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ABSTRACT

Co-ordinate transformation methods are developed so that
the boundary surfaces of an arbitrary three-dimensional geometry
can be represented accurately by suitably stretching or 'ironing-
out' uneven surfaces to behave like planar ones. This change of
co-ordinates converts the physical space into a transformed space
which forms, in general, a non-orthogonal curvilinear system.
The resulting Navier-Stokes equations now involve a few additional
terms but the boundary conditions can be applied very simply and
accurately. Another change of co-ordinates to a computational
space 1is now effected in such a way that a uniform grid structure
in the computational space corresponds to a variable grid structure
in the transformed space. By choosing the second transformation
with care we get a concentration of grids in the boundary layer
without excessive numbers in the interior. This two-step technigue,
i.e.change of co-ordinates from the physical space to the trans-
formed space and then to the computational space, is illustrated
through its application to two uncoupled problems.
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in June, 1580)

tPermanent address: Department of Nuclear Energy,Brookhaven National
Laboratory, Upton, New York 11973,U.S.A.

May,1980.






1. INTRODUCTION

In thermohydraulic problems the features of interest are usually
controlled by the geometry. The. simplest finite difference approach
with a uniform lattice of grid points is unsatisfactory on two counts,
however. Firstly, grid points do not coincide with the boundaries
unless the latter are of extremely simple shape. Secondly in order to
resolve boundary layers large number of grid points are situated where
not needed. We propose a different approach which consists of the
following steps: (i) find and apply a mapping which regularizes the
boundary (ii) find and apply a co-ordinate stretching which broadens
boundary layers only (iii) discretize the transformed PDE an the now
regularized mesh, and (iv) solve the resulting matrix equations. The
co-ordinate transformations in (i) and (ii) need not be orthogonal
but there must be one-to-one correspondence. Gal-Chen and Somerville
[1] have examined mappings to regularize the boundary.

In this paper we illustrate the approach via two physical prob-
lems. 1In the first, stage (i) is not required since we consider tur-
bulent flow in a straight channel, but a stretched co-ordinate is
essential. In the second problem,slow flow through a pipe with un-
dulating boundaries, stage (i) is required butthe boundary layers
already fill the pipe so that stage (ii) is not required. It is simpler
to appreciate the benefits of the two stages in these uncoupled prob-

lems. :
2. TRANSFORMATION FOR BOUNDARY LAYERS

We have examined various co-ordinate stretching transformations
in use [2]. The transformation that we prefer (for two boundary
layers at z = 0o and z = 1) is
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where a,'s are determined by the number of meshes within the boundary
layer and c determines the number of nodes in the mainstream region.
For the case 6; = 0.01, 8, = 0.005, four meshes in each boundary layer
and with ¢ = 0.6, the resulting grid patterns in both the physical and
computational spaces are shown in Fig.l. Note that there are

at least four meshes in each of the boundary layers. The uniform

grid spacing in the transformed space corresponds to a continuously
varying grid space in the physical space.

An application of the co-ordinate transformation methodology is
demonstrated by considering turbulent flow in a straight channel
driven by a constant pressure gradient. The normalized mean velocity
B(=U/V?;] satisfies [3]:

d dp |

where n = z/D, o(=v_/vTyD) is the normalized viscosity, v. is the
turbulent viscosity, t_ is the shear stress at the wall (n=0) and D
is the channel half-thickness. Owing to the symmetry we consider only



0 <n < 1 region. Analytical solutions of (2) exist for the constant
stress layer (0 < 1 < g) where ¢ =kn, and for the central region

(g <n<1)o-= kq where k is the Karman constant (= 0.41) experiment-
ally).

Equation (2) can also be solved numerically. For the case of the
bulk Reynolds number of 104, it appears that a very fine grid in the
physical space (n - co-ordinates) would be needed. Our experience,
however, shows that the resulting solution is far from the actual one
even with 200 meshes and that increasing the number of meshes beyond
that introduces compounding of round-off and truncation errors.
Alternately, (2) can be transformed by using (1) which for the half-
region becomes

3 = (l-—c)? + ¢ taoh ag (3)

A close to analytical solution is obtained with as few as 40-50 meshes
and ¢ = 0.2. Note that the value of ¢ is related to the desired number
of meshes within the boundary layer and the total number of meshes.
For the case under discussion, Reference 2 gives n/N = 0.42 c. Thus,
in order to have a minimum of four meshes within the boundary layer
(1079), one needs to have a total number of 50 meshes. Any increase

in the total number of meshes should be compensated by appropriate
adjustments in either n or c.

o BOUNDARY REGULARIZATION

For the mapping which regularizes the boundary surface we find
it convenient to go to the metric tenmsor formulation as used by Gal-
Chen and Sommerville [1]. The detailed equations for a three-
dimensional system bounded by irregular surfaces on its.boundaries
are noted elsewhere [4]. We illustrate the technique here by using a
two dimensional system with irregular boundaries as shown in Fig.Z2.
The upper and lower boundaries are represented by x*=¥#(x*) and =*=¢(x")
curves, respectively. The interior region can be transformed to a
regular region by using the following transformation
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square region $o0¢ Fl¢1; o< £'<1} . The transformed momentum equa-
tion for steady-state flow with negligible inertia becomes
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T=ly-4), ¥, =[5-04 - 29/ luv-01, va = L+i62 04 - 1] [(u-4)*
&, =234/3x% , W= d¢/3x’ and the only non-vanishing Christoffel
symbols are

{‘ ’ '{ = Lz[‘f’n* (#ll-‘ﬁn)z’z] /(’4"‘1’)
g‘aai :gl'szt} = L(v%-4)/(¥-¢)

where ¢, =3¢ /3x* ¥, =3y /d2" . In these relations a bar over the quan-
tities mean that these are in the transformed co-ordinates. When( 5 )
is combined with the equation of continuity
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a consistent set of solutions results.

Note that this transformation preserves the linearity of the
equations in the dependent variables p and ul, but introduce a couple
of spatially dependent coefficients. The above equations can also be
used when the geometry under consideration is simplified by taking
either ¢(x) or ¥%(z*) as constant. In the event of both (lower and
upper) curves being a straight line,the above set of eguations reduce
to the more familiar ones as the transformation becomes an identity

one.

Figure 2 shows the grid structure for a wavy shaped capillary tube
in both physical and computational spaces. The upper and lower boun-
daries are seen to be transformed into straight lines. In other words,
the irregular boundaries are represented exactly without having to
approximate them to fit into the grid pattern used elsewhere. The
computational grids become squares or rectangles depending upon
whether the mesh sizes are the same or different. Another point worth
emphasizing is that the restricted regions, such as the neck in Fig.2,
are automatically represented by finer meshes which is very desirable.

CONCLUSION

The use of co-ordinate transformations to regularise the bound-
aries and to stretch boundary layers has been demonstrated. The
additional complexity of the PDE appears to be satisfactorily offset
by the ease with which the boundary conditions can be applied, and
the relatively small number of grid points required.
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Fig.1 Physical and transformed grid structures (note the change in scale in the physical co-ordinate).
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Fig.2 The mapping of physical space into computational space for a wavy capillary.
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