAL ON THE GROWTH OF MOLTEN POOLS

R S Peckover, J H Adlam and B D Turland
UKAEA Culham Laboratory, Abingdon, Oxon. 0X14 3DB, UK

ABSTRACT

When a liquid with internal heat sources is present in a cavity in a
solid substrate and has a temperature higher than the melting point of the
solid, the pool may grow by melting the cavity boundary. If the substrate
contains fissures then the molten material can penetrate down these ahead of
the main melting front. Wide cracks will be enlarged by further melting.

A critical fissure size has been calculated, such that if a crack is narrower
than the critical width, it will not be enlarged by melting and the penetration
by molten material ahead of the main melting front will be arrested. Thermal
stresses induced in the solid ahead of the melting front may produce fissures
in brittle poorly conducting materials. A criterion determining when thermal
shock fragmentation is likely to be important in this context is developed.

(Paper presented at Fourth Post Accident Heat Removal Conference, Ispra Joint
Research Centre, 10th - 13th October, 1978).
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On the effects of cracks within sacrificial bed material on the
growth of molten pools
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o INTRODUCTION

The use of a bed of sacrificial material beneath the primary vessel of a nuclear
reactor is currently being evaluated as a possible additional contaimment barrier to
arrest the downward motions of molten core debris in the hypothetical event of a whole
core melt-down. Such abed, made of a highly refractory material such as alumina, and
miscible with the oxide phase of the core debris, has been considered in calculations of the
growth of a molten pool on the'assumption that the bed forms a smooth continuum(1]. The
stability of the melting front to spatial perturbations has been examined [2] and for small
- amplitude perturbations the melting front has been found to be stable in shape, and the
assumption for deep pools that the‘melting front is a smooth curve justified. However in
practice the bed may consist of loose filler or be constructed of blocks, fitted together.
Moreover, sudden contact by hot molten core debris will induce thermal stresses with the
bed material, and, for brittle poorly conducting materials, can result in further fragmenta—
tion. Based on rather simple modelling,a criterion for when thermal shock fragmentation is
likely to be important is developed. The molten core debris can then penetrate to some extent
down the resulting fissures in advance of the main melting front as the pool grows and is diluted
by sacrificial material. Estimates are presented of critical fissure dimensions for different
shapes of fissure such that if a crack is narrower than critical then it will not be enlarged by
melting, and the penetration by a finger of molten core debris will be arrested.

2. FISSURE PRODUCTION

We wish to estimate whether cracking of solid rock ahead of an advancing melting front is

likely to occur, and whether, if a sacrificial bed composed of blocks is incorporated, the blocks
are likely to be broken into fragments by thermal stress prior to the arrival of the melting
front,

The stresses induced in a body by a temperature difference AT across it depend on the
geometric shape of the body, the presence of pre-existing cracks, the external constraints
and the form of the stress—strain relationship., A characteristic thermal stress for an

elastic body is given by

T, = Eu AT/(1 -v) (2.1)

where E is Young's modulus of elasticity, o is the temperature coefficient of linear expan-
sion and v Poisson’s ratio, The stress tensor can then be represented by I=71.1 where the
tensori‘is dimensionless and its components are essentially shape factors, which are functions
of position and time.

‘For a thin spherical shell with a flow of heat from the interior to the exterior there
is a compressive tangential stress of %Toat the inner surface and a tensile tangential stress
of the same magnitude at the out'er.surfaceu The radial stress is much less than the tangential
stress, for a thin shell, If we consider basalt, then for Dresser basalt, which has a tensile
3 =l

strength g of 3 x 107N/m2 we may take E = 1011N/m2, a=10""K ~, v = 0,25, This gives Tothe

value ~ (4/3) 106 (AT) N/mzu Thus the basalt will fail in tension for a temperature difference



(AT) of 50K, This assumes that the basalt is perfectly brittle; if there is any non-—
linearity or plastic deformation before failure, then & larger temperature difference
is required to produce cracking.

A molten pool produced in rock or a concrete basemat may be considered as a hoﬁ
liquid in a thick-walled crucible. Let us consider a thick spherical shell of inner
radius r, and outer radius r. (fig.1l). In spherical co-ordinates (r,8,¢) with spherical

symmetry, the radial stress is given by ([3],p420) -

= 1, Q=lr; /21 (B )-F () (2.2)

Trr
when Trr=0 on both surfaces of the shell, and the tangential stress Tse(which is equal
tO.T¢¢) is

Tep = Tp (TCT)) = T (=4t (2.3)
where the dimensionless temperature T* = T(rYAT, and the dimensionless average tempera-

ture in the shell between ri and r is denoted by T(¥). Thus

r
— - 2%
T(r) = (3[r r°T dr)/(rjhrg) (2.4)
. - . . . . i :
If the crucible is initially at some uniform temperature Ta, and its inner surface is
suddenly raised to Ta + AT the temperature distribution in the crucible corresponds to

T = 1.0 - /] AgsinGeylr 1Desp(-p le/e ) (2.5)

N=1
*_ 2 o n * oo
where —r/ri, tK—ri /x, the py are the positive roots of tan(pN(rO = l))=rO Py and the

AN are constants depending on Py and r . Here r: =r6/ri. The resulting radial stress

is compressive throughout the shell whereas the tangential stress although compressive

adjacent to the hot inner surface is tensile beyond some radius which varies with time. (These

are shown in fig 2 when r: = 2). Although the cohpressive stresses are larger, focks‘are much
weaker in tension, thus the relevant failure criterion is that the tangential ten;ile stress
exceeds the tensile strength. Figure 3 shows the locus of the maximum tensile tangential stress

as a function of time. For r:=2, the maximum value of Tse=0.18T0. This may be compared with O.ZBTO
for a constant heat flow produced by an applied temperature difference AT.

7m2/s; hence for a 2m pool, t = 5.1065ec. From figure 3,times of order

For basalt, x=8.4 x 10
1045 are required (when rz = 2) to reach tensile tangential stresses of O.OSTO some 0.3m beyond
the inner radius., If T=500K such a stress would be comparable with the tensile strength of basalt.

For thicker walled crucibles, the maximum tensile stress is lower (see figure 3 for r:=5).
Overall if the rock or concrete basemat behaves as a true continuum then significant cracking from
failure in tension seems unlikely.

If the bed is composed of blocks, then the possibility of further crack production requires a
more localized analysis, Let a typiéal block dimension be 2r_; then we consider a sphere of
radius L which has a sudden temperature increase applied at its surface. If fracture results
in a sphere, then the localized stress concentrations in other shapes can but enhance the effect,
Chen et a. [4] have carried out experiments in which a 10cm diameter sphere of Dresser basalt
was heated to a surface temperature of 600C in 35 sec by a radiative flux of ~ SOkW/mzapplied‘to
the surface. Only half the surface was heated ; the other half was insulated. This experiment

is relevant to the arrival of hot pool material on one side of a block. Detailed calculations were



carried out by Chen et al. which predicted a maximum tensile tangential stress of about

4 x 107N/m2, some 0.02m below the surface. The fragments which were produced in their experi-
ments were of this order of magnitude. The formulae for the tangential stress in the analysis

of Chen et al. do not scale in a straightforward fashion, but we note that the maximum tensile
stress was generated on the radius normal to the plane separating heated and insulated hemispheres.,
This suggests that a spherically symmetric analysis will give reasonable estimates of the maximum
radial and tangential stresses. When a sphericélly symmetric radial temperature distribution is
present in a sphere of radius r the radial and tangential stresses are given ([3]p418) by (2.2)
and (2.3), with £,=0 in (2.2) and (2.4). 1If the sphere is initially at T, and its surface
temperature is suddenly raised to Ta+ AT, then the resulting temperature T(r,t) within the

sphere can be expressed as (AT).(rO/r).h(r,t) where h is an infinite sum of error functions

(see [5] p233); at the centre of the sphere a uniform tension is generated which has its maximum
value 0.38 T, When Kt/ri = 0.06 [6]. This temperature profile consists mainly of a steep baundary
layer adjacent to the outer surface, while Kt<<r02. Such a temperature profile can be approximated

by the piece-wise linear form

T =20 ‘forr £ R (2.6)
(r~R)/(ro-R) for R

IA
"
IA
H

Fig 4p shows the corresponding average (dimensionless) temperature T (r), the radial

5 2 3
stress T and the tangential stress T when e = R/l'0 is 0.6. If B=(1+ e +e“ + ¢7) /4,

then T(ro) = 1 - B where clearly B < 1?6 The maximum tensile tangential stress is equal
to (2/3) Toi(ro)=(2/3)TO(l*B)ETmax and the tangential stress has this value for r<R.
The radial stress is -always tensile, and has its maximum value (also Tmax) for r<R.
Beyond T = R the tangential stress is essentially linear, and at r=T0,T88=—B.TOa

Fig.4a shows the temperature profile and the radial and tangential stresses
calculated by Chen et al. for the radius normal to the plane separating heated and
insulated hemispherical surfaces of a basalt sphere ; these are after a time OQOSrOZ/K.
The qualitative agreement between the results of Chen et al. and those from the simple
spherical model considered above are good, and (1.25 + 0.25)1’max appears to be a good
estimate of the maximum tensile stress generated tangentially for the one sided heating
case,

Since a linear profile is only appropriate when the boundary layer is reasonably

thin, then B = 1 - 3@¢/2 when B =(1-e) is << 1. Thus in the spherical case, with the

boundary layer temperature profile, then T T .+, or

EaAT (ro_R) (2.7)

- r
1-v -

) =

max('ree

We see that Toax is (i) proportional to AT,(ii) proportional to the boundary layer

thickness 6§ = r = R and (iii) inversely proportional to the dimension of the sphere:—n.
For basaltowith T=1000K, T,=1.3 x 109N/m2. Then Thax will exceed the tensile

strength of 3.107N/m2provided G/ro exceeds 1/40., If r0=0n15m, then provided the



boundary layer is more than a few millimetres thick, fracture is likely to occur.
Thus 1 foot cube blocks of basalt can be expected to break-up into centimetre size
fragments ; the fissures will however be hair-line cracks unless the cracks are

widened by the passage of vapour,
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3 THE MELTING OF FISSURES

We now suppose that the bed contains cracks, fissures and holes into which

molten core debris can penetrate ahead of the melting front of the growing pool. In
this section we consider whether debris entering a gap or crack ahead of the melting
front will freeze or cause the gap to expand by further melting, possibly opening up
new pathways through the bed.

3.1 Formulation

Three geometries are considered - a parallel sided crack, a cylindrical tube or
shaft, and a hemispherical hollow. Simple criteria may be found by using solutions
for the flow of heat into an external ambient medium from the surface of a slab,cylinder
or sphere, which has suffered a step change in temperature corresponding to the sudden
arrival of the molten debris inrthe fissure (fig.5). This determines the maximum rate
at which heat may be removed from the debris without melting the ambient material. We
will assume that all the decay heat is generated within the debris, which gives a con-—
servative (over) estimate as the y radiation component has a typical range of a few
centimetres. It is alsc assumed that the debris, which may have been diluted by molten
sacrificial material, is close to the melting point of the sacrifical material.

Consider first a parallel sided crack. I[ a plane surface is suddenly raised at time
t=t  to a temperature Om in a semi-infinite medium at ambient temperature Ba, and the
surface temperature is then maintained, it may be shown for this text book problem

([51p60) that the heat flux density at x = O at subsequent times is

¢ =]<f8m - ea)/VWw(t—to} (3.1)

c
This result is now applied to the situation arising when heat-producing debris is
introduced into a slab-shaped gap (fig 6). If no melting is to occur then the surface
temperature must remain below 6.5 thus equation (3.1) gives a maximum value of the heat
flux density that can be removed without melting occuring. If in the initial stages the
surface temperature increases gradually rather than as step function, (3.1) gives a
lower bound and so is conservative. If the decay heat flux density ¢q exceeds @c,
melting would occur ; if it is less, then some of the debris will freeze,
For a plane crack of width 2a containing molten core debris (power density q(t)),
L aq(t)= aQ f(t) /x(t IV (3.2)
where (QO/UO) is the power denmsity on stream, f(t) is the decay heat function
and  x(t) is the factor by which the molten core debris has been diluted by sacrificial
material, If RE¢C/1ﬁ is the 'flux ratio' then the criterion for no melting to occur in a
crack of given dimension is
Rz1 (3.3)

Defining a = k(em—GO)VOJQO and slsf(t—to)/az, then R can be written as
R = ax(c)F(s) /a’f (1) (3.4)

For a parallel sided crack

Bi—

F(sy) = (nsl)" (3.5a)

If a similar analysis is carried out for molten debris entering suddenly, at t=t_, a
cylindrical chimney-like crack of radius a, or a hemispherical hollow of radius a, the
same criterion (3.3) is found for no melting, where however F(sl) in (3.4) is defined for:

the cylindrical tube by



F(sl) = 2G(sl) (3.5b)

and for the hemispherical hollow by
1
F(sl) = 3(1 + (nsl) £y (3.5c)

The Jaeger integral G(s) is defined by ([ 51p 336)
@ 2
o(s) = sy [ o Hua 2w ()} (3.6)
(o

where JU and Yo are solutions of the zero order Bessel equation. Expansions of € for small
and large s are given in [5] and are tabulated in table 1, Fig 7 shows F(%) for the three

cases (3.5a,b,c).

3.2 Minimum Fissure Dimensions

Equation (3.3) gives implicitly the critical size of fissure below which a fissure
will not melt. However it represents a dynamic criterion with the critical size varying as
a function of t.If a fissure of dimension a is not to be enlarged by melting then equation
(3.3) must hold for all t2t . Hence we require the largest value of a for which R21 for
all tzto, to obtain a criterion independent of ¢.

Let the decay heat function have the mildly conservative form [7]
-1 -1
£{(r) = £ (¢ ‘-[t+tq] 9 (3.7

where tq is the irradiation time for the fuel on stream.

Define the dimensionless parameter P(to) by the following ratio of enthalpies:
3
= N i
P(E)) = pe(0-0,)V x(£ ) /Qf & ) (3.8)
The numerator is the sensible heat in the diluted debris; the denominator is essentially

the total integrated decay heat Qor(*‘) when £ is given by (3.7).
Thus P<1,

It is convenient to nor~dimensionalize the various times with respect to the thermal

. . : 2 s _ o - =
diffusion time t.Za"/k, and write S"t/tx’sqhtq/tm’s_to/tr’ and Sl‘(t_to)/tm'

Then R can be written as (sq/n)éP(to)H(s) where
H(S) = (W25 )'F(s)) /(1) (3.9)

in which kézt/(t + tq) = s/(s + sq). H(s) is the only factor of R which depends on t,

The form of H is sketched in fig 8, and it clearly has a single minimum value Hmin’

when t = tmin (say)f If tmin)>to’ one can shown that Hmin 1s glven approximately by
Hmin =4 Plane
1
=8 + 4 C(nsq)‘ Cylindrical (3.10)
) 1
=12 + 6 (nsq)“ Spherical

where C ® 1. In the plane case tmin = tq/(12.8) for all Sq (this corresponds to
A =AOEQ.5188)u This is also the critical time if sq<<l for the cylindrical and spherical
geometries. When sq>>l, the time when H achieves its minimum is given by (s/F(sl))(dF(sl)/ds)=-%

for cylindrical and spherical geometries’'; as fig 7 indicates this corresponds, when

t . 2% & Jto t.; = azlnm for spheres and t . = Aaz/w for cylinders. Fig, 9 shows the

min o min min ' ' _

dependence of H . and t . on s for the spherical case when t . >> t ; the cylindrical
min min q min e}

-7 =
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5 G(s)
0.01 6.13 Small s
0.03] 3.74 expansion
0.1 2.25
053 1.45
1.0 1.00 exact
3 0.85
10 0,61
30 0.46
100 0.36
103 0.26 large s
104 0.20 expansion
102 | 0.16
10 | 0.14
Table 1. The dimensionless heat flux
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case is similar.

To confirm t@e conservative nature of the assumption that tmin>>to’ so that §, may
be replaced by s in calculating an overall minimum of H, H has been calculated in the
slab case as a‘funqtion~of (t/tq),fqr a range of values of £, Fig. 10 shows clearly
that the overall minimum of H viz 3,93 occurs when t, tends to zero and E ity = tq/lZ.B.

A sufficient condition for mo melting is thﬁs Rmin > 1 where
1
- 3
Roin (Sq/ﬂ) Hmin(SqJP(to) (3.11)
in which Hmin(sq) is given by (3.10) and P(to) by (3.8). Fig.ll shows Z Eanin/4P(to)
for the three geometries.
Since P is necessarily < 1, only the solid parts of the curves corresponding to Z = 1

are relevant.

Thus the critical fissure size a it by
acrit//ﬁ = 4P/m
= wem 2 s ey, (3.12)
= ee/m 23 (1 aersm 3.

for plane crack, cylindrical chimney, and hemispherical hollow respectivély, for P << 1.

2
Note that Arit is proportional to P for plane cracks, and proportional to P 4 for cylinders

and spheres when P << 1,

3.3 Effects of Dilution

To calculate a numerical value for a » P must be evaluated. If the core debris

crit
is diluted by sacrificial material, so that the resultant molten pool is close to its

melting point, then
p(L + ¢ AT)Vox(t) = TQOT(t) (3.13)

where y(t) is the dilution factor achieved up to time t. The coefficient I' is the fraction
of the decay heat generated up to time t which is stored in the molten pool ; clearly T < 1,
From (3.13),P: can be expressed as BFT(tO)/T(w) where B = 48/{ 3(1+S)} is at most of order
unity. For common refractory materials S = 2 so that B =~ 1.

When the melting front of the main pool is advancing rapidly, so that thermal front
thickness is small, then t(t) ~ 2 thE if f has the form given by (3.7). This regime is
appropriate to the analysis earlier, where it is assumed that the arrival of the debris in
the fissure is sudden and the rock is still at ambient temperature. It follows that

(neglecting a factor of order unity)
3
&

. P(to) = P.(tO/tq) (3.14)
Combining this with (3.12), we obtain for plane cracks
3

2 .. e z/E'E:](cO/cq)*r . (3.15a)
and

apip = €KES r2/3 (3.15b,c)
for cylinders and hemispheres where

€ v 2(cylinders) and e " 3(spheres) (3.16)

1 i
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Fig.ll. The function Z = anin/AP(to) as
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cracks. A sufficient condition for no

melting is Z > n/&P(to).

A typical value for « is 10-6m2/s. If the pool has poor heat transfer to any overlying

coolant, then I' ~ 1, If tq n 107 sec and L, > 103 sec (a modest requirement) then

a .
crit

~ 6mm [plane], ~ 6em [cylinder] and ~ 9 cm(sphere).

If the molten pool is formed in such a way that good heat transfer paths exist up

to the overlying sodium (in the case of an LMFBR), then I' will be much smaller.

Accurate

calculations for the critical radius of a cylindrical fissure have been carried out using

-6 2

(3.4), with e=1.1 x 10 m", r=10-6m2/s, the decay heat function f(t) based on the FISPIN

data [8] , and the dilution factor x(to) chosen to be typical of those found in melt-pool

simulations using PAMPUR [1].

Table 2 shows a set of results from these calculations. The

agreement between the tabulated results and the calculated value (3.16) is very satis-

factory ; € = 2 is clearly a good approximation over a wide range of t,*

The critical fissure size scales as x for plane cracks and as X

hollows.

2/3 for chimneys and

It is the increase of the dilution factor with time which is responsible for the

fact that the critical size for fissures is greater at later times.

The criteria (3.15) provide a basis for determining how closely packed a sacrificiai

bed must be for it to function in the manner envisaged.

L, (s) X acrit(m) tmin(s) T E

3.2 x 10° 3 0.018 1.5 x 10° | 0.09 1.58
10* 9 0.039 5.2 x 10° | 0.12 1.60

3.2 x 10° 20 0.068 1.5 x 10° | 0.117 1.60
10° 40 0.114 2.7 x 10° | 0.106 1.60

3.2 x 10° 80 0.225 7.0.x 10° | 0.099 1.86
10° 140 0.410 2.2 x 10° | 0.086 2.10

3,2 % 10° 200 0.646 6.8 x 10° | 0.066 2.20
10’ 200 0.797 1.6 x 10' | 0.040 2.16

Table 2.

Critical radii for cylindrical cracks. If the radius is less than a

. he
crit §

sides of the crack will not melt. The dilution factor x is chosen to be reasonably rea-

listic for diluted debris entering the crack at time ts coefficients I' and € are defined

in (3.13) and (3.15).
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CONCLUSIONS

(i) If a sacrificial bed is composed of lumps of dimension D and tensile

strength g then acritgrion for cracking when a temperature difference AT is

applied in a boundary layer of thickness § is

z2 0

2E a AT
1 -wv t

d|os

This assumes elastic behaviour. Non-linearity in the stress-strain law will increase

the required AT, stress concentration may reduce it,

(ii) The criterion for a crack of width 2a not be enlarged by melting when entered

by molten, diluted core debris at time t, after shutdown is

a<a .
crit

where a- . 1is given by (3.15). Typically the eritical size of plane sided cracks

crit
is an order of magnitude smaller than the critical size of cylindrical chimneys or

hemispherical hollows.
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