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Abstract

The application to small, low magnetic field tokamaks of radio fre-
quency heating at the electron cyclotron second harmonic resonance is
discussed. For cases where the plasma is optically thin the role of wall
reflections is taken into account in a linear calculation of the radial
power deposition profiles. Consideration of single—particle motion in
the presence of a resonant RF field leads to a simple heuristic analysis of
the coupling mechanism and to estimates of the field strengths at which

quasi-linear heating phenomena become significant.
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1. INTRODUCTION
1.1 Electron Cyclotron Resonance Heating

The cyclotron resonance interaction between an electron and an
electromagnetic wave provides a mechanism for the efficient transfer of
énergy to a plasma, and has been used for many years in mirror machines E1].
Microwave heating of this type has also been used in levitron confinement
devices [2]. 1In contrast to the moderate demands on source technology
to which these applications gave rise, the use of electron cyclotron
resonance heating (ECRH) in tokamaks was until quite recently constrained
severely by the lack of suitably efficient high-power R.F. sources,
capable of operating in the required frequency range. The development of
the cyclotron maser concept however has alleviated the source problem to
the extent that so-called gyrotron devices are now available [3] which can
generate efficiently several hundred kilowatts of R.F. for pulse lengths
of the order of tenm milliseconds or more, typically at frequencies in the
range 20 - 100GHz.

Since the electron Larmor frequency in a magnetic field of 1 tesla is
28GHz, sources of this type are very well suited to ECRH in tokamaks, where
the advantage of high source efficiency may be combined with a theoretically
high plasma heating efficiency, as is confirmed by experiment [4-5]. 1In
addition, source-plasma coupling is possible using standard waveguide tech-
niques which are particularly convenient in minimising problems of access
to the torus.

An important feature of ECRH is that the zone of resonance is local-
ised by magnetic field inhomogeneity: electrons in a magnetised plasma
can absorb energy from an electromagnetic wave of frequency w when the

condition for cyclotron resonance is fulfilled :



for some integer n, where {p=eB/ye is the electron Larmor
frequency, vy and k; being respectively the component of electron
velocity and the component of the wave propagation vector parallel
to the magnetic field B . Within the zone of resonance with
thermal electrons (|v,| Vp) the magnetic field variation &B

v
is given roughly by 6B/B==[k“[VT/m , or when |k“|5-;£-£L s by

¢ &
88, (ITy

B c ’

The second expression, which represents the minimum resonance zomne
width for all values of k; , results from the relativistic velocity
dependence of the electron mass which is important when the frequency
Doppler shift kyv; is small [6]. Thus, in tokamaks (and
stellarators) where the main inhomogeneity results from the

toroidal field, the resonance layer extends vertically within the
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plasma with a width of order Rn y o R in the relativistic
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case, where R 1is the major radius corresponding to resonance, Tg

ky | . :
the electron temperature and nj, = - The layer width is

generally much less than the radius of plasma cross-section when n
is small, even at multi-kilovolt temperatures, and in combination
with the flux surface geometry this makes possible theoretically the
localised heating of electrons at chosen parts of the plasma cross-
section, at least when the plasma is optically thick so that
absorption in one transit of the layer is complete. For this
reason, ECRH may have important future applications to current profile
control, in addition to a bulk plasma heating role.

0f the various possible coupling schemes which can be devised,
that which is most suitable for large tokamaks makes use of the
ordinary (0) mode [7], since typically the plasma is optically thick

as desired at the fundamental resonance [7-10], allowing the source



frequency to be as low as possible. In addition this wave may be
launched in the appropriate polarisation from an aperture
conveniently located on the outside (low magnetic field side) of the
torus without encountering any reflective layers in the low demsity
plasma edge.

At sufficiently high electron density n, o, electromagnetic waves
will not propagate and the mode cut—off conditions are an important

constraint in the use of ECRH. For the ordinary mode cut-off occurs

/4Tn_e?2
when the electron plasma frequency mpe =\/ € becomes equal to
e
the wave frequency, and the density limit at fundamental resonance

may be expressed in terms of the electron beta

= BﬁnkTe
e B2

< 0.4Tg7

where T, 1is expressed in keV. Although restrictive, this bound
is not incompatible with the general requirements for thermonuclear
ignition.

1.2 Application to Small Tokamaks

Although future development of ECRH in tokamaks will concentrate

on using the O mode, the above argument does not apply to some of the
smaller research tokamaks (e.g. TM-3 [4], TOSCA [11], THOR [12])
because under conditions of interest the plasma may be optically
thin for this mode, and also because the constraint on source
frequency tends to be less important.

However, the plasma in such devices remains optically thick
at fundamental resonance to the extraordinary (X) mode even at low
temperature due to the process of mode-conversion to Bernstein waves
which occurs at the upper hybrid resonance [13]. These slow, quasi-

electrostatic modes cannot propagate in vacuo and so remain trapped



within the plasma where cyclotron damping, or at very low temperatures
collisional damping [14], can take place. In addition, direct ecyclotron
damping of the X mode can be effective for oblique angles of incidence.
For small tokamaks therefore the X mode can provide an efficient means
of coupling R.F. power at fundamental resonance to the plasma electronms,
when the O mode damping is weak. It is very inconvenient however that
the launching waveguide for the X mode must be mounted on the inside of
the torus in order to avoid reflection at the low density cyclotron
cut-off [15]. Furthermore, at high temperature the Bermstein wave can
be so heavily damped that substantial amounts of power can be absorbed
by the small numbers of electrons with large v , before the wave
reaches the zone of cyclotron resonance with thermal electroms [14].
This undesirable effect can be minimised by launching waves with small
k, [12], however a narrow antenna pattern is then required which in small
tokamaks may be difficult to produce. Alternatively, by launching the
X mode obliquely to the magnetic field [16], typically at an angle of
the order of ﬁOo, advantage may be taken of the direct cyclotron damping
which takes place as the incident wave crosses the cyclotron resonance,
that is, before approaching the upper hybrid layer. Due to the increase
of X mode damping with k, [7], the plasma optical depth can exceed
unity for rays incident in this manner [8] so leading to effective
absorption in the thermal electron population. However the antenna
requirements are again somewhat inconvenient, and the refractive effect
of the plasma is more pronounced at a given level of density for
obliquely propagating rays. For normal incidence the cut-off condition
may be written as Be < O.STEZ.

At low toroidal field values typical of small tokamaks it is also

practical to consider heating at the second harmonic cyclotron



resonance, the effectiveness of which has also been observed
experimentally [4,5]. This has several advantages: firstly, the
X mode, which is effectively absorbed, may be launched from an
aperture on the low-field side; the theoretical attenuation is
fairly insensitive to the value of k, 5 and most of the power is
absorbed by electrons with |v,| < Vthe - The X mode is reflected
when the low demsity cyclotron cut-off is approached, and as before

we can express the limit in terms of electron beta:

Be < o.srez

This is twice as high as the fundamental O mode cut-off value, and
the same as that for the fundamental X mode on the high field side,
although the required frequency is also doubled for the same value
of magnetic field. (In practice however it may be more meaningful
to consider the effect of these limits for a given value of source
frequency, with resonances obtained by varying the magnetic field.
Then it is notable that the demsity limit is more restrictive at
second harmonic resonance, Being twice as low as that for the
fundamental 0 mode). Note that although the O mode propagates at
densities above the X mode cut-off, its second harmonic damping is
very much weaker.

Thus, it would appear that second harmonic resonance heating
is quite well suited to low field devices, however several questions
arise upon closer theoretical examination. Firstly, as will be
shown in the following sectioms, the plasma may be optically thin or
only semi-opaque to the X mode under conditions of interest in small
tokamaks. A substantial fraction of the incident radiation is then
transmitted across the resonant layer and subsequently reflects off

the metallic walls of the torus. Even if the incident beam is
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completely polarised in the X mode, the transmitted component is
rapidly depolarised in the course of the first few transits of the
plasma, by polarisation 'scrambling' at the walls [17] and by
polarisation splitting of reflected waves as they enter the plasma.
Thus, when the optical depth is low.an unpolarised monochromatic
radiation field with a broad angular spectrum is rapidly established
within the torus, and heating occurs at all points along the vertical
extent of the resonant layer.. This is somewhat undesirable since
the most efficient heating would be expected with localised deposition
in the plasma core, and of course power will be lost directly in
resistive heating of the walls.

A further question relates to the mechanism through which
absorption takes place at second harmonic resomance. Although
electrons with parallel velocity in the thermal part of the distribu-
tion are responsible for damping the wave, the coupling mechanism
becomes stronger as the perpendicular component of electron velocity
Vv, increases: energy is deposited preferentially with electrons of
high perpendicular velocity. Furthermore the direct effect of the
R.F. heating is to increase the electron kinetic energy of perpendi-
cular motion, so that distortion of the velocity distribution may be
induced rather easily as compared with heating at fundamental
resonance which increases the perpendicular energy more uniformly with
respect to v, .

In order to examine in more detail the effect of wall relections
we shall consider the linear 2nd harmonic heating that results when
the plasma optical depth is low and calculate the radial profile of
absorption in a simple model of the toroidal plasma. It will be
shown that a geometrical effect leads to a strong loéal maximum in

the heating profile under suitable conditions. This may be simply
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understood in terms of the time taken by an electron té cross the
resonance layer in the course of its drift motion round a flux surface,
and a consideration of electron single particle motion through the
resonance leads to a heuristic treatment of the quasi-linear diffusion
driven by the waves. From this the critical field strengths are
estimated at which collisional relaxation fails to maintain a
Maxwellian velocity distribution, and the implications of a quasi-

linear 'runaway' are briefly discussed.

2. WAVE PROPAGATION AND ATTENUATION

The two characteristic modes of electromagnetic wave propagation
are well described by cold plasma theory except in the vicinity of
cut-offs and of the upper hybrid resonance where the phase velocity
of the incident X.mode drops to a level comparable with the electron
thermal speed, thereby leading to a transformation into the electron
Bernstein mode. Because the free-space wavelengths of interest are
of the order of lcm or less, the limit of geometrical optics will
apply even in small tokamaks, where the inhomogeneity length scale
may be of order 1Ocm. Thus, wave propagation can be discussed in
terms of electromagnetic rays which are the trajectories along
which the radiant flux of energy takes place. A local wavevector
k (r) at position r is determined along with the trajectory itself
by the Hamiltonian ray equations [18] and when dissipation occurs,
the power attenuation in a distance s along the ray is conveniently
measured by the optical depth T :

S
T=2J Imk k.ds’ (2)
o

where k 1is a unit vector in the direction of the propagation



vector, integration being carried out along the ray. Then dis-
regarding the possible effects of ray focussing, the incident power
flux density is attenuated by a factor e T . Note that the
dissipation is assumed to be weak so that Imk « Rek .

At sufficiently low R.F. power levels, the electrom velocity
distribution remains Maxwellian in form, and the optical depths
may be calculated using the known, linear absorption co-efficients [19].
In general a numerical calculation is necessary for an exact evalua-
tion, however satisfactory estimates may be made using a simple slab
model for the cyclotron resonance layer, with the assumption that
ray curvature can be neglected. For nearly perpendicular incidence,

the resulting expressions are particularly simple, and in the case of

the O mode at fundamental resonance one finds [20]

T kTe wpe
E = e | — Y f:}
- 5 (mc2) koRo = n, (3)

where R0 is the major radius at the centre of the resonance zone,

_ ke
0" Tw

n = (1- wpze/ wz)% is the O mode refractive index, and k0=m/c y
Relativistic corrections are significant when k“slg)V/kTe/mcz >

but the above mon-relativistic result still provides a correct order

of magnitude estimate [21]. Clearly the plasma becomes progressively
more opaque as the electron temperature, device size and toroidal field
become larger, Tp; exceeding unity with Ro ~ 1lm and B= 2T when

T, 2 700eV , at electron densities around 50% of the cut-off value,

4 x 10'%q° . On the other hand, electron temperatures in excess of
SkeV must be attained before the plasma becomes optically thick in a
small device with Ro«-O.Sm and B=1T. Thus, the initial ohmically-

heated plasma in small tokamaks will generally be optically thinm to

the O mode at fundamental resonance.



Similar estimates are possible for second harmonic absorptiom.
Attenuation rates are obtained in the same manner as for fundamental

resonance, by expanding the dispersion equation for the electromagnetic
2kTea

wave branches in powers of ¥Yg= 7 The non-relativistic
Mac
expression is [19]
cYmk. _.2
I _ /- 5 7% sin?8@ Aj
K, = = —-VYgn:e (4)
i w : ] [cos8| 2c+pn2

J

where © 1is the angle between the field and the wave-vector;

v==w§e/w2 , and the indices of refraction nj for the 0(j=1) and

X(j=2) modes are given by the Appleton-Hartree formula [15]

2v(1-v)
n? =1- (5).

2(1—v)—llsin?B:t¢/u251n“e+4u(1—v)2cosze

with u==Q§ /w? taking the value % .

The variables z; = (w-ZIQB[)/nijecose measure proximity to the

resonance centre, and we have defined!

Aj ng sin?@ - nJ? (1+cos?0) (1-v) +2 (1-3v) (1—v-n§ sin?0)

[ws]
]

—(1—2v)(1—%v) sin%p - (1-v)(1—%v)(1+c0526)
and

(1-v)(l—2v)(l—§v)

aQ
1]

In effect the strength of the attenuation is determined for

each mode by the quantity Kj[cosef in Eq. (2). The variatiom

1
In defining Aj; account has been taken of a misprint in the result

quoted in Ref. [19].



with incidence angle 6 of these functions for a fixed value of
z, is shown in Fig. 1 over a range of density parameter values.
Whereas the X mode attenuation is seen to be substantial over a
broad distribution of angles and plasma densities, the damping
experienced by the O mode is always much weaker. This property
will be explained later in terms of the different wave polarisa-
tions and is familiar in the low density theory of cyclotron
harmonic emission [22].

An optical depth estimate for the more strongly absorbed

X mode at near normal incidence yields [23]

2 - i
kTe kg Ro wpe (3-2v) 2 (1-2v) (3-2v)
me? w®  (3-4v)? (3-4v)

(6)

Tx2 = 2m

This result displays the same scaling with device size and temperature
as was noted for the fundamental O mode absorption, and its variation
with plasma density and magnetic field is broadly similar below cut-
off, which occurs when %ﬁ? = %. In large, high field machines the
plasma is generally opaque to this mode, however at the lower
temperatures typical of small tokamaks sz < L For example with
R_=0.3m, B=0.5T and ny=3 X 10**& we find Typ=0.19 at T, = 250eV.
The required source frequency in this case would be 28GHz.

As discussed in Section 1.2, therefore, it would appear that
multiple reflections of transmitted power must play an important role
in determining both the overall plasma heating efficiency and the
radial profile of depositionm. For the liner material normally used,
stainless steel, the theoretical power reflectivity of a plain
surface is very high, a typical value at 28GHz (lem wavelength) being

99.7%. However, irregularities in the wall, including the presence

of input and diagnostic ports reduce the effective value by a
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significant amount. Nonetheléss in T™-3, the cavity Q of the vacuum
vessel was found to be ~10* at 28GHz in the absence of plasma [24],
which implies a mean wall reflectivity of about 99%. If we assume
that the additional damping results from all radiation incident on
ports being lost then the effective reflectivity is reduced by an
amount very nearly equal to the ratio of total port area to total
wall area where the latter is an effective value obtained after
averaging over short length-scale structures smaller than one wave-
length. A port area ratio of around 17 is reasonable, and on the
above assumption would be consistent with the wall damping rate in
TM-3. Provided that wave absorption in one transit of the plasma
between reflections is greater on average than the effective rate
of absorption in the walls then the heating efficiency can be high.
As discussed in section 1.2, the radiation field inside the
vacuum vessel will, under these conditions of weak damping be
essentially unpolarised, and reflections will scatter power into many
different directions of propagation, thereby energising all the
cavity modes of the torus at the source frequency. In order to
study the broad radial heating profiles so produced we can take
advantage of these facts in describing the electroﬁagnetic field

distribution within the plasma.

3. CALCULATION OF HEATING PROFILES
We have seen that the plasma is immersed in a radiation field
which is quite insensitive to the detailed source and antenna
characteristics. Thus, we shall assume as an approximation that wall
reflections, the natural divergence of the source emission,
refraction and polarisation - splitting in the plasma all contribute

to the production of a completely unpolarised, monochromatic and
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non-directional radiation field. Along any ray path into the
plasma then, it will be assumed that the radiant intensity [25]
at the plasma edge is the same, I, say. The magnitude of I,
is determined by the input power and by the level of dissipationm,
that is by the cavity Q when loaded with plasma.
3.1 Local Heating Rate

In order to determine the heating rate at a chosen point T
in the plasma we need to obtain first the radiant intensities

Ij(g,g) for all directions s » and modes j , of propagation.

These satisfy the equation of radiation tramsport [25]

2 I(E:E) - ] 2
n_ rr (_nz__) = - a(s,r) I (s,r) (7
T

where mode subscript j has been omitted, and s denotes arc-

A

length along the ray with direction s at r .

th

The absorption co-efficient «: 1is given for the j~ mode

]

by dj = Zkokﬁ cos¢ﬁ , where Kj is the damping rate determined

for 2nd harmonic absorption by Eq. (4) and ¥; denotes the angle
J

between the wave vector and group velocity which gives the ray

direction s . Denoting by df2 an infinitesimal solid angle about
s » and by dfy the corresponding solid angle about the wave vector
k , the ray refractive index n, in Eq. (7) is defined by [25]

n® dQe

cosl :ﬁ; (8)

-

n> &

Integrating Eq. (7) from the point at which the ray enters the plasma

at s =0 say, to a point x (s) at arc-length s , we have



s
I (3,5) = ni(g,g) I0 exp { - J a(s')ds’}
)

Thus, the local rate at which power is absorbed per unit volume is

H(r) =) 0T (r,s)d2 =1, } ocjnij exp {—r(;,’s‘)} dn (9)
j j

where T(;,g) is the incomplete optical depth

s
T(E,g) = [ o(s’)ds’
o

It is of course implicit that integration is performed only over the
range of directions in which a given mode propagates. From the dis-
cussion of section 2 we see that typical optical depths are low.

As a first approximation we can assume that all rays have low
optical depths, although later on we shall allow for the fact that

a small proportion of the rays passing through a point in the
resonance zone may have exceptionally high optical depth, when

IQ.VB[ is small. Setting T « 1 then we have

~ 2
H{r) = I0 § J ajnrj dQ

Since ko = 5inbd6d¢ where (8,9) are the polar angles of k

about B , we use Eq. (8) and the definition of aj to re—express

this result in the form

4TI W T
H(r) = 2 ZJHJ?(E’B) Kj (r,8) sinb 40 (10)
J

Cc
o

where nj is the Appleton-Hartree refractive index of Eq. (5), which

like Kj does not depend on azimuthal angle ¢ .

3.2 Surface-Averaged Heating

It can be assumed that the energy absorbed by electrons at a
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particular resonance location is distributed rapidly to all parts
of the flux surface through this point, on account of the high
thermal conductivity along the magnetic field and also by the
guiding-centre drift motion of electrons. Thus, it is appropriate
to determine the heating rate averaged over the toroidal volume

between adjacent flux surfaces:

H(r)R4L F Rd& (11)

H(Y) =
} |V | |vw]

where U denotes the poloidal flux function, R the major radius,
and the line integral is carried out over the flux surface cross-
section.

Evaluation of the double integrals in Eq. (11) can be
performed numerically, however further simplifications are possible
when the maximum resonant layer width (0 = 0) is much less than
the major-radial width of the flux surface. Since Kk , given by
Eq. (4) is expressible in the form Kj==hj(£,6)e'_zi , we can make

use of the rapid variation of z Wwith position to approximate

Eq. (11) by
1

[ Rd% y(y) = 8TTot § J [ {n?(r,v)h.(r,u) R } jge—z:gl dz] dv
Y vl c 3l 1= [vol) .
T (12)

where a change of variable to V = cos 8 is made, and we use the

Symmetry property nj(£,8)==nj(£,w—8) possessed also by hj . The
minimum value of %f on the flux surface by definition is attained at
IO(W); symmetry of the equilibrium about the mid-plane of the torus

1s assumed, and with convex surfaces there is a single minimum in

the upper half and a corresponding point below. Since
dz 1dB ([ 1 , ,
ax = T (E?;G) where n (with u = }) and Y. are constant on

flux surfaces when Vv 1is fixed, a further change of variables yields
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A
2 max 2
-z -z° dz . / 1 dB
J;e dR=2J e Idz = ZHYeU TT/IE EEIr (13)
ae =

. =K
Zl'ﬂln —0

When resonance is attaimed at £f=£O, which is assumed to be

o i . e 1 dB .
sufficiently far from the mid-plane that variation of T
negligible in the region where ]z[ <1, The limits of integration
in z correspond to the two points of greatest distance from resonance
and consistent with the above assumption, they are replaced by + o .,
In general however we must allow for situations where resonance is

encountered close to the mid-plane of the torus. To take account

of the field variation, which cannot be neglected in these cases, we

1dB _ Con2 _14d°B
set T 7 = gT(R 2)¢ where &r = 3 d£22=2T and T denotes that

point of the flux surface which lies closer to resonance, on the mid-
plane of the torus. This is satisfactory since the region close to
T is most important in determining the integral. The result so

obtained may be written as

wg® my WV
Je . = G(z7) (14)
g1ilg (ry)
o 3
- ~},~(y-2)® Gl o
where G(z) = J y e FE dy and zé = z(ﬁT) By redefining
o gT|
zé according to
B |op (o) | (1 dB)
p¥ = z2(t ) + —————— \B @) _
BTy P T w e B W

Eq. (14) is essentially unchanged when the resonance layer lies outside

the flux surface (Eo coincides with point T) or when I, is close to

is well outside the resonance layer

z! »1; and since G(z)-+v4/z

centred at r, on the flux surface then T

T In addition however, when T



as z + o , Eq. (14) reduces to the form given by Eq. (13). Thus
with the modified definition of zi , all configurations of flux
surface and resonance can be described by means of Eq. (14), except
that is when the entire flux surface lies inside the resonance zone
in which case direct numerical evaluation of Eq. (11) is required.
A graph of G(z) 1is shown in figure 2. The asymptotic form
V[Ez; is closely approached for values of z 2 4 and G rapidly
approaches zero for z < - 2 .

The intensity Io is determined from a balance between the

input power P; and loss rates in the plasma and wall. The power

absorbed by the plasma is

P = Zﬂ[dWH(w)f Bk
P I
where the integration extends over the volume of the plasma. Given

an effective wall reflectivity p the corresponding rate of
absorption in the walls is PW = ZNAWIO(I—p) , taking into account
that I0 is the incident intensity in each mode. Here AW is the
total wall area and 1 - p< 1.

Thus, Eq. (14) determines the profile and strength of the heating
when combined with the condition of energy balance Ps = Pp + PW .
and the heating efficiemcy n can be found from n = Pp /EE i
When resonance is attained under conditions where Eq. (13) is
applicable, the heating rate is of an especially simple form, and

assuming concentric circular flux surfaces with RB = constant we

find

2
k 1- A d
H() = 8Tk I (wgf)( Tig [ AV . ® (15)
" me rs:m1xres (2C+Bnj )

o

where r is the flux surface radius and Y,.g denotes the

poloidal angle of the resonance point 1, . From the condition
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for validity of Eq. (13), we see that Eq. (15) applies if

n. Ry
lcos Xres' <1--31 % Within this range it is apparent that as

T
the resonance surface approaches tangency with the flux surface the
rate of heating becomes locally high as a result of the geometric
factor l/Sianes . A similar observation has been made by
Stix [26] with regard to ion cyclotron resonance heating, and by
considering the heating process for single particles this property
will be shown in Section 4 to follow directly from the fact that
resonance interaction with the wave field is prolonged when a
particle drifts vertically through the resonance layer. Equation
(15) clearly displays the proportionality of the heating rate to
electron temperature and major radius, which is the scaling noted
previously of the optical depths (Eq. (6)). Thus the heating profile
is broadly distributed over those parts of the plasma accessible to
the waves and in contact with the resonance, as expected, but the
geometric effect offers the possibility of locally strong heating.

Before proceeding to examine this question in detail, however, we
shall extend the previous discussion to include the effect of finite
optical depth.
3.3 Finite Opticgl Depth

Although the estimate of Eq. (6) indicates that typical optical
depths can be low in cases of interest, there may be particular ray
orientations which give rise to exceptionally large path-lengths
inside the resonance zone, as for example when a ray propagates
vertically at resonance. In such cases ray refraction and toroidal
curvature may be the main factors limiting the path length and the
resulting optical depths can be markedly higher than average.

(Numerical ray-tracing calculations [27] for a small tokamak
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configuration indicate that optical depths can be an order of magnitude
higher than typical values in a narrow range of such orientations so
there may be a significant over—estimate of the associated transmission
factors e ' in Eq. (10)).

If the optical depth is small when averaged over all ray orientations
for any given launching point in the wall, we may still approximate the
radiation field by taking I0 to be constant, however it now becomes

necessary to write the local heating rate as

, o100, 6, 1)
H(r) = 2k, IOZInj (x, 8) k; (z, 0) sind dej e d¢ (16)

J o

where ¢ denotes the azimuthal angle of the wave vector about the magnetic
field at r, measured say from the plane in which B does not vary. The
incomplete optical depth rj(e, ¢; r), given after Eq. (9), is determined
from the ray path through r with orientation (8, ¢) so that e‘T. is
the transmission factor with which the energy incident along this ray

reaches r. Using the slab model of the plasma in which only IB[ varies,

in a direction normal to B, we can estimate

Tj(es b £) = ZkOR

h.(r, 8) cos{. Y |cos 8]
] - i 2 H 6%))
+

|sin(e + wj) sin |

where the -« 1limit applies when O < ¢ < T and +° when w < ¢ < 2T,
Clearly this approximate result breaks down for ¢ = 0 or T : we have
neglected ray curvature, and other inhomogeneities, the effects of which
are to limit the size of Tj . Use of Eq. (17) to determine the trans-—
mission factors will lead therefore to an underestimate of the heating
rate associated with those rays of high optical depth, which should allow

comparisons to be made with the results from Eq. (12). Defining
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_ o _ o
Ty3 (©0) =73 0,705r) and Ty (x,0) =1,(8,% ;1)

we find that

2m
J e 5 (@85) 4y _ o (T(?Ij)*'T(?Zj)]
0
where S
1 [ eMax 1 ’
T() = FJ—T—“ 2 JKO(y)dY ’
x\/I -1 0

Ko(y) being the modified Bessel functionm.

Clearly when ?ij + sz-« 1 then we recover the low optical depth
result, and in general evaluation of the surface-averaged heating
rates from Eq. (11) may be carried out by numerical calculation of
the two-dimensional integral over 6 and flux-surface arc length 4&.
3.4 Numerical Calculations .

In order to study the detailed profile form we use the above
results for the illustrative case of a tokamak with major radius
30cm, plasma minor radius 8cm and toroidal magnetic field in a range
of wvalues afound 5kG. These parameters are similar to those of
TOSCA, and also TM3 (R=40cm). Only the linear heating problem
is considered so the electron temperature is taken to remain fixed
with some chosen initial profile. At the chosen value of maximum
temperature 300eV, typical optical depths for the X mode are
considerably less than unity. The source frequency will be set
equal to 28GHz, corresponding to second harmonic resonance at 5kG,
so that the more strongly damped X mode will cease to propagate when
the density exceeds 0.5 X 10'*cm 3. For simplicity, the flux

surfaces are assumed to be circular and concentric, the profiles

of density and temperature being parabolic.

In figure 3 the results obtained using Eqs. (12) and (14) are
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compared with those obtained firstly by using Eqs. (10) and (11)
directly, and secondly by using Eqs. (17) and (16), for the
case where resonance occurs at a major radius of 3lcm, and the
maximum plasma density 3 X 10'2cm? is well below X mode cut-off.
The level of agreement between the three profiles is surprisingly
good, in view of the fact that the resonance half-width is about
lem and comparable in size therefore with the inmermost flux
surfaces upon which resonance is attained. The most striking
feature of these profiles is the strong local maximum in the heating
rate, centred around the flux surface which meets the resonance
tangentially, and due to the geometrical effect discussed in
Section 3.2. There is a broad distribution of power over surfaces
of larger radius all of which cross the resonance, but inside the
surface of maximum heating the power drops rapidly with decreasing
radius in a characteristic length equal to the resonance layer width,
lem. For definiteness; we set the effective power reflectivity and
radius of the liner equal to 98% and 1O0cm respectively, (so that
the unloaded cavity Q is about 6,000), and normalise the heating
rates with respect to an input power of 25kW, which would typically
be comparable to the ohmic heating power in TOSCA.  Then the
radiant intensity I_=8.4 watts/steradian/cm® and the heating
efficiency n=50% giving a mean heating rate of 0.3 watts /fem °
where the values are taken from the finite optical depth calculation.
As the plasma density approaches the cut-off value, a transition
from strongly-peaked to broad, edge-heating profiles takes place
as shown in figure 4, (solid lines) obtained for the parameters of
figure 3 using the finite optical depth calculation. Associated
with the loss of strong heating in the plasma core, there is a drop

in heating efficiency and a corresponding rise in the radiant energy
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density as measured by IO 5 In the case where the electron
density reaches 5 X 10!? cm® at the centre elimination of X mode
heating on the flux surface tangential with the resomnance allows

the small contribution made by the O mode, enhanced by the geometri-

cal effect, to be seen.

At higher values of electron temperature the rate of absorption
in the plasma rises, as will the heating efficiency at a given
value of plasma density. Setting the peak electron temperature
equal to 1200eV, which is near the limit imposed by the condition
Tx2<1 from Eq. (6), we obtain the profile shown (dashed) in
figure 3 for density ne==3 x 10'% em 3. Apart from a broadening
of the heating maximum consistent with the increase in width of
the resonance layer, the profile has a similar character to the
300eV result, although the ratio of peak to average heating rates
is now lower.

So far the heating process has been discussed in terms of the
wave theory, and in order to specify the damping rates it has been
assumed that the electrons have a Maxwellian distribution of
velocities. By considering instead the interaction of a single
electron with the wave field we can obtain a direct physical
understanding of the resonance process and also obtain
heuristically the rate co-efficient for velocity space diffusion
of electrons driven by the waves. In this way an estimate can be

made of the maximum heating rates at which collisions are capable

of maintaining a thermal electron distribution.

4. QUASI-LINEAR PROCESSES

4.1 Wave-Particle Interactions

Electrons come into resonance when their drift orbit motion



carries them to a point in the wave where Eq. (1) is satisfied, and
in crossing the zonme of resonance each experiences a change of velo-
city which is determined partly by the initial phase of its gyro-
motion relative to the wave. When phase correlations are destroyed
by collisions or other stochastic processes [28] between successive
transits of the resonance, then the velocity changes are essentially
random and the electrons diffuse in velocity space under the action
of the waves.

This leads to a steady increase of the mean electron energy when
the distribution of velocities is monotonic and provided that colli-
sions are sufficiently frequent the additional energy is thermalised
on the timescale of the heating, the distribution function remaining
close to a Maxwellian. Then, apart from a small fraction of
magnetically-trapped particles, a typical electron will pass through
resonance with nearly constant parallel velocity since we anticipate
that the effective interaction time is very much shorter than a
typical drift orbit period, and that wave-induced changes in v,
will be small. We can neglect the electron guiding-centre drifts
and it will be sufficient to represent the electromagnetic field by
a superposition of coherent plane waves, provided that the field auto-
correlation time is longer than the duration of resomance interactionm.

Consider then the perturbing effect of a single plane wave on
the motion of an electron about an approximately uniform background

magnetic field EO. Non-relativistically, we have

dv vxBy  ,uxB,
m-ﬁ=e(§_+ c)-i-e( . ) (18)

where E, B denote the electric and magnetic components of the wave.
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Employing Cartesian coordinates (x, y, z), with z along _1§0 and ¥y

normal to k, the transverse components of Eq. (18) can be arranged

in the form

i(wt-k.r(t)) )

1 i e r.
U, #iQ(e) U, = = (E, + Fi_}e

= . - . | -
where U, = v % iv,, E, = E % lEY and F, =— {(Y.'E)k_l_ (z._lg_)Ei},

with the oscillatory field variation displayed explicitly. By virtue

of slow spatial variations in IBOI, the local gyrofrequency

eB
QB = —2 at the electron position changes in time, at a rate
0, = v,b.VQ, where b 1is a unit vector parallel to B . 1In the
B = B - -0

quasi-linear approximation, valid when the resonant change in velo-
city is small compared to that of the unperturbed motion, we can
evaluate the perturbing terms on the right hand side of Eqs. (19) by

integrating along the unperturbed trajectory of the electron, viz.

2 0
z=vyt , X=-5—cos¥Y , y= =— siny
% g

t
where ¢==J QB(t’)dt’ i tO being an initial instant when the
t

° +iy(t)

gyrophase is O. Choosing e as integrating factor

Eq. (19) can thus be solved readily to yield

Oy 0y = v, (e )

.

t
. % {E+(1— kuvu> . 5,7 E, }J ei[(w—k“v”)t'ixp(t’)w cosll)(t’)] de?

+ w w

t 0
By, i| (w-kyvy)t’+a cosy (t7) (20)
s L EyJ e "V de’

o

klvl Pa ¥ o b (= )

where a = 9 7 Using the expansion ot@cos =Z J,(a) g g ¥
B =

~ 0§ =



each of the integrals in Eq. (20) can be replaced by a sum of terms

t
b . m
of the form Jm+r&ﬂe10m+r)ZJ expi.[(m—k”v”)t'—mw(t’)] dt’ where
m=—m . to

r =*1 for the first integral, and r = 0 for the second. If

the electron encounters nth harmonic resonance in the course of its
motion at time ¢t = t o » S3Y, SO that w-kﬂv“=-nQB(treS) (taking

account of the negative sign of -QB), then an integrand in the above

sum of terms will vary slowly for ¢t/ = s if m=-n . For all

other values of m however the integrands oscillate rapidly so that

for (t- to)lgB(tres)l > 1 they give rise to negligibly small contri-
butions in the summation. Since the dominant contribution to the

m = n integral arises from values of t’ close to tres we expand

¥(t’) 1in Taylor series about the resonance point and obtain

t
I exp 1 [(w—kuvu)t'ﬂlw(t’) dt’ =
to N
3 1 t .
ln[w(tres)_QB(tres)tres_ . ns-zB(t]:es) . i
e expi| ——(t tres) dt
. 2
o

Nl

2
1mi - - b . b
In the limits (treS to) , (t tres) {//;lﬂgl} the above

integral is easily evaluated and so Eq. (20) then yields

+i kyvy - kv

e ll“t)Ui(t) = M lE ¥ + %[{Ei(l— = ) + *w Ez} SIS CY

5% (klvl 1 () 1 /251 i(E+7) (21)
T L v ) )n a J n—-_IQBIe .
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n+2 .
Q (t )tres)+6—§—)w . The first term

where :=n(w(tres)— s (Crag)

represents the unperturbed gyromotion and the second gives the

resonant change in transverse velocity Vs which we can see is

produced in a characteristic time Atres=v//[%” where QB is
w6 |
B

evaluated at the point of resonance. As we shall see later
Atres is generally much shorter than the electron drift orbit
period. From Eq. (21) we obtain vx=-;'—Re(U++U_) and
vy=%9m(U+-— U_) , and so determine the resonant change of
transverse kinetic energy —é-mv2 . This may be expressed in terms

L

of the complex quantity

=2
Av —mé"Atres (22)

where € is an effective electric field given by

an(a) - , vy w=ky vy iz
éb= {EIT_ + lEan (a) _;I Ez Jn(a)}(——'—w—) e (23)

The magnitude of the perpendicular velocity after resonance is
then given by
2 2

k= le-FZIAvllcosE-+|Avl'2

where Vo denotes the initial value of v, Clearly, the value
of the increment depends through = on the initial gyrophase of
the electron relative to the wave. Stochastic heating calcula-
tions for mirror machine geometry based on an analysis similar to
this were carried out by Lieberman and Lichtenberg [28].

By integrating the component of Eq. (18) parallel to B,

making use of the above methods we obtain the resonant change in vy :

- B8 =



Av, =Re i N £ gt (24)
il UJ"kHVH m res

Since kc/pw~0(l) for electromagnetic waves we see that

Av"~<%-]ﬂvl[ so that the dominant effect is the change of perpendi-

cular velocity during resonance. (In the case of Bernstein waves
however, k~wv = so that v, and v = can change by similar
amounts).
: : v"QB )
For tokamak geometry, we have QBﬂ'O TR and since the

drift orbit period of an electron T '“O(B—], then |R At
tr Vi B
T R|Q
tr R B
B — >
At § o V"
res

many Larmor gyrations during resonance, the zome of interaction is

'L'ES[

1 , so that although the electron performs

well localised on the drift orbit.

In addition, for a typical gyrotron bandwidth of 0.1% at 30GHz
the auto-correlation time is of order 3-4% 10™° sec which is signi-
ficantly longer in general than Atres for the parameters of
section 3.4. This justifies our use of a coherent wave representa-
tion of the R.F. field.

4.2 Velocity Space Diffusion

Assuming as discussed earlier that electron-wave phase
correlations are destroyed in a time less than the orbit period
T, , the phase angle E will change randomly as the electron

tr

performs successive transits and the perpendicular velocity will
-1
undergo a random walk with step size [Avl[ and frequency T . -

The heating process is thus characterised by a velocity diffusion

co-efficient

1 2\ ~1 g
D=3 <AVL/'rtr 25)

where <Avi>=h% [Avll2 is the mean square step-size, and the flux-
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surface averaged electron distribution function £ satisfies a

diffusion equation of the form

f _1 9 ( af)
=== |V D, =] + C (£)
t v, Bvi 11 3vl e
where Ce(f) represents the electron collision terms. The
; v ‘ ; i _ 2mqR
drift period for circulating electrons is Tep™ e where
[}

; - Vuflg
q 1is the safety factor, and QB = & ® 810 Yrog

In the limit of small Larmor radius [a| « 1 therefore, Eq. (25)
yields
2{n=1)

2
Yy R
2 5
B TWS1N Xpag

(26)

)2 ‘ _ kyvy
E +1E + E
X y W z

Blo

o
D =
b 2@ (@112

Note that the electron crosses resonance twice per orbit: Eq. (26)
gives the diffusion rate due to each interaction zone separately.
This heuristically derived expression may be compared with the
result obtained more formally by Rowlands et al [29] from the
quasi-linear theory for spatially homogeneous systems. Taking
account of a change in sign convention for the wave vector, Eq. (26)
is seen to be of the same form as the wave diffusion co-efficient
in a homogeneous plasma, the main difference being that the effective
interaction time in a uniform magnetic field is determined by the
rate at which an electron crosses a wave packet.

Several characteristic properties of cyclotron harmonic
absorption are evident from Eq. (26). Firstly we see that as omne
would expect, the coupling to electrons occurs primarily through the

right-hand circularly polarised component of the field (EI#iEy) s
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which rotates in the direction of electron gyromotion. Thus, the
strong right-handed component of the X mode at frequencies u3>|QB|
gives rise to higher damping rates at the cyclotron harmonics than

does the 0 mode which has a much weaker component in this polarisa-

kT
tion. At very low densities such that w;es w? ~—§ this is true
mc

also at the fundamental resonance, however in cases of interest where
m;/:uz ~ 0(1l) , the dielectric response of the plasma strongly

modifies the wave polarisations when w =|Q_| such that for general

; 7 (=18
angles of propagation, Eﬁtﬁgl = 0({ lzBl)
E

more detailed examination of the wave polarisation shows that the

B
UJ) , for both modes. A

0 mode coupling is strongest for k.B=0 , whereas that for the
X mode is strongest at parallel propagation, as can be seen also
from the linear wave attenuation rates given by Litvak et al. [7].

A second important property manifest in Eq. (26) is a power
dependence of the diffusion rate on the electron perpendicular velo-
city for harmonic resonance, alluded to in section 1.2. For the
higher harmonics especially, therefore, the wave-driven diffusion
will tend to distort the perpendicular velocity distribution from a
Maxwellian. This in turn will affect the rate of absorption in the
plasma, even though the parallel velocity distribution, by Eq. (24),
is only weakly altered. By contrast, the diffusion rates for funda-
mental heating, given by Eq. (26) depend only on vj , so we expect
the linear heating rate to be much less sensitive to changes in the
perpendicular velocity distribution induced by the heating. This is
confirmed by explicit solution of the diffusion equation [29].

A final observation from Eq. (26) is to ﬁote the dependence of

the coupling strength on the geometrical factor , previously

rsinxres

found in the linear heating rate given by Eq. (15). This can now be
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interpreted as an effect due to a reduction of the rate at which the
Larmor frequency changes along the electron trajectory through reson-
ance when six1xres is small. In fact, using Eqs. (22) and (23). the
flux-surface-averaged heating rate can be calculated following a

method similar to that used by Stix [26] for iom cyclotron heating.

This gives

1 2 kvy 2k v(o-l)
2 {(n-1)!} B res y

B

(27)
where fe is the electron velocity distribution function, and where
we allow for the fact that each electron crosses resonance twice per
orbit, symmetry about the mid-plane being assumed. Comparing Eqs. (15)
and (27) for the second harmonic absorption, we see that Te in the

former is to be interpreted as the mean perpendicular energy. At the

k,v
nn
fundamental, since Exd-iEY ~ 0 (Erf_ w) » Eq. (27) shows that the
P

heating rate is determined by the parallel velocity distribution,
which as we noted before is only weakly influenced by the direct effects

of the waves.

4.3 Threshold Estimates for Quasi-Linear Diffusion

Neglecting the effects of toroidal geometry on electron drift
motion, valid for the majority of circulating particles, we can
estimate the heating rate beyond which quasi-linear distortion of the
velocity distribution becomes strong, by obtaining a condition for
balance within the thermal electron population between the rate of
diffusion due to the waves and the rate at which Coulomb collisions
restore thermal equilibrium.

By inspecting Eq. (27) it is seen that electrons with
Vo, Swv % 2vTe are most important in determining the second

Te 1



harmonic heating when fe is Maxwellian. Also since the diffusion
rate given by Eq. (27) depends only weakly on v , pitch-angle
scattering is less important than collisional slowing down, so a
threshold intensity may be obtained from the condition that

1 » i p
<= <
DJ_(v_L)~ viv_ , for all ¥, ZVTe where vs 1s the rate at which

2 L's
an electron of velocity Lkt slows down and Dl is the appropriate

quasi-linear diffusion coefficient.

In order to employ this argument in relation to the second
harmonic heating discussed in Section 3, where the wave spectrum is
broad, we assume that the electron interacts with each spectral
component independently so that the total diffusion co-efficient
may be formed by integrating Eq. (25) over ky - This is justified
since the interaction time Atres with any component is much less
than the time during which the electron is in resonance with the wave
spectrum as a whole, and also since no phase correlations will exist
between different components. Then the total rate of diffusion,

allowing for resonance above and below the mid-plane, is
kv \2 R'o
- 1@ o B (9] e (0 Y, eo
+ (n2+N) \ Qg / W SN Xreg
kV" 2 7
I — _Lip(2(2
where P(B,r,xres)-|Exf1Ey+ _TE"Ez|///[E|2 , and W"8ﬂ|E| (n“+N)
denotes the spectral energy density of the wave field such that WdQK
is the field energy per unit volume associated with the solid angle of

wave vector directions dﬂk about k . The quantity

] 5 . . . .
N = E%, T (wg).g/!E[z determines the electric field and kinetic

energy densities. Note that Xres varies with k; .

kI n?

In terms of the radiant intensity I, W is given by W= =
k.

%l g

where the ray refractive index n. is given by Eq. (8), and Yo

denotes the group velocity. Well below cut-off, n ~ n_~ N~ 1 and
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v "cﬁ so W’”I/c . Also P~0(l) for the X mode so the

threshold criterion for thermal electrons reduces to the approximate

form
4n? 5] L _R° $1 (29)
3 Vg Fp~ TSim Xres

when the variation of Xres With k; can be neglected. With ¥

determined by electron-ion and electron-electron frictionm,

v "3X10_8n /300 s ' for v>v h is 1
. s V;EEQ ec, o Te » Where n, is in cgs

units and mv? is in eV, so for the parameters of Section 3.4,
condition (29) yields

_%1

e Te r . 2 ‘
I < 190 o —siny watts/cm“/steradian
10'2/\300/ & rag

Applied to the case represented in figure 3, the above

condition yields an upper limit of about 200 watts/cm?/steradian

for the flux surface of radius 3cm (xre5270°), so that the criterion
for a thermal electron distribution there is well satisfied at an
input power of 25kW, since IO-»10 watts/cm?/steradian. Clearly
condition (29) becomes more stringent as the flux surface tangential
with resonance is approached, and when Xres=:0 or T then Eq. (28)
is no longer valid, since the variation of égg- during resonance

cannot be neglected. There is therefore a minimum value of

= (or m™-X___) below which the diffusion rate, no longer given

X res

by Eq. (26), reaches a maximum value and then falls rapidly when the

Tre

flux surface no longer crosses resonance. This minimum angle is
attained when an electron drifts from the point of resonance to the

midplane of the torus in a time comparable with the interaction time
1

2Ty | 73

rqw z

Atres . Then Eq. (29) is seen to apply when sin) o<

- 31 -



which leads to a maximum value of the resonance time Atres =
2
f[2m(Ra\* R 1/3 z i . .
= ;;) r} . Replacing S?leres in Eq. (25) by this lower
limit gives a stronger threshold condition for electrons on
surfaces where resonance with all parts of the spectrum is

encountered close to the midplane of the torus. With parameters

used above we then find

n Y4
I< 30 (I6%3>(%E§) (E)%é watts/cm?/steradian (30)

where the safety factor q~1 .

For the surface of maximum heating in figure 3, r = lem and
this yields I < 23 watts/cm?/steradian, so the condition for
linear heating at all radii in the initial 300eV plasma is
satisfied in the case discussed for input power levels lower than
about 70kW, given the assumed wall absorption rate of 2%.

When the electron density is higher so that the central parts
of the plasma are inaccessible to the X mode, we have seen from
figure 4 that a broad distribution of power over the outer surfaces
in contact with resonance takes place, those surfaces where Yo
is small being cut off. Condition (29) is then sufficient to
estimate the threshold intensity on the surface of maximum heating
where the density is well below cut off. Thus, for the case in

figure 4 where B, = 5 x 102 em™

, maximum heating occurs around
the surface r = 4cm, and condition (26) yields a threshold of about
500 watts/cm?/steradian, which greatly exceeds those of the previous
example because of the much lower heating rate per electron.

As the temperature rises under the influence of the R.F. power, or

when the input power in increased, the linear threshold is normally

exceeded first on the surface of maximum heating and when this occurs
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electrons in the local thermal population will start to 'run away' to
high values of perpendicular energy, in the absence of any mechanism

of relaxation other than collisions. Not only will these electrons
become decoupled from the remainder of the thermal population, but they
will also absorb the incident R.F. power with greater efficiency as
their Larmor radii expand [30]. This is clearly undesirable as the
effective bulk plasma heating rate will be significantly reduced. A
similar runaway of superthermal electrons can take place below threshold
but is less serious in this case because a much smaller proportion of
electrons is involved. A further consequence of perpendicular runaway
is that due to the toroidal geometry, electrons will become trapped in
banana orbits as they are heated when v, ® vy and eventually will turn
in the resonance region, as in applications of ECRH to mirror machines
(31]. The trapping of a significant fraction of electrons in this way

could modify the plasma current density profile and possibly lead to

other deleterious effects on confinement. Note that such effects of

trapping would also be evident in fundamental heating, when D-L 2.'%\;%& Vg

5. CONCLUSIONS

High-frequency plasma heating, using the second electron cyclotron
harmonic resonance, in small, low-field tokamaks such as TOSCA has been
discussed, and linear heating profiles calculated for cases of interest
where the plasma is optically thin, so that wall reflections are impor-
tant. It is shown that maximum heating at smaller minor radii is
favoured by a geometrical effect of the flux-surface and resonance
configuration. A simple, heuristic argument leads to expressions for
the quasi-linear rates of electron diffusion in velocity space, providing
a clear physical picture of the heating process and indicating several

important general properties. In particular, second harmonic electron
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heating rates are seen to increase with kinetic energy transverse to

the magnetic field. If the R.F. heating fields are sufficiently intense
then thermal electrons will be driven to high transverse velocity,
resulting in an increase of the trapped electron population with
possibly damaging consequences for confinement and stability. A thres-
hold criterion is given for heating rates below which this may be
avoidéd, and used to estimate maximum input power levels. These indi-
cate that heating rates well above that supplied typically by Ohmic

dissipation should be possible.
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for the extra-ordinary mode (solid lines, v = 0-1, (0-1),04) and the ordinary mode (dashed lines, v = 0-2, (0-2),0-8).
The 0 mode curves are magnified ten times relative to those for the X mode, for greater clarity.
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Fig.2 Graph of G vs z. For large values of z, G is asymptotic to v/7/z (dashed).
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Fig.3 A comparison of the radial heating profiles obtained for the same case, using (a) Eq.(10) (—), (b) Eq.(12)
(~-——) and (c) Egs.(16) and (17) (----). The density and temperature profiles are taken to be parabolic, and on
axis ng =3 x 10* fem®, T, = 300eV and By = 5-17kG. Source frequency 28 GHz.
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Fig.4 Variation of the heating profile with increasing plasma density ng (in units of 10'*/cm®). As the X mode
cut-off density (ng = 0-5) is approached a rapid transition to edge heating occurs, the absorption efficiency 7
falls, and the radiant intensity I, (in watts/cm? /ster.) within the torus rises.
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