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ABSTRACT In a uniform plane slab, with shear in the magnetic
field, damping of drift waves is due to the outward convection of
energy by the wave. It is known, however, that the inclusion of
two-dimensional effects, such as toroidal modulatiaﬁ of shear or
magnetic field, can inhibit propagation of the wave and so reduce
shear damping. This effect is investigated using a two-dimensional
model representing long wavelength drift waves in a large aspect
ratio Tokamak. It is shown that this two-dimensional problem can
be reduced to a one-dimensional eigenvalue equation from which the
shear damping can readily be computed. It is confirmed that toroidal

effects can annul the shear damping and some examples are given.
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1. INTRODUCTION

The damping of drift waves in a sheared magnetic field has been
intensively studied using the plane slab model [1,2,3] in which the
shear and magnetic field strength are uniform. This "shear-damping"
can be attributed to the fact that in the presence of shear, drift
waves convect energy away from the central rational surface (at which
k,=0). However,in a toroidal system the magnitude, the shear and
the curvature of the magnetic field are no longer uniform over a mag-
netic surface and Taylor [4] has pointed out that this non-uniformity

induces a coupling between modes centred on different rational surfaces

which can inhibit convection of energy and so reduce the shear damping.

The calculations of Ref. [4] were based on a very idealised model
and were restricted to the limits of weak and strong modulation. A
more accurate model, appropriate to long wavelength drift waves in a
large aspect ratio tokamak, has been studied by Cordey and Hastie [5].
However, due to difficulties associated with periodicity in the poloidal
variable, they investigated only modes which are highly localised in
this direction - a restriction equivalent to the strong modulation limit

of Ref. [4].

In the present work we re-examine shear damping of drift waves in
a toroidal system, and carry out numerical computations of the trans-
ition from weak to strong coupling using the more accurate model of
Ref. [5]. The periodicity difficulty is dealt with by the metﬁod

described by Connor, Hastie and Taylor [6].



2. THE PERIODICITY PROBLEM

In any axisymmetric system the calculation of linear drift wave
eigenmodes can be reduced (after Fourier decomposition ~expi Ng,
in the ignorable co-ordinate ) to a two-dimensional eigenvalue

problem of the form [6, 7]
L(8,2x50) $(8,x) = 0 (1)

In general JZ 1is an integral operator in the periodic poloidal
variable & and the flux surface co-ordinate x . However, it
reduces to a differential operator in both variables in certain

limiting cases.

Since drift waves are characterised by short perpendicular and
long parallel wavelengths a natural representation for the perturbed

quantities would be in an eikonal form
6(6,x) = F(6,0) exp (iNS(9,x)) (2)

with the toroidal mode number N » | and both F(8,X) and S(8,X)
varying on the equilibrium scale. The long parallel wavelength
requires B-V(z + 8) = 0, but such a representation violates the
periodicity constraint in the poloidal angle g . We therefore
follow the procedure of Conmnor et al. [6] and introduce the trans-—

formation

(=]

§a, 00 = T & T8 Jei‘“” B(nx) - (3)
m

“»
This takes the problem from the periodic domain 0 < & < 2m into the
infinite domain - « < n < + =, leaving the operator L and the
eigenvalue w unchanged, and allows us to use the eikonal represent-

ation (2) for o¢(n,x) (which need not be periodic in n) . Then



in the limit of large N, as in the similar problem of MHD ballooning
modes [6, 7], the two-dimensional eigenvalue problem reduces to two

gseparate one—dimensional equations in n and in X respectively.

3. MODEL EQUATION FOR DRIFT WAVES IN A TOKAMAK

In the following we adopt the two-dimensional eigenmode equation
derived in Ref. [5], which describes long wavelength (kLai <« 1) drift
waves in a large aspect ratio (e = a/R «1) tokamak of circular
cross-section with B8 ~ €2 . Dissipative effects such as electron and
ion landau damping or collisions are neglected so that the only contri-
bution to Imw arises from shear induced damping. Our objective is to
determine the effect of toroidal coupling on this shear damping and, in
particular, to compare damping in this toroidal model with that in a

plane slab with similar shear.

The perturbaction may be written in the form
$(0,x) exp [i(Ng - M6 - wt) ]

where the radial, flux surface, coordinate r has been replaced by a

local coordinate X = (r - ro) with Nq(ro) = M (integer), q =1:B€/R BS'

Then, with the poloidal angle measured from the outside of the torus, the

appropriate eigenvalue equation for long wavelengthdriftwaves can be

written:

2 w, € 2 2 (w, = w)
2 3% _ 2.2 _(_C) 34 B .
4 khare i 38 1KSE) @ % (w, + wt) ¢

a " —
51)‘?—0

e

= P — (cose + sin6
w o

h = —; = = =
where s (r/q) (dq/dr), =t Te/Ti’ k = Nq/r, e q €. rn/Rr,

(4)
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T./M.w?, and w, = kT /eBr with T =n 1(dn/dr).
i’ i7el ‘ e n n

e
1]

In Eq. (4) the trapped electron contribution to the charge density
has been dropped so that the dominant modulation term arises from the
ion magnetic drift, with both the primcipal curvature (~ cos®) and
the geodesic curvature (~ sin ®) appearing. In other respects Eq. (4)
has the same form as in slab geometry. [Effects such as landau-damping,
trapped particles etc. can be incorporated in the formalism if the
transformation (3) is applied to the basic Vlasov equations rather than

to the charge neutrality equation.]

Eq. (4) is of the general type discussed in the preceding section

so we write

$(8,x) =} e"imej ™ §(n,x) dn (5)
m
and
6 = F(n, x) exp[i(M - Ng)(n - no)]

F(n, x) exp [ - iksx(n - no) | (6)

where n_ is an arbitrary phase of the eikonal. Introducing (5) and (6)

into Eq. (4) we obtain the following equation for F(n,X),

- 2 W, € \2 2 w, = W
- kza?(s + i-ii> - (X e\ 3°F “ - 1p2a2
i\sn k ax F W kai an? * w, T wrt ks a1 B

sl,f

. . i3
En(cos(ﬂ + no) + sn sin(n + no) + sin(n + no) E—>F =0

The strong x-dependence of the perturbation (i.e. on the scale of the
perpendicular wavelength) associated with the shear has now been removed,
but F still depends weakly on X since the parameters in Eq.(7), such

as w,, themselves vary slowly (i.e. on the equilibrium scale) with radius.



[This variation is most important in the term (w, - m)/(m* + WT);

elsewhere it appears with a small factor ka;,, g or en.]

Eq.7 is our basic model for long wavelength drift waves in a large
aspect ratio torus. As described in the Appendix, an expansion in the
ratio of the perpendicular wavelength of the perturbation to the equili-
brium scale length, represented formally by the small parameter
h = k™1(3/3x), reduces the problem to an ordered set of equations. The
zero-order approximation is clearly afd ordinary differential equation
in the extended poloidal variable alone.-:?his lowest order equation

takes the form

d2F0
d—nz—'l'[l—U(n)] Fo(n)=0 (8)
with
U(n) = - 02[n? + 2ua(cos(n + n,) + sn sin(n + no))] (9)
where
k2a2s ' € W,
- W a i n s
S )
Wy Ec k2a?g? w
and

The eigenvalue w = W obtained from Eq.(8) depends on the parameter
o and also varies slowly with radius. Nevertheless it represents the
leading approximation (in powers of h) to the eigenvalue w of the

basic, two dimensional, Eq.(7).

The relationship of this local eigenvalue w, to the true eigenvalue

w 1s determined by the higher order theory described in the Appendix.



The narameter n, can be regarded as specifying the centre of the
perturbation and we can therefore anticipate the result of the higher
order theory - that in configurations with symmetry about & = O this
centering parameter will take the value 0 or . [(In computations this
is equivalent to permitting the parameter o ro take either sign: positive
values correspond to Ny = 0 and to modes centred on the outside of the
torus, negative values correspond to s = 0 and to modes centred on

the inside.]

Eq.(8) has the form of a Schrodinger equation with an effective
potential U(n), but this potential is itself a function of w which
may be complex. In the absence of toroidal curvature (a = 0) and for
real w, this potential U(n) is a parabolic "anti-well". 1In this case
the eigenfunctions will be propagating waves in n-space which transform
into the shear-damped, outgoing wave, solutions of the conventional plane
slab model. This brings out one advantage of the present formalism, -
that it makes it particularly easy to visualise the effect of toroidal
curvature on shear damping. The curvature introduces ﬁodulations into
the effective potential U(n) which modify and inhibit wave propagation.
If the modulation is sufficiently strong it leads to the formation of local
potential wells and so tonon-propagating, undamped modes - analogous to

bound states of the Schriddinger equation. In particular, a local minimum

of U(n) may occur at the origin when of(l - 2s) > 1 for Ny = 0 and
when a(2s - 1) > 1 for n, = T Other local minima, at n > |, may
occur when as > | for N, = 0 or .

The potential function U(n) for s =1 is shown in Fig.l for
I, = 0 and in Fig.2 for n, =T Local minima do indeed arise when
o > 1 but a noteworthy feature is the extremely shallow nature of these

central wells. A much more effective '"double-well" can appear when the

origin is a local maximum (Fig.2). This suggests that strong coupling

- f -



theory [5,8], which is equivalent to an expansion of U(n) around
n = 0, may sometimes be misleading since it does not recover the off-
centre minima. In Section 7 we shall therefore compare the damping
predicted by such a local expansion with that obtained by a numerical

solution of Eq.(8).
4, BOUNDARY CONDITIONS

In real space the boundary conditioms are that ¢(8,x) should
vanish as ]xl - o or that it should represent outgoing waves. The
former corresponds to localised modes and the latter to propagating
shear damped, modes [1] with outward energy flux. We must first
interpret what this "outgoing energy flux" condition implies for the
boundary condition on Eq.(8) at [n[ + @, The simplest way to do this
is to consider an unstable mode. Then an outgoing wave will decay as
|x| + ». Hence, for Imw > 0 the mode must be bounded in X-space
and consequently F(n) must be such that the transformation (3) con-
verges as |n| = «. Now as |n| - © the two solutions of Eq.(8) are
P = exp(ion2/2) and F_ ~ exp(- ion®/2) and, since Im o > 0
when Im w > o, only F_ is convergent and acceptable. Consequently
the boundary condition on Eq.(8) in the n domain must be that

F>F_ as [nl > @,

A similar conclusion can be drawn by introducing damping into the
model at large |x’ to ensure that all modes decay in real space.
Then the transformation (3) must again converge and requires F - F_

[n] + .

Because Eq.(8) is symmetric in n we need consider only symmetric

and antisymmetric modes, with boundary conditions

dF

T = 0 (even mode) . or F(o) = 0 (odd mode)
o



and F(n) = F+(n) as n ++=, Most of the calculations of Section

(7) refer to even modes, which suffer the least damping.

5. THE PROBLEM OF ASYMPTOTIC MATCHING

The problem as posed above is not readily amenable to numerical
solution. When the modes are stable (Im w < 0) the asymptotic
solution F_ is increasing exponentially with n, while F_ 1is
decreasing exponentially. The eigenvalue condition is that the
solution F_ be rejected in the asymptotic matching but, since F_
is in any event exponentially small in the matching region, this

condition cannot be determined accurately.

This difficulty can be avoided by introducing an artificial
destabilising term and studying only marginally stable modes. These
are purely oscillatory as n -+ @ and the difficulty of matching onto

exponentiating solutions does not arise.

We therefore add to the electron charge density a simple
destabilising term of the form - i¢8§, with & a real comstant. The

mode equation then becomes

2 R
%1» [x - id - UMIF =0 (10)

with A and U as defined in Section (2) and
]

3 =(£ kai)u ws
\w, €. (w, + wt)

w <

Equation (10) is solved numerically for real w and real & and the
eigenvalue dm then represents the shear damping as measured by the
magnitude of the electron destabilising term needed to produce margin-
ally stable drift waves. It is this quantity which is henceforth

referred to as '"shear damping'.



6. NUMERICAL METHOD

Eq. (10) has been solved by a numerical shooting method, using a
sixth order Numerov scheme [9]. With w real the asymptotic solution
F. is constructed at the end of the mesh. Using this asymptotic
solution as starting value the function F(n) 1is then computed, by
shooting inwards, and tested against the required boundary condition
(dF/dn)0 = 0. The values of w and § are iterated until this
condition is satisfied. Typically the asymptotic matching is carried

out at n ~ 10-12 and w and § are obtained to an accuracy better

than 37 using around 30 steps per period in n.

Z. RESULTS

At this point, before we discuss the numerical results, it 1is
useful to summarise the steps involved in the analysis. We have
taken a two-dimensional model equation representing long wavelength
drift waves,which incorporates non-uniform ion drifts in the toroidai
field and we have transformed the calculation from the periodic
poloidal domain 6 into the infinite domain n to overcome the period-
icity difficulty so that we may exploit the eikonal approximatiom.
Then in lowest order in the small parameter h the complex frequency
w 1is determined by the ordinary differential Eq. (8) in the extended
poloidal variable n . However, for practical convenience we have
chosen instead to make w real by introducing a destabilising term

§ , whose value is then a measure of the effective shear damping.

This effective shear damping Gm has been computed from Eq. (10)
as a function of the model parameters s,kai,Ty €.0 8 - (We recall

that s represents the shear, k represents the effective wave-

number of the mode, 1 is the ratio of electron and ion temperatures,



and the parameters B = rn/R gt and e, = rn/R T are measures of the
connection length and field line curvature respectively.) In the first
set of calculations the parameters s,kai,sc and T were held constant
as the parameter e was varied. This gives a direct indication of
the effect of the toroidal modulation on the damping of drift waves.

In the second set of calculations kai was fixed and the other para-
meters varied in a manner which simulates a radial traverse through

the minor cross-section of the DITE tokamak.

(1) S’kai’Ec’ T constant and € varying

The values taken for the fixed parameters were: s = 1.0,
kzai2= 0.1, €. = 0.1 and T = 1.0. (The choice of kai is arbit-
rary, the other parameters represent typical tokamak values.) In
Fig. 3 we show ém as a function of sn..normalised to the plane
&léb:*ﬁsn = 0) wvalue, which fé}:pur model is
.5 (1+73T1 + b0) /(1 = b)°.

For n_ = 0 the damping at first increases with increasing € -

This corresponds to the increasing curvature of the central "anti-well"
atn =0 (see Fig. la, lb) which increases the outward wave propaga-
tion. Then at a value of B = 0.05 an off-centre local minimum

forms in the effective potential U(n) (see Fig. lc, 1d). At this
point the least damped mode becomes localised around this minimum

(in Schrodinger equation terms a partially bound state is created).

As e is increased further this mode becomes more tightly bound,

the propagated wave becomes smaller and the damping falls rapidly to

near zero.

For ng = the damping 6m decreases continuously as € is
increased. At small En this decrease is due to a flattening of

the central anti-well (see Fig. 2a, 2b) which reduces outward wave



propagation. Beyond e, = 0.13 a central local minimum forms (see
Fig. 2d) where a partially bound state is again created. However as

this minimum is very shallow, and the damping already small, the effect

of this on ém is less abrupt than for modes with By & 0.

The dependence of w/w, on € is shown in Fig.4. For ng = 0
the mode is centred on the outside of the torus where it experiences
unfavourable curvature leading to a decrease in w/w,. For N, =T
the mode is centred on the inside of the torus where the favourable curva-
ture causes an increase in w/w, which can rise above unity. [In
practice this may be an important stabilising mechanism since the true

electron Landau resonance may then stabilise rather than destabilise the

mode. ]

Dependent on the height and width of the "potential barrier"
responsible for localising the mode, there may exist additional solutions
of the eigenvalue equation, corresponding to excited bound states of the
Schrddinger equation. One such "excited state" has been found for n, = 0,

and the dotted curves in Figs.3 and 4 show 5m and w/w, for this mode.

From these calculations we see that the most dangerous modes, in the
sense of having the least shear—damping, may be those associated with
minima of U(n) which occur elsewhere than at the origin and calculations
[5,8] which are equivalent to expanding U(n) around the origin may there-
for sometimes give misleading results. To investigate this we replace

U(n) by an expansion around n = 0;

U(n) = o2(+ 22 = [1 £ a(2s - 1)1n?} (11)

where the upper sign refers to n, = 0 and the lower to n, = T Then

Eq.(10) can be solved analytically to give:



(£L> [1 + k2a%¢] - L[t -k2a2 ¥ 2¢ 1] £2e_ =0 (12)
Wy 1 % & 7 n
Wy, (UJ:,; * MT) En m;‘: é
§ =g § ———m——- 1 = (2s = 1):[ (13)
o S w2 k23252 w
i

This approximation for 6m is shown in Fig.5 and it will be seen that
although it gives good agreement with the numerical results for e, 2 0.05
the analytic expression fails for larger s when off-centre minima in

U(n) become important.

(ii) Radial Traverse through a Tokamak

To investigate whether the reduction of shear damping by toroidal
effects is likely to be significant in practical devices we have con—
sidered a typical discharge in the DITE experiment [10] which has an
aspect ratio ~ 1/5. At 200 kA the safety factor and the density are
represented by q(r) =1 + 4(r/a)?2 and n =1 - (r/a) respectively.
Using these expressions we have computed the local shear damping
5‘ as a function of radius (taking Te = Ti and (kai)2= 0.1
uniform across the radius). Comparison of this computed value of Bm

with the plane slab model for the same local parameters is shown in

Fig.6. It is clear that there are two distinct regions:

(i) an inner core region within which the shear damping is almost
completely annulled by the toroidal modulations. This region
extends out to r/a < 0.25 for modes centred on the inside of
minor cross section, and out to r/a < 0.5 for modes centred

on the outside.

(i1) an outer region in which the shear damping approaches its plane
slab value as r/a - |, but within which it may be enhanced (for
modes on the outside) or reduced (for modes on the inside) by

as much as a factor 3 at intermediate values of r/a.



These results can be understood in terms of the potential U(n).
Consider first the case n, = . For r/a < 0.25 the shear parameter
s < 4 so that a central minimum cannot form. However the toroidal modu-
lation is strong in this region so that off-centre minima occur as in
Fig. 7a. The undamped modes for n,=m and r/a < 0.25 correspond to
bound st#tes in or between these off-centre minima. For r/a > 0.3
the shear parameter exceeds | so that central minima in U(n) might be
expected, but in this region the toroidal modulation is too weak for

this to occur so that there is only a partial flattening of the central

"antiwell" (Fig. 7b).

When n, = 0 a central minimum does occur for r/a < 0.3 (where
s < § and toroidal modulation is strong) and the undamped modes for
N, = 0 and r/a < 0.3 correspond to bound states in such a central
minimum (Fig.7c¢). However, in the region 0.3 < r/a < 0.5 (where
s > {) the centre is again a local maximum and the continuation of the
undamped modes into this region is due to the off-centre minima as in
Fig. 7d. Beyond tr/a ~ 0.5 toroidal effects again become too weak to
maintain the double well structure and the predominant effect is the
increase of the antiwell curvature around n = 0 (Fig. 7e) leading to

increased damping. As r/a + | this effect decreases as the toroidal

effects themselves become weaker.

We see from this example that in a practical system the toroidal
effects are indeed important and can almost completely annul the shear
damping. We also see that this annulment can arise in more than one
way.

8. CONCLUSIONS
It was suggested in Ref.[4] that the shear damping of drift waves

in a toroidal system can be quite different to that in the conventional

plane slab model (in which the field and shear are uniform) with similar



average parameters. In the slab, shear damping is due to the convection
of energy from the central mode rational surface; in a toroidal system
modes centred on different rational surfaces are coupled so that energy

convection is inhibited.

In the present paper we have investigated this in a more realistic
model (derived from that of Ref.[5]) which represents a large aspect
ratio, circular cross section, toroidal system. After a transformation
of the poloidal coordinate to the infinite domain the problem of shear
damping is again represented as one of wave propagation — but now in a
varying effective potential U(n) whose characteristics depend on the

degree of toroidal modulation of the field.

This investigation confirms that toroidal effects can indeed annul
the shear damping of drift waves. However it also shows that this can
occur in more complicated ways than originally envisaged. Not only can
the wave energy be trapped in a central minimum of U(n), it can also be
trapped in off-centre minima of U(n). Indeed these off-centre minima
can occur when the toroidal effect is too small to create a central
minimum. Consequently approximations [5,8] which are equivalent to an
expansion of the potential U(n) around n = 0 may sometimes be mis-

1eading,

Although our model still represents a considerable idealisation of
a real confinement system, an application of our calculations to the
parameters of a typical Tokamak, such as DITE, suggests that in practice
toroidal effects are indeed large enough to substantially affect shear

damping.
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APPENDIYX

HIGHER ORDER THEORIES

In the main text we have investigated the difference between shear
damping of drift waves in a torcidal system and in the conventional plane
slab. For this the lowest order approximation in the ratio of perturba-
tion wavelength to equilibrium scale length is sufficient. It involves
only an ordinary differential equation, in the extended poloidal variable
n, whose eigenvalue mo(no) is an approximation to the true eigenvalue
w. However to demonstrate the formal connection between Wy and w,
to determine g and to find the full structure of the perturbation a
higher order theory would be required. The development of this, which
resembles that for the corresponding MHD problem [7,11], is described

below.

In the present model the underlying, two-dimensional equation for
drift waves is Eq.4. After transformation of the -poloidal variable to
the infinite domain n and introduction of the eikonal representation
this becomes Eq.(7) of Section 3 which we can take as the starting point
for development of higher order approximations. It is convenient to

re-write this as

. 2 W, E_\N2 ~2 w, = W
2.2( oo _ _ih 3\, [Tk "n)% 3%F _ (T _ .2
L ai\s(n no) k BI) 5 \w kai an \m* + WT k ai J
g Ey ih 2
t— (cosn + s(n - nO)SLnn + sinn '1;-§E)F =0 (A.1)

We now seek solutions of this equation which vary slowly compared
to the short wavelength k !. To facilitate this we have introduced in
(A.1) a formal ordering parameter h (finally to be set equal to unity)
which identifies the order of magnitude of each term in an expansion in

(k~1(3/9x). 1In this expansion we take €L ™ e ~ (i, = w)/w ~ kza%.



The leading approximation of any expansion in h will be

7 F =0 (A.2)

; s W, X) 1is :
where ‘Zé(n’ Ny» Yoo ) is

2
L — W , E o)
. 2, a k"M o R L [r e\ B2
Lo = (kay s)“(n no) (:* gl ai) +\uj kai) v

%
2 i} (cosn + s(n - no) sinn) (A.3)

Equation A.2 is that studied in the main text; it leads to an
eigenvalue wo(no, x) and an eigenfunction fo(n,.r) . However since
(A.2) is an ordinary differential equation in n alone, fo may be

multiplied by an arbitrary function A(x) , making the full solution

FO = A(X) fo(n,.r) . (A.4)

We now assume that this "amplitude" A(x) varies on some scale

intermediate between the equilibrium scale length and the wavelength

k !. This is represented formally by writing A = A(y) where y is
a scaled variable, X = hI-U}I. We then develop F 1in ascending powers
of h. If 0 <v < i the first terms in such a development are

Fe A £(n, 1) +b'F (7,0 + 0 F,(n, 7,0 (@4.5)

and the functions F1 and F, satisfy

-L1f0A+ L E =0 (4.6)
and
. , 3L
T ’ 7 — - =
tx_z(fOA) +~—1Fl +"“0 F2 + awo {w wo(x)] 0 (A.7)



In this last equation we have treated the differeace between the true
- 2
(w) and local (wo(la) eigenvalues as of order h“v; we shall return

to this point later. The operators.id and J% are defined by

L --L120 3 A.8
1 ks an 3y ( )
: | ARG g

L. == . . (A.9)
2 2(ks)?2 ang 9y2

The operator ”Zb is self adjoint for functionms fo(n) which

- 0 as ]nl - and the integrability condition on (A.6) is there-

fore
al 5
_a = —9 ¢ \=
Jfo(n, x) ano fo(n, x) dn = <fo Bno fo/, 0 (A.10)

Recalling that <fc’.i.0 fo>»= 0 for all N, » this is equivalent to

=2 = 0 (A.11)

which determines the hitherto unknown phase n, - In our model sym-
metry ensures that (A.11) is satisfied when = 0 or N, = m. Then

Eq. (A.6) is easily solved for F s

af
- o dA(y) o
Fi e T 3y ° (A.12)

The integrability condition on the second order equation (A.9) is

. a2l . 3] of 5 3;
1 o] KN e ] o d=A "o
{2 <, '—f—anoi fo/,+ <EO on, an_ >J dy2 (0 = w_(x)) <f0 o, EO>A(Y) =0,

(A.13)

and using the relation



23l 3L of 324 3L

L 7 0 s 0 1 0 0 :
=S e M YOO 3 — £ =
2 \fo an f0->+ &fO an an > T 2 3n 2 <—0 Sw f0> 0 (A-I4)
) o o 0 0
this can be reduced to
3y 2
i o d“A 2.2 _ -
5 W qxz T kTs (w wo(r)) A(x) 0 (A.15)
where we have now set h = 1 and discarded the scaled coordinate v

in favour of X throughout.

Eq. (A.15), which is the central result of the higher order theory,
completes the determination of w and of the mode structure. This equa-
tion depends only on wo(x) and is similar in form to that for a plane
slab (and might therefore be referred to as the equivalent plane slab prob-

lem)but the toroidal effects are incorporated through the function wO(I).

When mo(x) i1s fully complex there are well localised solutions of
(A.15), but if wo(x) is almost real (weak damping) well localised solu-

tions exist only if

32m0 aZmD
—_— .——=> 0 . (A.16)
Bno Axe

If (uo(x) is real but (A.16) is not satisfied then the solutions of
(A.15) are oscillatory and may extend over a wide region. In this

event the boundary conditions to be applied to (A.153) depend upon what

additional physical processes come into play at the boundary.

At this point we must return to the question of whether it is
legitimate to treat (w -wo(r)) as a small quantity, formally of order
2v . . : §
h™ ,as is necessary if (A.15) is to be self-consistent. There are two

important situations where this is strictly correct. In the first we

. . o h .
expand mo(x) about a stationary point, wo(r) = w + mo(xﬁgry2, making



(A15)

324

w2 . 2
% Mol kzsz((w - Q) - 0.%)31 =0 (A17)
Bng dx? ax?

® and (w - wo(x))

Solutions of this equation have a width Ar/r ~'(krn)—
is ~ (kr:n)"1 so that (Al17) is entirely self consistent and corresponds
to v =14 .

In the second case we expand wO(I) about a W.K.B. turning point,

making (Al15)

32w 2 dw
% Ao k252(~§fo) .XA(X) = 0 (A18)
an? dx?
o)
This is again self consistent and corresponds to v = [/3.

More generally, a W.K.B. solution of (Al5) leads to the phase integral

condition

3[(& - u_ () tax = jﬂ ¢ ax = {ZmEn @ 32‘“)5 (a19)
Sng

and this is consistent with (w - mo(x)) small so long as w <kr.
However in this event it would, formally, be equally valid to expand
wy(X) and to use Eq. (Al7). To obtain solutions corresponding to
larger values of w the W.K.B. ansatz should be made at an earlier

1
stage , by setting A ~ exp i.[rdx. Then the lowest order equation

defines « by

lThis approach has been used by Frieman, Dewar, Glasser, and others [12]
and by Lee and Van Dam and others [13] and more recently, specifically
for drift waves, by Frieman [14]. These authors have established (Al9)
as the correct W.K.B. connection formula. We are grateful to them for

various discussions and for informing us of their results.
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mo(‘rc, x) = w. (A20)

Eq. (Al8) is still required in the vicinity of the turning points

where « ~0 and w 1is determined from the W.K.B. integral as in (A19).

Summary

The higher order theory always produces a second eigenvalue equation,
this time in the (radial) x-coordinate. In effect, therefore, our formal-
ism replaces the original two-dimensional problem by two one-dimensional
problems. The first problem is in the n-coordinate, with an effective
potential U(n), and yields mo(x,no) and the shape of the perturbation
in n. The second problem is in the x-coordinate and uses mo(xyno) as an
effective potential to determine @ and the shape of the perturbation in
X = so completing the solution. Thus the entire solution is contained
within the function wo(no,x) which we computed in the main text. In
this description the effects of toroidal modulation first enter (and are
easily visualised) through the modulation of the effective potential U(n).
The effects are thereby incorporated in mo(no, x) which in turn incor-

porates them in the final (equivalent plane slab) eigenvalue problem.

There is, however, one reservation to be made. The development
of the higher order theory uses a formal expansion in a parameter which
can be expressed as (ai/r)(kai)_1 . However the basic 2-D model, Eq. (4)
is itself an approximation based on an expansion in ai/r and r/R and
is correct only to zero order. Consequently adoption of an improved basic
2-D model, which retained terms of order (ai/r) would affect Eq. (A.I15).
However the general structure of the higher order theory described above

is applicable to any 2-D model.
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Fig.1 The potential U(e.n) fors=1 and M9 =0. (1Ia)a=05: (Ib)a=1-0; (Ic)e=1-5;(1d) a = 2-0.
The broken line is U(a = 0.77).

CLM-P575



! | ! ! 1 1 ! I

0 2 4 6 8 0 2 4 6 8

Fig.2 The potential U(e,n) fors=1and ny =m. (2a) =0-5; (2b)e=10: (2¢c) a=1-5; (2d) a = 2-0.
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Fig.3 The shear damping as measured by 5, (the electron driving required for a marginally stable mode)
as a function of the modulation parameter €n. Curve 3a, for No = 0 i.e. modes centred on the outside of
the minor cross section. Curve 3b, for Mg = 7, i.e. nodes centred on the inside. Curve 3¢, forn, =0.a
higher hanmonic solution. In Fig.3, the other parameters have the values klaiz =0-1,e,=0-1, s=1,and
8y has been normalised to unity at €, = 0.

fle

Fig.4 The frequency w normalised to cw, as a function of e,. Curve 4a for n, = 0. curve 4b for n, = 7.
curve 4c for n, = 0 higher harmonic. All parameters as in Fig.3.
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Fig.5 Comparison of § ;, as shown in Fig.3a.b (solid curves) with the analytic result given by the strong
coupling theory for &, (dashed curves).

fla

Fig.6 The shear damping as measured by 8 (normalised to §,,(e, =0)) as a function of r/a for typical
q and n profiles in DITE tokamak. q=(1 +4r*/a’),n ~ ng(l — rfa) and aspect ratio a/R = 1/5. Curve
6a forn, = 0: 6b forn, =7.
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Fig.7 The structure of U(n) forn,, = 0.and 7 at various radii in the DITE tokamak with profiles taken as
g~1+4r/a’ n~ ng(1 —r/a). The broken line shows the potential U for the equivalent slab problem
(éq =0). The parameters appropriate to each case are:-k*a; =0-1 and. (a) ny =m, r/a =025 (b)

Mo =m.r/a=046; (c)n, =0.r/a=0-2; (d) No=0r/a=04; (e)ny=0.r/a=07.
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