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ABSTRACT

This paper discusses the maximum plasma pressure for stable contain-
ment in magnetic fields which possess a non-zero minimum in field strength,
(minimum-B fields or magnetic wells)., The basic limitations are ones on
the pressure gradient and are calculated exactly for a special class of
equilibria and more generaily by an expansion procedure based on a shallow-
well approximation. Transcribed into estimates of the critical pressure
itself, these results indicate a maximum pressure equal to the depth of the
magnetic well. If B, is the field strength at the largest closed [§|
contour and B the field strength at the lowest point of the well then

p,max = (B3 - B3).
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I. INTRODUCTION

It has been shownl’2 that hydromagnetically stable equilibria exist in magnetic fields
which possess a non-zero minimum in field strength; such fields are now referred to as
"minimum-B fields" or "magnetic wells". The stability of these equilibria was demonstrated
only in the limit of vanishing B (where B is the ratio of plasma pressure to magnetic
pressure, i.e. P = 2p*/ba) and the present paper is concerned with the problem of deter-
mining the limiting p for plasma stability in magnetic wells, It is shown that in
general this is related to the depth of the magnetic well, being given by

(BZ - B2)

Pe 87

G

where B, is the value of |B| at the plasma surface and B, is the minimum value of

|B| (so that (B? - B2) is a measure of the depth of the magnetic well,)

The main calculation is based on an expansion procedure - somewhat similar to that
developed by the Princeton Groups for the calculation of critical p in the Stellarator,
That is, we expand both the equilibrium configuration and the energy integral &W, (the
minimum of which determines stability by its sign), as asymptotic series in powers of small
quantities. There are, however, important differences between the present work and that of
the Princeton Group. For example the requirement of periodicity of the perturbations
played an important role in the Stellarator work whereas it plays none here. On the other
hand the anisotropy of the pressure tensor is vital to our calculation while it did not
enter that on the Stellarator. In addition to the main calculation related topics are
discussed in appendices; Appendix A gives a fuller analysis of the equilibrium than that
in the main text and discusses the relation of the vacuum field to that in the presence of
plasma, Appendix B gives a rearrangement of the Kruskal-Oberman energy principle which is
more‘convenient than the original form, and Appendix C discusses some exact results obtained

for special equilibria and which are not restricted to shallow wells,

The calculations of stability in Reference 1 are already essentially based on an ex—
pansion procedure, the expansion being in powers of the small quantity pB; that is one

writes

&W = 5w°+6wf3+6wﬁﬁ+5w[3i3ﬁl+ vee (1.1)

and then shows that the minimum 5wo = 0 and the minimum BWﬁ > 0, At sufficiently small

B, &W is negligible and the system is therefore stable, Instabilities may arise when

PB

B 1is large enough for successive terms &W etc. to become comparable with BWb and
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one method of determining the critical P might be to evaluate awﬁﬁ. However, there are

practical and logical objections to this., For example, if 614\1[3[3 is comparable with GWB
then one must expect that &W is also comparable with 6Wﬂ and the B-expansion is

PRP

apparently invalid.

This objection can be overcome, and the problem much simplified if the expansion of
8W is made not just in the single small quantity [ but in several small quantities,
which are then grouped appropriately. One can then obtain an expansion of &W in which
stability is again determined by the sign of the first non-zero term in the expansion

rather than by comparison of several terms,

To perform this sort of expansion we regard the magnetic field as being made up of a
number of constituents, The basic zero-order magnetic field is a uniform field go in
the z-direction and magnetic well is created by the addition of a "mirror" component
Em and a "stabilising" component Es' This terminology is chosen because the super-
position of a mirror field and a multipole (stabilising) field is a well known way of pro-
ducing the desired form of minimum-B fie1d1’4} However the significant properties of the
components which we call "mirror" and "stabilising" are that the 'mirror" component is
principally parallel to Eo while the "stabilising" component is purely perpendicular to
Eo' A further contribution to the field is produced by the plasma itself and is denoted

by g@ so that

§,= + + B ass (1.2)

B
~0
where gm, Es’ Qﬁ are all small compared to Eo' This approximation corresponds to con-

sidering the stability of plasma in a "shallow" magnetic well. The pressure tensor

P=DJ_%+ (DII—PJ_)nn ese (‘»3)

~
~ e A

is likewise treated as a small quantity compared to the magnetic pressure Bg/é, and we

therefore have to consider a number of small quantities

W B b g, ks =Rii
Bo = M BO =0, BO - ﬁ! BO = BJ_’ BO = Bll ssas (1-4)

In principle we should now expand OW in powers of these small quantities and then group
terms together to obtain a stability criterion. However it is more convenient to do the
grouping first by attributing relative orders of magnitude to the small quantities o, U,

B, PBrs Pr in terms of a single expansion parameter X and then to expand in powers of

this single quantity.
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Our first task is therefore to assign the relative orders of the small quantities,
The appropriate ordering is that in which all the relevant quantities appear in the even-
tual stability criterion and one can arrive at this ordering as follows. The earlier work
shows that V|B| plays an important role in determining stability at low B, so that
QS, Em, Eﬂ must all contribute to |§| in the same order in A. Because Es is per-
pendicular to Eo it contributes to |E| only as g; and must be chosen of lower order

in A than gm or Eﬁ' Hence the appropriate ordering of the field components is

~ ~ 2 ~ 2
B, ~ M, B~ B, 13,'9 A BO . wis {(1e5)

The remainder of the ordering is determined by consideration of the equilibrium equa-
tions which are examined briefly in the next section., A more detailed discussion of

equilibrium is given in the appendix.

II. THE EQUILIBRIUM SITUATION

If we expand the fields in the equilibrium equation

ixB=V.p o (2

then in lowest order

P
S X

= Vp, + 0 [,IJO'V(PII - p.)] ees (2.2)
where n, is a unit vector along go. The component of j‘3 perpendicular to n, is

given by
=—gT wew (243)

and as V-jE vanishes identically the parallel component of current jﬁ is zero in this

order so that

V x B = "3= e i LR ] (2-4)
~g By
If we are to take Eﬁ of order A® then clearly p, and j|3 are of order M\*, The
appropriate order for p; could be obtained by examining the equilibrium in a higher
approximation but it is simpler to return to the exact equation (2,1) and take the compo-

nent parallel to B, that is

dpy _ -{pL - py) 3B (2.5)
as B ds e



then, since p,/B? and %g are both of order A2, we must take p;/B® ~ k&.

==1 E

To the order in which it 1s required for the stability analysis the equilibrium con-
figuration is completely specified by giving p, using (2.5) to determine p; and (2.4)
to determine lﬁ and EB. The description of the equilibrium, therefore, requires only
the solution of (2,4) for gﬂ. This is a classical problem whose solution is known for a

variety of distributions p; and is discussed in Appendix A.

III. EXPANSION OF ENERGY INTEGRAL

In the following sections we examine the stability of the equilibria outlined in
sections 1 and 2. This is done by investigating the sign of the change of potential energy
&W of the system when subjected to an infinitesimal arbitrary displacement é' If this
& is positive for all possible displacements the system is stable, while if &W can be

made negative for some choice of &, it is unstable.

A number of different energy principles, corresponding to different models of the
plasma, exist, The simplest of these, the Magnetohydrodynamic Energy Principles, is not
applicable to our problem since there can be no equilibrium with scalar pressure in
minimum-B systems. The Double—Adiabatic5 (or Chemeoldberger—Lowe) Energy Principle is
based on a fluid model of the plasma in which the pressure is a diagonal tensor with two

independent components
P=py ; + (py - py) D
and heat flow along the magnetic field is neglected.

The Kruskal-Oberman (6WKO) Energy Pr'inciple7 is derived from an individual particle
approach, in the limit of small larmor radius. This theory neglects the effect of a per-
turbed electric field parallel to B (which plays a somewhat similar role to g, in the
fluid model), and it ignores the requirement of quasi-neutrality. These effects have been
incorporated by Newcomb8 in possibly the most correct form (SWN) of Energy Principle.

Various authors have obtained the following inequalities among these Energy Principles

W
W < BNy < By

and since 5WN is the most nearly correct form available, one may regard éwaL as an
upper bound for BWN giving necessary criteria for stability, and 6WK0 as a lower bound

for 6WN giving sufficient criteria for stability. The Kruskal-Oberman theory is thus the



most conservative and, according to the other theories, yields an underestimate of the

critical P, but it requires a more detailed description of the plasma than awCGL’ in-
cluding some terms not immediately expressible in terms of macroscopic quantities such as
PL or py. Before tackling the Kruskal-Oberman theory, therefore, the method was applied
to the simpler '"double adiabatic" theory. A brief account of this simpler calculation has

already been published9 and here we will concentrate on the calculation based on the

Kruskal-Oberman energy principle.

Kruskal-Oberman Theory

The Kruskal-Oberman energy principle treats correctly the motion of particles in the
small larmor radius limit, however, the constraint of charge neutrality is neglected and
in this respect it leads to sufficient rather than necessary conditions. The appropriate

function is

AW = % f W dt
with
W= Q%- J:Qx g+ (2ps + c)(VeE - @) + (£:Wpy)(V-E - @)
+ (&-%u)a - (pu - p)[n-(2-V)E + 2 (0-V)g - q° - q V.£] e (3.1)
- Z my //V" 5c <vii q + uB(V-E - q)>3 dpde
where
Q=Y x (g xB) a=(n9E - (V) n e 1822
q=na .

The displacement parallel to B, En, can be taken to be zero, since &W can be shown to

be independent of this component of E. Henceforth therefore E always denotes a vector

which is perpendicular to B. The average appearing in (3.1) is defined by

<e>= [%s // e (3.3)

B af
Z //v” bl uB)? dude vies (Bed)

where f(p,s,gL) is the particle distribution expressed in terms of the magnetic moment

and

H, the energy e, and the parallel velocity v, is given by %vf = e - uB. We shall



restrict ourselves to distributions for which %2 < 0; this is in any case necessary for

the derivation of the energy principle given by Kruskal and 0bennan7.

The appearance of terms which depend on the particle distribution function rather
than on purely macroscopic quantities, causes some difficulty and the ordering procedure

must first be extended to include such terms.

At first sight it may appear that because terms such as 'C' depend on the presence
of plasma they are of at least as high an order in A as the pressure components, i.e.
~ %2, However this is not the case, as we may see from the following argument. In terms

of the distribution function f(y,s,gi) the perpendicular pressure is

oYY

and the parallel pressure is

B e of
o uBfdude = :{:n& /].BVHHB e dpde vas (By5)
i

: Bvy® of
pn = - Zmi // 3~ 3¢ dude .er (3.6)

so that according to Schwartz' inequality

2

PL
- C p- T ses 307
> 3 (3.7)

dnd p,?/p; is a zero-order quantity. Again if we take the derivative of p, along the

magnetic field

dpyL _ 1 OB
= = (C+ 2p,) = .o (3.8)
. ]
which, because 32* and %g are both of order A2, again indicates that C must be

treated as a zero-order quantity. The order of other terms involving af/de can be gaged

from comparison with the expressions (3.5) or (3.6),
We have now to expand the energy integral (3.1) in powers of A\ by writing

- 2 2 a
B=B, + M +MB +1 Eﬁ + 0(A?%)

p. = A%p; + 0(2?)

cee (3.9)
pu = Mpy + 0(2°)
Jj =2+ 00®) .



The displacement £ which minimises &W will depend on the configuration, i.e. on A,

~

so that it must also be expanded in A and so

E=§ + M +2g +0(07) . .es (3.10)

4

We find that it is necessary to carry the expansion to fourth order and that certain
contributions of lower order vanish because of cancellation between many terms of 3.1. In
order to avoid carrying these unnecessary terms it is convenient to rewrite O&W in a mod-

ified form, We introduce the notation

E-VB
:'B——-ES e [Ba11)

then, as shown in appendix B, &W can be written in the more convenient form
~ 2p, + C
oW = QE{1+EJ"—B-§—D—"'] +Qﬁ{1 +—pJ'—Br-'-}
2Qq
F +9) {(2“ +Bs - E'VPJ ven (3.12)

+ q (§'VP|| + (pL - pu)s) - (n-Q x E)jy [1 + B

B Q '
ij_ f/ 5 g—z <vilq - uB (—Bﬂ + 8)>% dude

(PJ_ = Pu )}
—_—

The advantage of using this form of &W is that q, s have no contributions of lower

than second order and j,; none of lower than fourth order., (Appendices A, B),

The contributions to &W in various orders of the X expansion are now easily

obtained. In zero order

W= [QR]%+ (1 + B%)[Qﬁ]z - Zmi //3—3 % pCQR D2, vos (3.13)

a

Because a—::: < 0, 6W0 is certainly non-negative if

(1 +§Cg)>o eee (3.14)
o]

However, even if this condition is satisfied 6Wo can still be minimised to zero by dis-

placements such that,

) =0 . eee (3.15)



that is,

9F
o _ =0 _
& = Bo dz 2
a0 0 (3.16)
Q) =~-B, (Vg)=0 .

If condition (3.14) is satisfied, then, we must proceed to higher order in the expan-
sion scheme in order to ascertain the stability of the system. However if (3.14) is not
satisfied then the system is certainly unstable since awo can then be made negative by

some Eo' A suitable Eo can be found as followsa: Consider a localised displacement

-(x - x)?
%o ] uw (3TT)

=m, Cosk;z Cosk,[m;*(x - 50)] exp [ —pire—

gﬂ‘

where m, is a unit vector perpendicular to n . Then by choosing k; » k; » 6-1, Q7
and, because of the oscillatory behaviour of En’ it will also be greater than < Qn>2.

The energy integral 6W0 is then dominated by the tem
Ly o012
(1 + Bz) [Qf vee (3.18)
o

and so will be negative if (1 + C/B3) < O.

At the zero-order stage, therefore, we obtain a necessary condition for stability,

according to Kruskal-Oberman theory, namely that (3.14) be satisfied.

In the next order in %, 8W; = 0 and
W, = [QL] + (1 + _5) [Qii]? Z /f i 52 Qi D* . wee (3.19)

If (3.18) is satisfied this is again non-negative but is zero for E; satisfying
g1=Vx(§1xEO)+Vx(§ngS)=O. aws (32200

A E, which satisfies (3.20) and ensures that g remains perpendicular to B in

this order is

B xV (£ °B.)B
= P - éga == cee (3.21)
o] (6]

~

with ¢ defined by

B_O'Vl}f = (‘%0 x 23)‘;10 . wes (3.22)



Proceeding further one finds &W; = 0 and

W, = Q° (2“+s)(€ Vp¢)+C(-—+ s)? ons (B 2E)
=2 é_r. 2 % 2
Z //VII BSP<B+S> SuRe
E<VB
where the subscripts on Qp = Q and sp; =5 = NB have been suppressed.
o

This expression (3,23) leads to sufficient criteria for stability which can be ob-

tained by writing it in the form

_go-Vp_L 2

Q@+ (1 +C/8%) | + 5oy

) Zmi //Vu 3e uB)? <Q" + 8 D% dude ces (3.24)

1

, fos - 5w [£,-V(py + %B%)]
B® + C .

W4

For example, in the special equilibriai’IO with the pressure of the form p, = p,(B),

pn = py(B), it can be shown that

E_,'O-ij_ = Csy =Cs

and

dp. (B)
C=B5 .

hence in this case

BB
aw4=g+(r+%)qﬁ-zmi//ﬁ oLy <B +8% . ... (3.25)
i

As in the lower orders, this is non-negative when (1 + C/B3) > O, however, in this order

8W 1is actually positive definite, This is because the presence of the extra term "s" in

the last expression means that, unlike BWB and &W,, the fourth order expression &W,

E VB 9&,
cannot be minimised to zero by Q =0 (because s = Bo and 3;— = 0 are sufficient to

ensure that the last integral does not vanish even when Q, = 0)., That is, OW, consists
of three non-negative terms which cannot simultaneously be zero. Hence &W, is positive .

definite and the system is stable whenever (1 + é%) > 0,
o



Combining this last result with the necessary criterion obtained in zero order we see
that a necessary and sufficient criterion for stability of the special equilibria

p. =p.(B), py =py(B) is simply

(1 + C/B%) = (1 + %(—;g—*) >0 ees (3.26)

1 -
In fact, as shown in appendix C, (3.26) is an exact resultI for these special equi-

libria, and is not restricted by the limitations of our expansion scheme.

IV. APPLICATION

Returning to the general result (3.24) we see that a sufficient condition for &W,

to be positive is that (3.14) be satisfied together with

dT)O ses (401)

(£, 7(py + ¥B7)] [§ E.+VB - £ +7p.]
f C + B®

and by (3.16) E, is independent of z so that (4.1) can be written as

1|2 ey |[ S 2B L 2R
fm[a& (py + 48 ﬂ[s ox, "o, | 70 ssn M)

where the integration is along a field line. This condition, which is valid for small p

2,12,13

and small field curvature, has some resemblance to the well known zero-p criterion

1 0B J
98 9P 4
f 37 oV o s<0 ,

which holds for axial symmetry.

A more restrictive requirement which ensures stability is that the integrand of (4.1)

itself be positive,
(&, V(py + %B%)] [Cs 'Eo‘VPL] »Q . ees (4.3)
Now to the required order in X

Ve pp=F V4B + VT -

wit

where

BE
szmiH# Uf dude

- 10 -



and (4.1) can be written

[ﬂgD.VL(pJ_ + %B?)] [EO-EF] <0 ., eee (4.5)

If the vectors V,(py + %B®) and V,f are not parallel it is always possible to choose a

E, which violates (4.5), and so no simple sufficient condition can be obtained; eachmse

must be discussed individually using the less restrictive form (4.1).

If, however, we consider equilibria such that the current along magnetic field lines

is zero (jy = 0), we have from ref. (1) and appendix A that, to \* order,

(V.LPJ_ x VJ'B).EO =0

so that the vectors V,p, and V,B are parallel to each other and hence to V,f.
Then we can write

V.f = aV,B

for some scalar function a, and a simple sufficient condition because

aV BV, (p; + %B®) ¢ 0. eer (4.8)
Together with (3.14), which can be written with the aid of (3.8) in the form

_VnB'Vu(PJ_ + %B%) >0 , ces (4.7)
equation (4.6) gives a complete sufficient condition for stability,

Equations (4.6) and (4.7) limit the maximum pressure gradients in the system and hence
limit the maximum plasma pressure for which stability can be maintained. Equation (4.7) is
necessary and the pair together are sufficient, (These same results can be obtained from
the energy integral due to Newcombs, hence (4.7) really is a necessary condition even in

that more accurate theory.)

Although the basic limitation is on pressure gradient, it is convenient to have simple
direct estimates of the maximum pressure (or maximum PB) which is allowed in a magnetic
well, Such estimates are obtained by integrating the gradient condition. For example for
magnetic wells in which B increases monotonically (and we consider no other) the condi-

tion (4.7) shows that the maximum plasma pressure is restricted to
ma.
PL * < 4, B? ves (4.8)

where A;B2? measures the depth of the magnetic well taken along the line of force through



the minimum point to the edge of the plasma. To obtain a similar result from (4.6) we

must first consider the coefficient o which connects the variation of f(p,e,x;) with
the variation of B. If f is independent of x; then we returnl to the special equi-
libria pg = pL(B), pu = pu(B) and for this case o = 0 so that (4,6) is automatically

satisfied. Equation (4.8) then provides an adequate (and, in fact, exact11) estimate of

max
p_L -

In general « is non-zero; if we try to obtain greater plasma densities by increas-
ing f near the centre of the well then f will increase as B decreases and a will

normally be negative., Hence in most cases of interest (4.6) can be replaced by
V,B-V, (p, + %B?) >0 ees (4.9)
and so leads to a maximum pressure
pl P - kA, BR .e. (4.10)

where Aj B? 1is a measure of the depth of the magnetic well transverse to the field lines.
In many situations the transverse depth of the well is less than the longitudinal depth so

that (4.10) is a more restrictive condition than (4.8).

It should be borne in mind that the depths of well referred to above are the actual
depths in the presence of plasma. Because the plasma is diamagnetic it tends to increase
the depth of the magnetic well, by an amount which is proportional to meax but depends

on the shape of the plasma distribution, Hence it is possible to write (4.10) as

max 1 2
PL = kk AJ'Bvac von (4a11)

where A*B:ac is the depth of the magnetic well in the absence of plasma and k is a
shape dependent coefficient which is greater than unity. It is related to the classical
demagnetising factor and can be calculated exactly for certain simple shapes (appendix A),
This last form (4.11) relates the limiting pressure to the depth of the depression in the
basic vacuum field and so is particularly useful for a quick survey of proposed contain-

ment systems,

V. DISCUSSION

In the preceding sections the stability of a plasma in a minimum-B field has been
analysed by an expansion procedure, This procedure corresponds to examining plasma sta-

bility in a shallow magnetic well, The maximum pressure is restricted by conditions (4.6)

g T



and (4.7) on the pressure gradient, These can be translated into direct estimates of the
critical pressure such as (4.8) and (4.10) which show that p;nax is equal to the "trans-
verse depth" of the magnetic well or to its "longitudinal depth" whichever is less. The

maximum ( which can be contained in a magnetic well is

where B, is the value of IE] on the largest closed lgl contour (see eg Ref.1) and

B, is the actual minimum of [B] in the containment region. This is an encouraging

result since BC can easily attain values as high as one-third or more in practical systems,
This is significantly greater than other cohfinement systems such as the Stellarators.
(Strictly the well depths are those measured in the presence of the plasma and are even
deeper than those of the original vacuum well, to which they can be related as in appendix
A.) Restrictions on plasma pressure seem to arise in two different ways, one by a restric-
tion on the parallel gradient (4.7) and the other on the perpendicular gradient (4.6).

These two cfiteria can be related to two different forms of instability, though the dis-

tinction is not clear cut,

The restriction on the parallel gradient stems from the condition (1 + C/B®) > 0, and
the corresponding instability (3.17) is closely related .to the "mirror" instability in a
uniform plasma. This is normally regarded as imposing a limitation on p2/p, and such a

limitation does indeed follow from (3.14) and (3.7); namely pi/3p; < BZ.

The restriction imposed on the perpendicular gradient is given by (4.6) which, using
(4.4) becomes

o
(5=g) WbV (pL + %B%) <0 . ees (5.1)
The interesting situation is a <0, C < 0 so we can write this asl4
V_LP_L'VJ_(D.L + 'IéBz) <0 s s (5- 2)

The last factor in this expression is related to the radius of curvature and hence viola—.
tion of this criterion occurs when the plasma diamagnetic currents have so modified the
vacuum field that the relative signs of V,p, and the curvature have been reversed compared
to the zero-f situation. In the low-B limit the lines of force in a minimum-B system are
everywhere convex toward the plasma - that is have "stable" curvature. If one now adds
some plasma to the centre of the system then, being diamagnetic, it causes the lines of

force to "bulge out", that is it tends to create an unstable curvature,

- 13 -



The corresponding instability is akin to the "kink" instability, .but the anisotropy
of the pressure, and the close connection between pressure gradient and pressure anisotropy
in mirror systems, makes it difficult to relate the instabilities in a magnetic well to the

simpler form of instability in infinite media or infinite cylinders.

In order to obtain these results we have introduced a specific ordering of the various
expansion parameters and it may be asked why our choice is the “correct" one. Briefly the
reason is that with any other choice of ordering one particular parameter would be dominant
and no critical condition would have been obtained. Perhaps the most arbitrary element in
the ordering is the relation of pLﬁ to A. We have taken pLB ~ A% and have obtained
the criterion given above. If p, were larger, say of order A, then the equilibrium
condition (2.5) would require py ~ A* Then in zero order we would again obtain the
expression (3,13) so that a necessary condition would again be (1 + C/B*) > O which for

example with p, = p,(B) leads, as before to a critical pressure

P < BBy oo (5.3)
However in this case AB; would be simply ABB, the depression due to the plasma itself,
and because ABB < py/B: equation (5.3) could never be satisfied. Hence if the orders
B

of magnitude are such that p;" ~ A the system is always unstable.

If on the other hand p; were much smaller, say of order 2%, then for equilibrium
Pn ~ 2% and C~ A It would be found that &W, can be minimised to zero in the same way
that BWO and &W,; were before. Then stability is determined by &Ws which would be

given by

BS r
MWy = - sg (EO'VDJ_) as ng = Zmi ./'/;,T E I-l2 < S, >2 vee (5.4)

and so is positive if

EO-VB(CS - go-Vpl) >0 ess (5.5)

which is clearly just what is obtained from (4.3) when Vp « VB®, In fact with this order-
ing &Ws is simply proportional to p; and so cannot lead to a critical pressure; it is

the same as the B - O case discussed in Ref. 1.
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APPENDIX A

THE EQUILIBRIUM CONFIGURATION

In this section some features of the equilibrium are examined in more detail. In par-
ticular we consider the solution of the equilibrium equation and the calculation of Eﬁ’
the magnetic field due to the plasma in )°® order. We also consider some higher order
equilibrium quantities and the way in which these lead to constraints on the equilibrium

pressure distribution,

The Plasma Field

To second order in X\ the equilibrium equation gives

Bo x Vpo
j_l_=—-§"§__ ese (ACI)
~ (o]

where p, is the (arbitrary) second order perpendicular pressure, It follows that

V:jr =0 so that Jj, is constant along lines of force and for plasma surrounded by vacuum

jn = 0. The field due to plasma currents is therefore given by
. P
7 o B o = g % (R \ e (A2)
B = By
VB, = 0 eee (AL3)

and the problem is simply that of finding the magnetic field due to a distribution of mag-

netisation
pL B
M= - B,° ; eee (A4)
0
The general solution of (A.2), (A.3) is
Bo
By=-pPLpzt W voe [AuS)
P o
where
v =+ BL _ (g (A.6)
¢ BO 3z L . e e e

A simple illustration is the case of a spherical plasma pressure distribution

p, = p(r) when

r
(P:BO_ZPQ' / r‘ap(I‘) dr . se e (A.?}
o
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Only the =z component of Eﬁ is really required since to second order that is what deter-

mines the change in the depth of the magnetic well. This is given by

B .B. = - (1-2%5) p(r) + (1 - 325 %(r) (A.8)
"“0""’[3-__ -F pir) + —Fr;'g r’pir saa .

o

from which we can calculate the effect of plasma'on the well depth., At the centre of the

well the field is decreased by
y APz = 2500 . oo (A9)

Because the field is also affected at the plasma boundary the transverse well depth is
actually increased by more than (A.9) while the longitudinal well depth is increased by

less than (A.9),

Similar results can be obtained for an ellipsoidal pressure distribution by using
the known solutions of (A,6) corresponding to the problem of a uniformly magnetised ellip-

soid (or spheroid).

If a spheroid of semi axes a, b, is uniformly magnetised in a direction parallel to

8 .
the Oa axis then the field at its centre1 is

B(o) =M [1 - A(e)] .e. (A.10)

where M is the magnetisation and A is the "demagnetising factor" which depends only on
the eccentricity of the spheroid, If the long axis of the spheroid is in the direction of

magnetisation (a > b) then

2
A=[1— log%'-_t-:--l}ii—el e (A1)

2e e

where e® = 1 - b%*/a®. If the short axis is in the direction of magnetisation (a < b) then

1
ay .
A= {Elg_“—;aﬂ-)— gin ~ e] vee (AL12)

where e? = 1 - a?/b2, When the pressure isobars are all similar spheroids the depression

of the field at the centre is just

gu-gﬁ =pilo) [1 - A(e)] . ess (A, 13)
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When the isobars are spheroidal but not similar an appropriate average of Ale) is re-
quired. If the spheroids are very elongated in the field direction, A(e) - O, and the

full diamagnetic effect of the plasma is experienced.

Higher Order Equilibrium Currents

In the preceding paragraphs the second order equilibrium current and the field result-
ing from it were calculated. In this order of approximation the pressure pL(z) is
entirely arbitrary. However the earlier work1 showed that the pressure tensor must satisfy
a constraint if V-Q is to be zero, As we have seen, this is the case in second order
for any p; and it is of interest, therefore, to see how a constraint reappears in higher

order approximations., We will find that although the constraint appears only in fourth

order it nevertheless imposes a restriction on the second order pressure tensor.

We have already seen that in second order the current perpendicular to B0 is

~

(2) Bo x vp,(?)

.] - 2 e e (A-14)
A1 BO
and
. (2
Ju ) =0 .
In the third order the equilibrium equation gives
jo % B + g % Ba = div &) | vee (AL15)
o ~0 -~ ~ ~

so that we can again find the current perpendicular16 to Eo in this order. In fact

(2)
. (3) _ _ (Bo x Bs) | f1 OPu
JJ_ = - B02 VBO oz sas (A-IG)
: (3) _
and the requirement that V-j =0,
. dJn
vJ..-]J."' Z =0 e (A.17)
leads to
. (3) Bo xBs 2
-]li( )= BZ v P.L( ) . .o (A,18)
o
(Here again it should be recalled that j"(S) is the current parallel to go; the current

(j“(S) +B oj(z)/Bo) and this vanishes identically.,)

-
4

parallel to B in this order is
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Continuing to fourth order we can shnilarly find jl(4) in . terms of the lower order
fields and pressures, but in this order no satisfactory solution to (A.17) can be found.
This is because we-must have j,; vanishing at the plasma boundary and this means that we

must have

fdz (v-jJ_(‘”) =0 ees (AL19)

where the integral is along any line parallel to z-axis from one plasma boundary to the
other, This condition, which was automatically satisfied in lower order, appears as a
constraint in fourth order. After some lengthy albegra (A.19) can be reduced to the con-

straint

veo (A,20)

|
(=}

/dz va_(z)-(Eo x VB) =

p,(B): in fact it can be shown

This constraint is clearly satisfied by taking pL(z)

that if p; and p; are functions only of the field strength, then equilibrium is satis-

fied to all orﬂers‘o.
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APPENDIX B

THE ENERGY FUNCTION

In this appendix the Kruskal-Oberman energy integral is rearranged into a form in

which the dependence of &W on & is contained in terms involving Q s and g only,

~

where

=}
i
t<a
x
-
v
X
==
S
12}
]
r
Q
]

n(e?) g vee (B.1)

and it is shown, that although Q has contributions to all orders in the A\ expansion,
s and q have no contribution of lower order than %, This, together with the known
ordering of py, pyy, C and j, (see appendix A), makes it a straightforward matter to

write down &W in the various orders of the A expansion. The original form for &W is,

aw Q% - jeQ x E+ (2py + CH(Veg - q)® + &-Vpy (V:E - q)

+

(§°Vpll)q - (pu - py) [n-(a-v) E+a (n+v) g - q® - qV'E] ee (B.2)

Zmi f/%% v q+ “B(V'E - q) >? dude
i

where, as in the main text,

a=@YE-(EYL ; q=pa=n@v)E von (BaB)
and
ds
/ﬂgf%
< g > = Vi .
Then, with Q; = p-Q, we have the following identities,
Q Qy
s=2a-n (Vg +s) ; g =0-VE-s eee (B.4)

On substituting (B.4) into (B.2) we obtain

oW = QE+Q|21-_.]','Q.XE+ (2p, + C) (%+ s)z—g.vpl(%ﬂ_,_s)

+

(g-vpu)q - (pu - py) |:”' Q%) £ J]; Q- (- V)g + q (% & s):| .. (B.5)

Z’"if/%%“ﬁq "PB(%H"S) % dude .
i
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The term in j can be conveniently transformed using the equilibrium equation to replace

~

B x ¥.P
Jo = BT -
Thus
Qu Qy
QxE=JnnQ xE+ F EVp + (L -pu) Fa ... (B.6)

where we have made use of the fact that E = E.L so that &.n = 0 and, for example

-~

gIn=-p0@DE==-q . oy (Be?}
Also from (B.3)

Q- (Q'V)E =3 -n (5.v)g,_

so that in the (py - p;) term of (B.5)

Ra (.Q..L' V)E-'. + Q-L' (E'V)E
~3 = 'Bl?[Qf‘Jn n-Q xE] ... (B.8)

Finally, on substituting (B.6) and (B.8) into (B.5) the following expression is obtained,

, - 2 C PL -
e @ (1 Bt s of (s BES) -y g w4 2P
* g+ (b - pu)s] - [2.vp, - (2p, + €) S](%B'“L s) o 1Be¥)

Zmi/ ‘%% {vilq - HB(%*' s) >? dude .
i

The expression (B.9) is exabt, and equivalent to the original form (B.2) but more conven-
ient to use. The terms of various order in the > expansion of &W can easily be
obtained from (B.9) by noting e.g. that s has contributions only of second and higher
order (since VB ~ A®), Although less obvious this is also true of q, as can be shown

from the perpendicular component of the equilibrium equation,

(Y x B) x B x v, (py - pL)
® [ BQ E] = B2 + B2 R X (,.Il',\v_).ll ]
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that is
B x (n°%)n [B® + py - pu] = B x Y(py + %B%)

Taking the cross product of equation (B.10) with & gives

g (neW)n [B + pr - pul = & V(ps +%B%)
and therefore

.E_&nV(pJ_ + jﬁBE)

=-—--2--———-——
1 B + pL - Pu

which, like s has no contribution of lower order than A2,
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APPENDIX C

AN EXACT RESULT

It is shown in this appendix that exact necessary and sufficient stability criteria
can be obtained for the special equilibria of the form1’10 p. =p.(B)y, py = p;(B) with=-
out approximation or restriction as to depth of well, and that the limiting B is indeed

given by

‘3 ='-'—Bg— see (C-])

where B, is the value of |B[ on the plasma boundary, (which is a contour of constant

IB] in this case), and B, is the value of IB] at the centre of the well.

The derivatives of p, and p, in any direction are given by

where the prime denotes differentiation with respect to IBI, and on substituting\these

results into (3.8) and (2.5) respectively we obtain

Bp, = 2p; + C

» s (Cai2)
Bpy = py - p1
Then
E*Vpu = py Bs = (py - py)s
gy = p. Bs = (2p, + C)s
and since jy, = O for these equilihriaIO, the expression (B.9) for §&W reduces to
PL -~ Pu 2p, + C
W = Qf(1+-—B;——)+Qﬁ (1+——B-5-—)
ees (C.4)
B of a2 2& 2
- Zmif v 2 <V||C[ pB (B g S)> dpd& .
Hence sufficient conditions for stability are
B® - py+p, >0
eee (C.B)

B2 + 2p, +C>0
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However these are also necessary conditions, because just as in Section 3 it is always

possible to find displacements for which ©&W is dominated by the terms in QF or in Qf.

Using (C.2), we may rewrite (C.5) as conditions on the pressure gradient, namely

dpy
B - 3B >0
... (C.86)
dp
B + 3B >0

and by integrating the second of these inequalities from the centre of the well to the

plasma boundary the exact result (C.1) is obtained for B . .
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