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Abstract

An application is made of the authors' magnetic fluctuation interpre-
tation of anomalous electron heat conduction td the collisional regime of
slow RFP experiments. The gross thermal properties of Zeta and Eta-Beta IT
are investigated for the quiescent period. Given magnetic fluctuation
levels of between 0-1 and 3:0%, energy conduction loss can be interpreted
in terms of classical parallel electron thermal conductivity. For Eta-
Beta II the ions are predicted to be hotter than the electrons at the end
of quiescence. The magnitude of this effect, which is purely a conse-

quence of the fluctuation theory, depends on the assumptions made.
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1. INTRODUCTION

Using a two-fluid model, we have recently [1] given a theoretical inter-
pretation of temperature fluctuations and heat transfer in tokamaks, both
the ions and the electrons being treated as neoclassical. Essentially, we
assumed the magnetic field B to comprise a mean (§A(r)) and a fluctu-
ating part (AB) such that AB/B0 N ]0-3. We were able to show that the
perpendicﬁlar electron thermal conductivity depends strongly om the fluctu-
ation level, whereas the ions are largely unaffected, and as found experi-
mentally, the ion thermal conductivity is neoclassical. Our prediction
of the electron thermal conductivity was found to be reasonably consistent
with the fluctuation levels observed in TFR, PLT and TOSCA, provided that
the mean free path is taken to be the major circumference (2mR) in the
formula for the parallel thermal conductivity. The reason for this
correction is not far to seek. The collisionality of a plasma with respect

to the parallel thermal conductivity depends on the Knudsen numbers

th th
v, T, v T

(Kn) . ~ and (Kn) e o B For the tokamaks studied, these
1 21R e 27R

numbers are much greater than unity, thus indicating that the mean free
path loses its significance as a step-length as it approaches 21mR. The
objective of the present paper is to test the fluctuation interpretation of
heat transfer in experiments operating in the collisional regime, that is,
where the above Knudsen numbers are less than unity and where the above
correction does not need to be made. To this end we consider the energy
balance in the quiescent phase of slow RFP experiments.I As far as this
work is concerned we assume the quiescent phase to be that period (< 1ms)
of the discharge during which the magnetic/current fluctuations are

greatly reduced.

1 ; ; :
In RFP experiments it might be argued that the relevant Knudsen numbers
should be based on a length of order 2ma. The experimental results, how-

ever, appear to be consistent with 2TWR as the appropriate length.



We should point out that our model is specifically restricted to
examining the effects of conductive heat transfer as modified by magnetic
turbulence. While radiation is crudely allowed for, convection and tur-
bulent heating are ignored. There is no a priori justification for this
neglect in the case of the quiescent phase of slow RFP experiments. Only
experiment can confirm or otherwise that these effects are unimportant
compared with those considered. In the absence of such evidence it is

legitimate to ask what conduction alone would imply. 1In reference [1]

ST 6T
n e 5 .
and the present work we assume I L5 "ﬁTi . This is consistent
e i

with our neglect of convection and turbulent heating. In more recent

work, however, we have found this assumption to be inessential in

deriving the conductive terms used in this paper. Furthermore, since

convection is generally a loss mechanism while turbulent heating is a
positive volume source of energy, it follows that there is at least
partial cancellation between these effects. Both turbulent convection
and heating depend on the correlations between density and velocity
fluctuations, and are expected to be of comparable magnitude. If toka-
maks are any indication [2, 3], these effects are unimportant for the
electrons, while for the ions they may be comparable in magnitude to
the neoclassical conduction. Since the present model is very crude,
such effects should not change the qualitative features of the results

reported here.

On grounds of simplicity we assume that the field fluctuation level
is constant throughout the quiescent period. In the experiments
considered here the electron temperature increases by 50— 1007 during
the quiescent phase. Due to the paucity of the published data it is
impossible to make precise or detailed comparisons with theory. How-

ever, we show that the flutter required to interpret the available



results lies in the range 0-1%7 < AB/B < 3.-0%.

2. REVIEW OF EXPERIMENTAL DATA

We begin by reviewing the three sets of data to be investigated. The
first two are based on measurements made in Zeta (minor radius a = 50cm)

and the third on recent observations in Eta-Beta II (a = 12 cm) .

Set I These experiments [4] were carried out for a toroidal field
B¢ =~ 3kG and a plasma current IP =~ 400kA . The time-variation of
electron temperature and density measured on axis is shown in reference [5].
The temperature is seen to rise from 100eV to 150-200eV during the
'quiescent phase' which lasts about one millisecond; in this period the
density remains essentially constant at the value n =~ 5 x 10}3%m °.
Although error bars are not shown the data are presumably subject to

considerable uncertainty.

Set IT These somewhat earlier experiments [6] were carried out for
B¢ =~ 750G and IP =~ 330kA . The temperatures quoted refer to average
values across the minor radius. During the quiescent phase (I ms) ,
which was defined such that 0.1% < GIP/Ip < 1%Z, the temperature rose from

20eVto 50ey with a density typically n =~ 10!*cm °.

Set IIT The most recent data for the quiescent phase [7] has been
obtained in Eta-Beta II for a field B¢ =~ 4kG. During this period, which
lasts 0-6ms , the plasma current fell from 180 to 120 kA ; 1in calculations

based on this case we shall take Ip = I50kA . The central temperature rose

from 50eV to 100 eV while the electron density remained roughly constant

-3
at about n =5 x 10 *%em %

For I and II, the toroidal current fell sufficiently slowly in the

quiet phase for us to take Ip as constant. Although no information on



the radial density, current and temperature profiles has been published,
we shall make crude allowances for them, demonstrating that these effects

could be significant.

3. THEORETICAL EQUATIONS
Following Newton [5], for cases I and II, we shall assme the total
radiated power during quiescence to be S 107 of the ohmic input. In the
case of Eta-Beta II, however, the radiated power is presently unknown, and
hence we obtain results for several different assumed levels of radiation.
We shall also make the approximation y-VTe & BTe/Bt, that is, the radial

convective transport is negligible.

Specifically then, we make the above assumptions and derive zero-
dimensional time-dependent energy equations for the ions and electrons.
Following earlier work [1, 9] the effective perpendicular electron thermal
conductivity is flutter dependent and involves the parallel electron thermal
conductivity; we take both the parallel electron and ion conductivity to
be classical. With these ideas, our objective is to determine the upper

and lower limits on AB/B required to give the observed temperatures.

The time-dependent mean electron and ion energy equations are [1],

3 aTe 1 9 { BTE 3me n
— —_— = — — — —_— - 22
7 " ot r or \rKJ_e 3r) m, T, (Ti Te) + nj“H(r) 4
2 3t r or i 3r m. T, i e’ T Ar\E Thii n or
oT
19 (e _e
r Br'(g * Ky Leor ) (2)

where € denotes the R.M.S. value of the magnetic fluctuations (ABr/B) and
Fe(r) is the corresponding form factor. The effective perpendicular

electron thermal conductivity KJ_E is given by
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where K = and K;_, together with K . and K., are taken to be the
le e 11 ni

classical or Braginskii [8] values. The validity of this assumption will
be discussed later. The term nj2%H(r) represents the effective energy
input, (I - H(r)) being the fraction of ohmic heat which is lost by radi-
ation. The last two terms in Eq. (2) are characteristic of our version

of the flutter model for transport [1]; they represent a flutter dependent
equipartition or ion heating. Thus,although Callen [9] has derived the

same formula for Kle’ his theory does not include these terms; this

difference results from his neglect of parallel momentum balance.

To proceed, we replace Eqs. (1) and (2) by two zero-dimensional model
equations; the form factor Fe(r) is absorbed into € to give an effective

fluctuation level. Thus we write

3 dTe 2 Te me n

= — s - (% d = i - ] 2

2 " dt ( le * £ K"e )th+ 3 mi Te (Ti Te) MR (4)
s -X i 3_en (T, -T ) + S5 o T, £T +—Elli 2T (5)
2 "3 T 11 a m, i i e az © ( i e) Tt e

!

K
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where Kle("*jﬂql%a‘) 1s small compared with Kli’ and of course, with
ce €

2

s . —2 .
e’ , since (wceTe) < E In writing Eq. (5) we have assumed

aT
€ . this approximation bears particularly on the last two

1
ndr T odr °
e
terms (ion flutter heating). Since we have no knowledge as to the relative
importance of these terms, we shall bracket our calculations by retaining
-2

both, or keeping only ﬁ"i a €2Te . Egs. (4) and (5) are, of course,

only a crude representation of the electron and ion energy balance. A more



sophisticated approach would be to assume radial profiles for Te . Ti and
n with time dependent coefficients, and to substitute in Eqs. (1) and (2).
Subsequent integration from the axis to the plasma boundary would lead to

improved zero dimensional equations. In view of the lack of detailed data,

however, we feel that this would be unwarranted.

H
—

. . - e
We now introduce the dimensionless temperatures X = T and y = T
o o

where T0 is the electron temperature at the beginning of the quiescent
phase (t = 0). We also define s = t/t*, where t* is the period of

quiescence. Thus Eqs. (4) and (5) can be expressed as

4
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The self-collision time T is defined to be

4 %
s wt @ o
© 4 V2T nle"

where 'I'0 is in ergs and A denotes the Coulomb logarithm evaluated at To'
The parameters O, p and ® are defined by

T T h
Bt w8

Ti peak Te peak

T e e, - (10)
n peak
=0 (md) I
] p’ A
where ® = 1 for a flat current profile and & = Véﬁ for a linearly falling
current. The suffix 'peak' denotes the value on axis at s = 0. Differ-

ent choices of ©, U and ¢ enable us to make a crude allowance for profile

effects.

4. COMPARISON WITH EXPERIMENT
In the absence of precise knowledge of the ion temperature we shall

assume Ti = Te at the start of the quiescent phase (t = 0).

Set I  In considering this data we put H = 0-9 (107 of ohmic input
lost by radiation), and take u=14, 0=14, & =+v/% ag roughly repre-

sentative of the profile effects.

(a) We begin by solving Eqs. (6) and (7) in the absence of fluctua-
tions (e = 0). Thus the equations only include ohmic heating,
electron-ion equilibration and ion conduction, the appropriate

-3
coefficients being G = 246, F =6:2 x 10 ~ and R = 3-3 for

-7 -



t¥ = lms. Fig. | shows the electron temperature to be always
greater than the ion temperature during the quiescent period, with

Te = 1-8Ti at s = 1°0. If the ion conduction is also dropped, then
essentially the same curves are obtained, indicating ion—conduction |

to be completely negligible in the present case.

(b) We now solve the full equations for a range of fluctuation levels,
'namely, € =01, 02 and 0-5%7; the coefficients E and S have
the values 2-8 X 10" and 4-6 x 107, respectively. The results (see
Figs. 2 and 3) clearly show that the observed temperature rise,

Te = 2TO , 1s consistent with fluctuation levels such that 0-17 £ €

€ 0-2%. For these levels equilibration is incomplete, with

Te = laSTi . With € = 0-5%, however, good equilibration is attained,
but the electron temperature rise does not match that observed (see

Fig. 4). We note that a thermal steady-state is achieved well before

the end of the phase in this case.

Set II Since the temperatures quoted for this data are average
rather than peak values, we set @ = U = 1, but do retain & = Vgﬁ;

we again take 10% of the ohmic input to be lost by radiatiom.

(a) As for the high-temperature Zeta-data, we begin by solving the
energy balance equations in the absence of fluctuations (€ = 0).
Setting t* = 1 ms the appropriate coefficients are E = 1.4 X 0%,
F=0:3 and G = 9-4. Fig. 5 shows the electron temperature to be
always greater than the ion temperature during quiescence, with

Te = I-ITi at s = 1.0. Slight increases in the final electron
and ion temperatures are discernible if the ion conduction term is

dropped; we conclude that this term is unimportant.

(b) We now solve the full equations for the fluctuation levels

£ =027 and € = 107 ; the coefficients R and S have the values



27-2 and 23-1, respectively. The results (Figs. 6 and 7) show that as
the flutter level increases, equilibration improves. The calculated
electron temperature rise is compatible with observation; the ions

are always cooler than the electrons. Comparing Figs. 5 and 6 we note
that a 0.27 flutter level is unimportant. Even at € = 1.0% the
electron temperature is scarcely affected. However, the flutter heating

of ions is more efficient, and consequently Ti is closer to Te

Set ITI As for Set I we take & = M@; and Y =0 =4}. The corres-
ponding coefficients E, F, R and S are 8+4 x 103, 9.1 x 10-2, 57+8 and
138+6, respectively. As mentioned previously, the power lost through radi-

ation is presently unknown for Eta-Beta II. Hence it is necessary to obtain

results for several different assumed levels of radiation.

(a) Assuming 10% of the ohmic input to be lost by radiation (H = 0-9),
we begin by solving Eqs. (6) and (7) in the absence of fluctuations.
Fig. 8 shows the electron temperature to be always greater than the
ion temperature during the quiescent period (t* = 0-6ms), with

Te > 1°SI€ at s=1-0. We note that Te rises from 50 to 350eV 5

far higher than that observed (50 to 100ev ). We further note that if
ion conduction is omitted, Fig. 8 is unaffected, showing for this case
that ion losses are negligible. This result is a clear indication of
the existence of some anomalous heat loss, if as assumed only 10% is
radiated. Our model attempts to explain this in terms of the flutter—

dependent transport.

(b) We now solve the full equations for two fluctuation levels, namely,
€ =102 and € = 3+07, with H again taken as 0-9. For the lower e
level, Fig. 9 shows Te to saturate very rapidly at about Te = 2'5TO,

while Ti rises very smoothly, eventually crossing the Te curve. In



contrast to the previous cases Ti > Te at the end of quiescence

(Ti = 1-2Te ). This effect is due entirely to the ion-flutter

heating. When the flutter level is increased to 3% the electron
behaviour is qualitatively the same, although Te/TD at s =1 1is
now of order 1-5. The ions behave as before, except that the cross-
over occurs earlier, and at the end of the quiescent period the ioms
are significantly hotter than the electrons (Ti/Te = 1:4). At s=1

we note that Ti/To = 2.1 for € = 3-0%7 (see Fig. 10), while Ti/To

= 2.75 for e = 1-0%. That is, a decrease in flutter level leads

to an increase in both ion and electron temperature rises. Finally,

we have repeated the € = 3:0% case with the first ion-flutter heating
term - that involving dn/dr — omitted (see Fig. 10). Although not given

in Fig. 10, the calculation shows the electrons to be unaffected by

this flutter heating term. Equilibration is greatly improved, steady-

states being attained for both species.

(¢) In order to estimate the effect of varying H on the final
temperature rises and equilibration, several runs have been made, the
results of which are given in Figs. 11-13. Fig. 1l presents the ion

heating ratio at the end of quiescence CI;/T as a function of the

)
o
radiation efficiency Mg, = H %X 100 for € = 7? = 1.0 and 3-07.
These curves show that over a wide variation of g s namely, 50 to
100%, the ion temperature rise is not significantly affected. For a
given Ng s the heating ratio increases with decreasing fluctuation
level. Similar conclusions apply to the electron temperature curves
in Fig. 12. It is important to note that these results have been
obtained by setting Te = Ti = TO at the beginning of quiescence.

If more experimental information is forthcoming on this point, the

curves can be readily recalculated.

- 10 -



Fig. 13 shows the percentage equilibration ratio at the end of

Lo
Ti Te

quiescence ( TR )X 100 as a function of g for the two
i ,

fluctuation levels considered. Higher fluctuation levels naturally
lead to larger imbalances between electron and ion temperatures.
Furthermore, for both levels the imbalance increases with Ny - It
is interesting to note, that for the parameters considered, the ions
are always hotter than the electrons at the end of quiescence. This
is a definite prediction of the flutter model. Braginskii theory,

on the other hand, will inevitably lead to negative values of this

ratio, whatever the magnitude of g -

There are, in fact, two distinct interpretations of the observed
electron temperature rise in Eta-Beta II. The first, which we have
given above, assumes the radiation loss to be the same as in Zeta,

that is, is between 50 and 100%7. In this explanation the ions

i:
are always found to be hotter than the electrons for fluctuation
levels consistent with the observed electron temperature rise. A
second interpretation is indicated by calculations for lower fluctu-
ation levels and very high radiation loss. Thus for 5 < 1Z  and
g £ 10%, the computed rise in electron temperature again matches
observation. In this regime, however, the electrons are necessarily
hotter than the ionms. Althoﬁgh at present we do not have the data to

distinguish between these two explanations, in principle, this could

be done.

5. DISCUSSION
As pointed out in the introduction, the collisionality of a plasma

with respect to parallel thermal conductivity depends on the Knudsen
th th
Vi T Vé Te
numbers (Kn), ~——21  and (Kn) ~ . We have taken classical
toom ¢ om




formulae for ‘Ene and Eﬁi’ and this is justified provided (Kn)i,
(Kn)e 2 1. 1In fact we need only consider the latter. For the low
temperature Zeta data and Eta-Beta II, we find (Kn)e <1, while for

the high temperature Zeta results (Kn)e =1,

Computations show that the choice of profile factors does affect the
precise temperature predictions. This is due to the fact that the co—
efficients in the energy equations are strongly temperature dependent.
Qualitatively, however, the results are unchanged. We have found that our
results are fairly insensitive to the amount of power radiated provided
that this does not exceed 507 of the ohmic input. The flutter model is
only applicable to slow experiments. For fast pinches the full dynamics
of plasma and fields need to be taken into account, the flutter decom-—
position being invalid. Unlike our earlier work [1], we have not attempted
to relate magnetic fluctuations to temperature flutter, since no data

relating to the latter is as yet available.

For Zeta, given the radiation loss to be 107 of the ohmic input and
magnetic fluctuations levels of between 0-1 and 1-0%, we have satis-—
factorily calculated the observed electron temperature rise. In the high-
temperature Zeta experiments, the thermal conduction loss is mainly due to
the electrons. However, in the low-temperature Zeta experiments, thermal
conduction loss may be due to ions or electroms depending on the level of
flutter aséumed. It is of interest to note that no allowances for pro-

files need to be made in this case, thus removing one source of uncertainty.

For Eta-Beta II, with 10% radiation loss and ion conduction as the
only conductive loss, we cannot explain the observed electron temper-—
ature rise. However, given the same radiative loss we can interpret the

rise if we assume flutter levels of between 1:0 to 3-0%Z; the ions are



found to be hotter than the electrons at the end of quiescence. The
actual temperature rise is relatively insensitive to the radiation level
provided that it is between 10 to 507 of ohmic input. It is possible to
" interpret the observed rise without any reference to magnetic flutter, if

the radiative loss is 857 or higher. 1In this case, however, the electrons

are hotter than the ions.

In our view these predictions clearly indicate the need for detailed
measurements of both Ti and Te as functions of r and t during
quiescence; simultaneous measurement of magnetic fluctuation levels
should be carried out, as for example, in the TFR tokamak. Subject to
the availability of more data the present theory could be developed to any
degree of sophistication, thus enabling a detailed test to be made of the
magnetic fluctuation interpretation of heat transfer in collisional plasmas.
It should be noted that although Rusbridge [10] has attempted a magnetic
flutter interpretation (based, however, on different principles from
ours), his work relates only to the non-quiescent phase of Zeta. As far
as we know, no self-consistent magnetic flutter interpretation of energy
transfer in the quiescent phase (including electrons and ions) has yet

been published.
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Fig.1 Temperature curves for Zeta (100 eV) without fluctuations but including equilibration and ion

conduction.
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Fig.2 Temperature curves for Zeta (100eV, AB/B = 0-1%) including equilibration and ion conduction.
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Fig.3 Temperature curves for Zeta (100eV, AB/B = 0-2%) including equilibration and ion conduction.

Fig.4 Temperature curves for Zeta (100 eV, AB/B = 0-5%) including equilibration and ion conduction.
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Fig.5 Temperature curves for Zeta (20 eV) without fluctuations but including equilibration and jon
conduction.
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Fig.6 Temperature curves for Zeta (20eV, AB/B = 0-2%) including equilibration and ion conduction.
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Fig.7 Temperature curves for Zeta (20eV, AB/B = 1-0%) including equilibration and jon conduction,
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Fig.8 Temperature curves for Eta-Beta II without fluctuations but including equilibration and ion
conduction.
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Fig.9 Temperature curves for Eta-Beta II (AB/B = 1-0%, H = 0-9) including equilibration and ion
conduction.
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Fig.10 Ion temperature curves for Eta-Beta II (AB/B = 3-0%, H = 0-9) with (solid line) and without
(broken line) ion flutter heating.
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