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ABSTRACT. It is pointed out that the range of mode numbers n
for which high-n, ballooning-mode, theory is valid is more restricted
when the shear is weak. A new theory valid for weak shear and inter-
mediate mode number is outlined. Combined with the standard theory
this analysis shows that the growth rate of high-n instabilities is
linear in 1/n at large n but in equilibria with weak shear there
may be intermediate values of n for which the growth rate is an
oscillatory function of 1/n , with amplitude and period proportional

to 1/n2? .
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1. INTRODUCTION

The theory of high toroidal mode number (ballooning) instabilities
in axisymmetric toroidal.plasmas [1-3] was developed to complement the
2-D computer codes used for low mode number instabilities. 1In many
equilibria the predictions of ballooning theory [3-5] for large mode
number n link smoothly with the results of 2-D codes at values of
n ~ 4-5 , so providing a comprehensive analysis of mhd stability.
Indeed it is claimed [6] that ballooning theory is itself accurate down
to small values of n . On the other hand [7] doubt has been cast on
the éccuracy of ballooning theory at much larger values of n when v’
(an important parameter of ballooning theory related to local shear) is
~vanishingly small.

In this note we (i) point out that the validity of ballooning
theory may indeed be restricted if the shear is very weak - but not for
the reason referred to in Ref. [7], (ii) describe a modified theory
valid for weak shear and moderate n , and (iii) combine this with
standard ballooning theory to describe the qualitative behaviour of
growth rates of high mode number instabilities as a function of mode
number in weak shear systems.

We shall follow closely the derivation of ballooning theory given
by Connor, Hastie and Taylor (CHT) in Refs. [1] and [2]. [An alter-
native derivation [3] given by Chance et al based on a WKB formalism is
simpler but neglects some 1/n terms. These do not affect standard
ballooning theory but can be significant in the modified theory discussed

in section 3.]



2. STANDARD BALLOONING THEORY

In CHT one introduces a transformation
CD- @ .
X(9) = 2 g e Jdnemnﬁ(n) (1)
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from the poloidal angle ©6(0<6<27) to an extended, infinite domain
n(-o<n<®), Then the frequency Q of a toroidal mode ~exp in{
is determined from the eigenvalue wzcw,yo) of an ordinary differ-
ential equation in the infinite domain [1,2], with boundary

conditions at infinity. In the notation of CHT this ordinary differ-

ential equation is
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and the frequency Q is then given as
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where q%f = mintoz(w,yo} . As we have noted, v’ 1is related to the

local shear; the global shear is q’ =-§; { vidy .

This theory is formally an expansion in powers of 1/n , repre-
senting the ratio of perturbation scale length transverse to B to
equilibrium scale lengths. It is assumed that all equilibrium

lengths are O0(l) ; indeed it is the great strength of high-n theory

that it is not dependent on large aspect ratio, weak shear, or low-f.



However when all equilibrium quantities are not O0(1l) , modification
of the high-n theory may be necessary. One example [8] arises when
the scale length of the current density is exceptionally short and
results in a modification of the 1/n term in Eq. (3). 1In this
note we consider the important case of exceptionally weak shear.

It may appear from the form of Eq. (3) that if vf(yo) is small
the second term becomes large. This in turn suggests that one would
require nv' »1 for ballooning theory to be valid, as suggested in
Ref. [7]. However, an examination of the differential Eq. (2) for
wz(w,yo) shows that if v’ - 0 then so does (Bzwzlay;) and that

L
2,2
the ratio (1l/v") (%—%)2 remains finite.

Nevertheless it ;; clear that ballooning theory must break down
if the magnetic shear tends to zero, since the basis of the theory is
that ballooning modes may be constructed from the overlap of many
localised Fourier modes cenﬁred on adjacent rational surfaces [2,3,9,10].
When the spacing of the rational surfaces becomes too large this con-
struction is no longer valid. In terms of the total poloidal flux V¥
the typical width of an unstable ballooning mode is ¢/n% while the
separation of rational surfaces is 1/nq’(V¥) . Thus we expect
ballooning theory to require n(¥q')2 » 1.

Mathematically this requirement can be seen most easily if the
transformation of Eq. (1) is substituted directly into the energy integral

8W(g,&) . Then the resulting double sum over m can be contracted to

a single sum of the form
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Ballooning theory, in effect, approximates this infinite sum by its

zero-th term, e.g. by invoking the Reimann-Lebesgue lemma [8]. The



accuracy of this can be gauged by substituting, a posteriori, the
resulting localised ¢€(V¥) ; this shows the error to be exponentially
small in n , of order exp[ - n(myiq’')?].

For "typical" equilibria (¥q') ~ 1 and ballooning theory
requires only n»1 . However in regions of low shear (Vq" «1) two
regimes of high-n modes must be distinguished.

(a) n»(¥q’)~2»1 when standard ballooning theory is valid.

(b) (¥q')"%2 » n» 1 when a new theory is required.

In the following section we outline a theory for this second regime,
again by an expansion in powers of 1/n , but one in which n¥q’ is
0(1) . The full calculation is similar to that of CHT which should
be consulted for mathematical details.

3. HIGH MODE NUMBER INSTABILITIES
IN WEAK SHEAR EQUILIBRIA

The general Euler equation for the minimising displacement

X = RBxgm of a high-n perturbation takes the form
(L - 02MX =0 Al

where the operators L and M are defined by Eq. (15)0of CHT. For
weak shear equilibria, instead of introducing the ballooning

representation, we write the perturbations as

v X
X = R exp [ in J K(W)dV - i % J vd-x] (6)
so that the parallel derivative becomes
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and the transverse derivative
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Here k 1is used instead of the parameter i of CHT. [In standard
ballooning theory the quantity fv'(yo)i‘l (aZwZ/ayOZ)% in Eq. (3)
is then replaced by (aZuz/akZ)% which, as we have noted, remains
finite as v’ - 0.]

Because the global shear is weak, the term (nq-m) in k” is
now treated as an O0(l) quantity in the 1/n expansion (in CHT it
was O(n) and was removed by the ballooning transformation). Then
Eq. (5) is solved by gxpansion in powers of 1/n .

In lowest order ome obtains an eigenvalue equation
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As in CHT this is an ordinary differential equation in the poloidal

coordinate and defines a "local" eigenvalue w? ., It differs from the

corresponding equation of standard ballooning theory (Eq. (2)) in

that:-
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(i) Eq. (9) is to be solved in the finite domain with periodic
boundary conditions instead of in the infinite domain.
(ii) 1Im t@e operators Iao and M0 , since the global (or average)

. shear is small, only the local shear remains; on the other
hand the rotational transform itself now appeérs through
(ng-m) =p .

(iii) The mode numbers n and m also enter directly through u
so that even the lowest order eigenvalue is a function of
toroidal mode number, w? = w?(¥,k,n) . [In standard
ballooning theory there is no unique poloidal mode number m
and the lowest order eigenvalue is independent of n , corres-
ponding to the limit n - © ; the present result corresponds
to the limit n - @ but with (ng -m) remaining finite.]

The variation of w2(V¥) , at fixed k and n , has two distinct
contributions. The first, due to sheaf, arises because (nq-m) = p
depends on V¥ . It produces a periodic variation in the lowest eigen-
value (since when nq(V) changes by *l a corresponding change in
m restores p to its previous value). This periodic contribution
has no counterpart in standard ballooning theory. The second contri-
bution arises because other equilibrium quantities, such as pressure
gradient or field curvature, depend on v ., It produces a variation
in w2(V¥) similar to that arising in standard ballooning theory.

Of these two contributions the first depends on toroidal mode
number but the second does not. Roughly speaking the total variation
of w2(¥) is of the form w2(y) ~ A+ B(lll—“.’o)z + C(ng-m)?2 and
resembles Fig. 1. The two contributions can be distinguished by
regarding w? as a function of the variables (V,k,p) rather than

(¥,k,n). Then
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where the derivatives on the right hand side are independent of mode
number.
Higher Order Theory

As in standard ballooning theory, the solution of the lowest
order Eq. (9) contains an unknown amplitude A(xz) and does not deter-
mine the value of k or V . These are determined by the higher
order theory in the expansion in 1/n .

In higher orders one of the cdnsequences of the integrability
conditions is that V¥ and k must be at a minimum of
w2(V,k,n) Etu;(n) . In many cases (though not all), the minimum with
respect to k will be at k = 0 if the equilibrium has symmetry
about the equator x = O . The varilation of w? with W has been .
discussed above (see Fig. 1). It is clear from that discussion that
the value of w02 depends on the relative location of the minima of
w2(¥,k,p) with respect to V¥ at fixed p and the minima with
respect to p at fixed V¥ ; that is on the location of the rational
surfaces (nq(V¥) -m) = 0 . Thus tﬂ:(n) will oscillate as a function
of n , regarded as a continuous variable, as each successive rational
surface passes through ¢0 (where WO is that flux surface on which
wW2(¥,k,u =0) has its minimum). The amplitude of these oscillations
will decrease as n increases because the rational surfaces become
more closely spaced in V¥ , but the period remains fixed, An ~ 1/q .

Usually integer values of n will not lie at the peaks or
troughs of the oscillations in u%f but during the evolution of a
discharge the rotational transform will change slowly and the rational

surfaces will pass through ¢0 , giving an effect similar to that of a



continuous n . Hence we shall continue to regard n as a con-
tinuous parameter.

A further consequence of the higher order integrability
conditions, (and one which completes the theory) is that the ampli-
tude A(x) is given by a Weber equation. When a rational surface
coincides with the surface wo - which is an important case because
it usually corresponds to an unstable peak in the oscillapions of
w2(n) - the equation for A(x) takes the same form as in standard -

ballooning theory;

/oy 2,42 2 232
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n n

Thus in this case Q? 1is again determined entirely by the zero-order

eigenvalue w? and its derivatives and
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In the general case A(x) 1is still given by a Weber equation but this
contains additional terms arising from the operator Ez of CHT.
[These terms have no effect in;standard ballooning theory and do not
arise in the WKB version of Ref. [3], but in the present theory they
vanish only when (nq(wo) - m) = 0],

Eqs. (13) and (14) involve the derivatives of w2(V,k,n) at
constant n and so contain the implicit dependence on mode number
described above Eq. (12). It is therefore convenient to express (13)
in terms of w2fV¥,k,u) as

5
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where the derivatives are now independent of n . Recalling that

this result is valid for nV¥q’ ~ 1 we see that when nlq’ becomes
small, 02 is a linear function of 1/n ,

1 %
02 w? o+ 2n(wkk Wy ) (16)

as in the standard ballooning theory, whereas when nl¥q’ becomes
large

’ ¥
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and 02 is then independent of n .

In comparing these results with those of standard ballooning
theory one must remember that w? is defined by a different equation
with different boundary conditions in the two cases - though it can
be shown that the two theories differ only by terms of O0(q’'2) as

n-— o,
4. VARIATION WITH n OF HIGH-n INSTABILITIES

Using the results of the previous sections we are now in a
position to give a qualitative description of the variation with n
of the growth rate .of high-n instabilities,

When all equilibrium scale lengths, including shear, are 0(1)
thelvariation is given by standard ballooning theory, Eq. (3), and is
linear witﬁ 1/n . ”

When the shear is very weak a more complex picture emerges. At
the largest values of n , (n»(¥q')~"2»1) the standard theory is
again valid and Q2%(n) 1is again linear in 1/n . At intermediate

values of n ((¥q')~2»n»1) the new theory outlined in section 3 is



abplicable. This shows that ©2%(n) is an oscillatory function of
n (regarded as a continuous variable). Thgse oscillations, which
reflect the passage of rational surfaces across the equilibrium
profile as n varies, decrease in amplitude like 1/n? and are
negligible in the regime of validity of standard ballooning theory.
The period of the oscillations is constant in n so that in terms of
1/n the period also decreases like 1/mn? . The envelope of the
oscillations, on the more unstable side, is given by Eq. (15). This
envelope is also linear in 1/n when n(V¥q’) is small but i; inde-
pendent of n when n(Y¥q') is large.

These'featurés of the variation of Q? with mode number n are
shown schematically in Fig. 2. They are very similar to the features
observed recently in numerical computations using the new, more

powerful, version of the PEST computer code [6].
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Fig.1 Variation of w?(}). A. Variation due to changes in parameters such as pressure gradient etc.
B. Variation due to change in rotational-transform.

L2
($g)
Fig.2 Schematic diagram for variation of > with inverse mode number 1/n. A. Standard ballooning

theory (Eq.(3), valid for 1/n <(yq)?). B. Oscillations in Q* (n), amplitude ~ 1/n*. C. Envelope of
oscillations (Eq.(15) valid for 1/n > (¥q)?).
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