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Abstract

The two-fluid equations are used to investigate the waves
observed in a particular low-fB, low-current experiment for which
a comprehensive set of data exists. Analysis leads to a self-
consistent description of the published frequency spectra. The
present paper (Part I) is a necessary precursor to establishing a
theoretical-interpretation of density fluctuations and particle
transport in low—-f plasmas. The latter theory is developed
in Part II and then used to interpret the observed particle
transport in the same experiment. Although we have considered
a specific experiment, the basic ideas and results are believed to
be applicable to purely electrostatic fluctuations in any plasma

of sufficiently low-B and governed by the two-fluid equations.
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1. INTRODUCTION

In previous work (Thyagaraja et al (1980), Haas and Thyagaraja
(1980)) we presented a thoretical interpretation of heat transfer in
tokamaks and slow reversed field pinches in terms of temperature
and magnetic fluctuations. The question arises whether particle
transport could be similarly interpreted. Our ultimate aim is to
correlate particle transport with observed density fluctuations.
Since we believe particle transport to be a much. more complicated
problem than heat transfer, it behoves us to develop an interpreta-
tion for the simplest possible experiment, and for which the
fullest data is available. Thus as a necessary preliminary to
studying tokamak, in this set of papers (I and II) we shall investi-
gate a low—Pf collisional experiment described by Chung and Rose (1968).

In spirit, the present work is éxactly analogous to our treatment
of temperature fluctuations and heat transfer. Thus we consider the
effects of small amplitude fluctuations on the mean plasma properties.
We note that the fluctuations can be coherent or random and may be
due to saturated instabilities or external noise. In our earlier
work we defined the conditions under which this separation of a mean
and fluctuating part of any quantity is valid. In particular, we
gave a precise meaning to the averaging procedure which defines the
mean quantities (Thyagaraja et al (1980)). We assume that the same
rather weak conditions apply in the present investigation. As we
shall restrict ourselves to the collisional regime, we assume the
plasma to be described by Braginskii's (1965) equations.

There are, however, significant differences of detail between
our earlier work and the present one. In the mechanism of heat
transfer, magnetic fluctuations play a vital role in enabling the

large parallel thermal conductivity to enhance the perpendicular
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conductivity. In the present work the effect of magnetic
fluctuations is neglected. This is justified for low-B, low
current plasmas, and in which electrostatic oscillations are
predominant. Although magnetic fluctuations do exist, they play
an insignificant role in particle transport.

In their paper, Chung and Rose (1968) give detailed observations
of the power spectra of density fluctuations, which they show to be
correlated with the particle transport. The experiment was a hot
cathode discharge using argon, the ions of which were greater than
997 singly ionised. The plasma was collisional with mciT{bl, that
is, the ions would be unaffected by the applied uniform longitudinal
magnetic field. The plasma was produced in a "source" region
approximately 50 cm long. Their B was of order 10-3 while the
axial current was 20A. For these parameters the effects due to the
magnetic field fluctuations can be neglected in comparison with
electrostatic effects. The power spectra and profiles were
directly measured in an experimental region of up to two metres in
length; these are reproduced in Figs.3 and 4. The results show the
existence of two distinct regimes of operation (I and II). In
regime I they show the power spectra to be independent of the
conditions in the experimental region. In fact the dominant frequency
occurs for wml.chi, where W.g is the cyclotron frequency of the
"source" region (Fig 1). In regime II their results indicate an
m = 1 oscillation at frequencies smaller than Wese Both regimes
reveal frequencies very much smaller than wci’ and for which Chung and
Rose offer no explanation. Temperature and density profiles are

given for the experimental region only. Chung and Rose claim to



observe correlations between fluctuations and particle flux for both
regimes. In regime I the particle flux is more strongly affected by
the density fluctuations than in IT.

The purpose of the present work is to provide a self-consistent
interpretation of the above observations. In paper I we attempt to
derive the characteristic frequencies shown by the power spectra,
and in doing this we neglect dissipation and non-linear effects. In
paper II we attempt to interpret the observed particle transport. We
show that dissipation is essential in our interpretation. To compare
theory with experiment we have had to assume the profiles in the
source to be the same as those measured in the experimental regionm.
Fortunately, we have been able to show that the characteristic
frequencies are relatively insensitive to details of the profiles.

In principle, using numerical methods, the frequencies could be
determined for arbitrary profiles. In-deriving these spectra we
have been led to a novel boundary condition at the plasma edge.
While this is relatively unimportant in obtaining the frequencies,
it is of crucial importance for evaluating the net outward
diffusion, as will be shown in paper II.

2. THEORETICAL MODEL

We consider a slab geometry in‘which the z - coordinate is
defined to be in the direction of a constant uniform magnetic field,
B. All equilibrium quantities are taken to be functions of x only;
thus x represents the '"radial" coordinate. . The fully.ionised plasma
is assumed to lie between the planes x = 0 and x = a, the former
denoting the 'centre' and the latter representing the plasma edge.

We assume the 'poloidai' - coordinate y to have the period 2ma.

For the experiment being considered, AD << a, and hence strict
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charge neutrality (ne = n. = n) is appropriate. For simplicity, we
choose the density and electron temperature profiles to be

n=n exp (- x/Ln) and T, = T exp (- K/LT) where, in general, L and
LT are not equal to a. We further assume the ion and electron
temperatures to have the same x - dependence, such that

Ti(x)% IO_ITe(x) in the region X < a. Thus defining the plasma edge
to be that place where recombination becomes significant, we take

Ti = Te i 1 eV throughout x = a. We shall take account of ion and
electron streaming both in the x — direction (Ui, Ue), and the
y-direction (Vi’ve)’ but assume streaming along the Z-axis to be
absentl. In fact, we could have formulated the present problem

in eylindrical geometry. The additional mathematical complexity,

however, would only obscure the ideas to which we wish to draw

attention. We now write down the equilibrium equations in the

absence of fluctuations. The x-component of the ion-momentum
equation 1is

__4d enB min
0 = d= ('ﬂTl) + Vi + enEx + ——

c (v, - Uy (1)

.

ei
where the convective term has been neglected. The last term
represents resistivity, Toi being the mean time between successive
collisions of an electron with ions. Making allowance for
viscosity, the y-component of the ion-momentum equation can be

written as

dv.

enB min d 1

a - ER2 min - 2 e
0 — U, + T, V, -V + % (Ul dx:) | (2)

where ui =n Ti Ti is the viscous coefficient in the absence of a

1We note that in the experiment the axial electron velocity is not

zero, but this is unimportant for our purposes.
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magnetic field. This is the relevant form since wo; Tg ~v1, and
hence the ions are unaware of B. TFor the electrons, viscosity is

definitely negligible and the corresponding equations are

O=-i(nT)—E.l£V-enE —E(U“U) (3)
dx e c e X T.. e i i
ei
enB min
and 0 == X (Y, - .

= Ue P, U - R (4)

ei

n, - n,

If we assume - <<1, then using the two continuity equations

it is straightforward to express Poisson's equation as

dE (u. - uv)
e — GER, S 5y (5)
dx U. + U

i e

Given n,B,'Ie and Ti we now have five equations for the unknowns

Ui’ Ue, Vi’ Ve and Ek; To a good accuracy these equatiomns are

satisfied by

Vi = 0 ~
v c
e LeB (T +T )
\ (6)
c(T_ + T.)
Ul - Ue T LeBuw T .
c ei
T
and Ex =~ g
P

where the scale-length Lp is defined by

1 1 d 1 d
T " ar & T T Tar ax (T )
p e 3
and note further, that oak ga o (8)
L L L
P n T

We conclude that the equilibrium exhibits outward classical



(ambipolar) diffusion. Equatioms (1) to (5) are completed by

the continuity equations

S Uy =% @) = s . (9

Thus given the form for n(x) ;he source function S(x) can be
determined.

The experiment suggests that the above solution is not
appropriate. This is due to the fact that, in practice, a true
steady-state is not established. More realistically, experiments
are in a state of fluctuation about a mean. Thus we stipulate that
any physical quantity is to be expressed as the sum of a mean part
which is a function of x only, and a fluctuating part. For example,

the density is written as

n= no(x) + én (10)

where typically %E is of order 4 to 20%Z. We emphasise that this
sepafation implie: only that the time variations of the "fluctuating"
quantities are rapid compared to the times over which the "mean'
values are sensibly constant. In practice, it is not necessary to
specify whether the fluctuations are random or coherent. By
definition, the space-time averages of any fluctuating quantity over
the "mean" or macroscopic scales must vanish.

In what follows we identify the natural modes of oscillation of
the system.
3. WAVE EQUATION FOR DENSITY FLUCTUATIONS

In determining the natural modes of oscillation we neglect
dissipation. All fluctuating quantities q(x,y,z,t) are expressed in

the form q(x) exp(iwt + ikyy + ikzz), the periodic boundary conditions



in y and z being satisfied for allowed values of ky and kz only;

ultimately, we shall replace ky’ kz by-g 5 2%2 where LS is the

s
length of the source region and m,n are the mode numbers in
cylindrical geometry. The boundary conditions appropriate to x

are discussed in Section 4. The ion and electron densities can

be written as

n. =n + dn + § An
and n =n+ én - { An,

where Sn and An denote the quasi-neutral and charge imbalance
parts of the fluctuation, respectively. Since the Debye length
AD is very small compared to all relevant scale-lengths,

An €' én « n, that is, quasi-neutrality is an excellent
approximation. We assume that the temperature and density

fluctuations are adiabatically related, that is

5Ti GTe 8n
T W (11)
1 e

where oo = Y- 1 = %%. We further assume that all electromagpetic
terms are unimportant, so that we do not have to consider
fluctuations in B. These approximations are readily justified
in the present contexf, and we shall review them in Section 7.

Using the equilibrium relations as required, the x,y,z
components of the linearised ion momentum equation are

~
~

imyw Suj = - (1 + Q1 3 (§2)+9 2Ly ed s 2

]

dx (n Ip in dx
. A an eB ~ ~
imjw dvi = - (1 + a)T; iky o= - Su; + eiky S (13)
. ~ .. Sn ) X4
imw dwy = - (1 + cDTi ik, T + eik, o) (14)



" - . .
where §¢ is the fluctuation electric potential. For the electroms
inertia is always negligible. In deriving the dispersion equation,
only the z-component of the electron equation of motion is required,

~

that is Sn ~
0= - ikz [(1 + o) Te . + e &¢ w
If k %+ O this implies ~ ~
z
(Ls oy S8 o _ o8 (1)
n Te

thus enabling us to eliminate 8¢ from the ion momentum equations.

The ion continuity equation is given by

a B 1 e d [8ug o Oviog s 5;i T=0 (16)
lwn L 6111 + [EK\T)'F ]_ky T lk.z —IT-

P
where T =T. + T .
1 e

Using the above equations it is straightforward to derive the

eigenfunction equation, namely

d? &n (1 1\d Sn
dXZ(E ) \f% * i*} dx (_E)

T
n [(1 1) 2 1 k2 (wes - w2) 04
+ — == - ke Wa: = kS O+ + =2 (0.} - p?) - "Fei ~ ¢ _E]=0
n Lp Lff Yacl y Lp L% w2  cL (1 +a) T(x)
(17)
*1 -
where Ly 1s given by T
1 1 T, _a i1
* L
LT LT T 1+a) T "

4. BOUNDARY CONDITIONS

We now consider the boundary conditions appropriate to the eigen-—

function equation ; by Eq (15) E% x-%g , and hence these may be
e
discussed in terms of the electric potential. In the cylindrical

problem, the poloidal electric field Ee must be finite at r = 0.
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Since Ee = im,gg , it follows that for m # O the electric
potential 6$ must vanish at r % 0. By analogy; for the slab

model we require 65 =0 at x= 0. For m = 0, or equivalently

k = 0, we must return to the basic equations. Thus consideration

of the ion continuity equation, Eq (16), shows that Gui =0 at x = 0.

~

It follows from the y-component of motion for the ions that Svi also
vanishes at the origin. Using these values, Eqs (12) and (15) lead

to the required boundary condition, namely,

~

d (dn 1 . dn _
zx(n—)'i? ralab —

T
We now consider the boundary condition at the plasma edge, x = a.
Fig 2 gives a schematic diagram of the temperature profiles through

the plasma, neutral gas and transition regions, the latter being of

width Ax. We suppose the wall to be an equipotential, that is &¢ =

i 2 8¢ <
constant at x = A. In the outer region Te = 0, and since e Tg ~ 1,
e
it follows that d¢p = 0 at x = a. For this region (x > a),6$ must
satisfy Vzéa = 0. This implies that EX = %k 6$ = 0 as x approaches

a from the outer region. In the transition layer 5$ is determined
by Poisson's equation. Since Te and Ti both fall to zero in the
layer at essentially the same rate, the net space charge must be
small compared to n. Thus any surface charge which appears must be
insignificant. It follows from Gauss' theorem that Ex at x = a-n%ﬁx
must vanish. - In terms of the density fluctuations this leads to

the boundary condition

d (6n) 1 én _
= (‘5) "1, : (19}

j=]

at x = a, The above argument establishes the plausibility of Eq (19);

actual justification depends on the adequacy of our theory in describing



the experimental results.
5. SOLUTIONS dF EIGENVALUE PROBLEM

In the previous sections we have derived an eigenfunction
equation along with its attendant boundary conditions. To proceed

further we introduce the transformation

&n 1(1 1
-;1—— o} exp LE(E + ']':*) X} N (20)
P T

and the eigenfunction equation now becomes

k 2 m. (.02. 2
ji Sl ol el g2, Z o2 2y i (el-w) =0
’ ,,@[ sT TNy e TNy e Ca T T T e
(21)

where

I .1 1.

* L L&

Ln Lp LT
To facilitate the analysis we replace T(x) by an average value T.
This approximation will be discussed in the next section. A solution

which satisfies the boundary conditions at x = 0 for ky + 0 (iem £ 0)
is
® = sin E% ' (22)

where U is determined from the boundary condition at x = a, that is

_ _ a 1 1 1
U= > tan W (L* T + = ) . (23)
T T n

For ky =0 (m =0 ) the appropriate solution is now

® = sin (ug) + k cos (EED . (24)

where k is an arbitrary constant and U has to be re-determined. Use
of the relevant boundary conditions leads to

k=-oaxl (25)
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with | determined from

m =

(1 o [1 L1 2 ] )
= Ln (7% T T
Ly Lp Ir (26)
*\2 . 11 1)__1.
2Ln (E) t 2 Lp & b gl Lq

We observe that for Te >> Ti the numerator is of order Ti/Te and

hence in this limit W = 7 is the first acceptable root.
Recalling ky = m/a and defining £ = w/wci » we derive the

dispersion equation for all m, namely

2 2

m. w-, 2 2 m. wW"-.
_1__.& b E.,. + EZ + kz + L c1 + L f2
(1+a) F a‘  a z (l+a) T 4 %2
n
-0 2 _ 27
aL f+k =o0. \ (27)

This equation has only real roots so that the modes are purely
oscillatory. Note that changing the sign of both m and f leaves
the equation unaltered. For m = 0, Eq (27) reduces to a biquadratic,

which for small kz leads to the low-frequency result

f = * 1 i . (28)
(1 + uzlazngE
For m 2 1 the dispersion equation reduces to a cubic for small kz,

with a low frequency solution given by

ak?

Zz *
f-—m--Lr1 - (29)

As described in our brief review of the experiment, the results
indicate two regimes of operation for the device. Using the parameters
relevant to these, we investigate our dispersion equation to determine

the appropriate frequencies. Taking kz = %E where LS is the '"length'
s

of the source region (LS * 50 em ), we consider only low n, that is,
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small k . Note that L, L and L, LF , are of comparable order.

*
n
For each of the two cases m =0 and m > 1, we only consider the first
'radial' eigenfunction. Thus u; = 7 for m = 0, while W, = 2-0 (Regime
I) and u, = 2+2 (Regime II) for m 2 1. We have only evaluated frequen-
cies v[ = %) for low m, each corresponding to a band of low n; in this
matter we have been guided by experiment.  Table I gives a summary of our
results which show three distinct frequency ranges : low frequency

>

DR VI medium frequency vV < V . igh frequenc Va2V L.
ci? equency oi » D18 quency il

6. EFFECT OF SPATTAL TEMPERATURE VARIATION ON FREQUENCIES

In principle, the eigenvalue equation, Eq (21), can be solved
exactly and the frequencies computed. Thus for w > w.5 the
eigenfunctions are expressible in terms of Bessel functioms. For
w < W, the solution can be expressed in terms of Whittaker functioms.
However, this procedure is complicated, and in view of the number of
éssumptions made in deriving Eq (21), not warranted. Using a much
simpler method, we shall find that allowance for spatial temperature
dependence only has a small effect on the frequencies. As an
illustration we only consider the case m # O.

We observe that for very low frequencies (first column of Table TI)
the temperature term in Eq (21) is unimportant; this is highlighted by
Eqs (28) and (29). Any effects due to the temperature profile are
small and can be calculated by a perturbation method. In any case,
such effects cannot be distinguished experimentally.

For medium and high frequencies we write @ as

oo

o =k21 A, sin (u_x/a) (30)

where the uk satisfy

1 1
My = - a/2 tan My ( Ix L +'f ) . (31)
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Substituting in Eq (21) we obtain

2 2 2 2
u 1 k  w . k m. (W 7 - w)
A {_} s Ay L S S S S -+ S

2 g w y 2 ~ci =
4Ln L w T (1+a)
a
. . 1 1
J sin (uk x/a) sin (uk, x/a) (: - = )dx
2 2, @ T Tx)
7 0o ~ W) ° 0 (32)
l+o, A a -
k’=1 J sin®(y, x/a) dx
o
for k =1, 2... . Introducing T(x) = Tc exp (- K x/a), then T is
defined through
a
J exp (K x/a) sinz(ulx/a)dx
1 o
= Ti . (33)
T c a
J sin z(uix/a)dx
o
To proceed it is convenient to write Eq (32) in the form
[+=]
A.k Dk + Z A.kdvkklr' 0 . (34)
k”=1

In our original determination of the frequencies we took account of the
first radial eigenfunction, sin U,x/a) only. To obtain the zeroth

approximation to the frequency from Eq (34), we set Akf =0 for k™ # 1.

The relation D, = O now corresponds to the dispersion equation originally
obtained for m = 0. To estimate the corrections due to the hitherto

neglected temperature profile, we take the normalisation A =1, and obtain

VJ

k™1
o, & B = (35)
Dk,

_ for k” # 1. Thus it follows that



@ k1 1k
D, - 1. =0, (36)
' Dk,
or to first approximation 5
%12
Dy = —— (37)
D, v
Writing out Eq (37) we find
2,2
m . a
2 9 2 1 Cl1
o (N (o g e ()5
= . L% T (1+0 ci i
T(1l+a) ci Wei 4 n (1+2) . et
fna
-— =0 (38)
L*
n
where
a —_—
w? ( sin( E)sin(u —3 = dx)2
A(% )—_ —== °— = s (39)
ci/ T ()  u'-w J sin?(s g_)dx J SiHZ(HZ _)dx
) o
We note that for w > w . the correction A is positive, while for
w<w, it is negative. In estimating the size of A we substitute

the values of w/wCi obtained from D; = 0. For regime I, the U
values corresponding to the first and second radial eigenfunctions
are 4, = 2.0 and Wy = 4.9. Bv way of example, we consider two
temperature profiles, namely, K = 1.2 and K = 3.0; these lead to
values for A of 0.02 and 0.1, respectively. Restricting ourselves
to the larger A, the original frequencies of 94.0 and - 11.0 kHz

for m = + 1, become modified to 91.0 and - 10.5 kHz, respectively.
Thus we conclude that spatial temperature dependence does not have

a significant effect on the determination of frequency.

w il



7 DISCUSSION = e

For both regimes of operation, I and II, the power spectra given
by Chung and Rose clearly show frequencies Vv = 0 and for which tﬁey
offer no comment or explanation. Our theory, however, straight-
forwardly predicts oscillations of this frequency. In regime I the
data shows dominant fluctuations at w = 1.2 wci’ the cyclotron
frequency being the value appropropriate to the source region
(see Fig 3). Our theory is again successful, predicting oscillations
at 72 kHz which correspond to w = 1.25 w.is these are associated
withm = 0 and low but arbitrary n. Neighbouring this frequency,
theory predicts m = 1, 2 oscillations which also lie in the region
of observation. Although they make no comment, the results of
Chung and Rose show signals at v = - 20 kHz, which could be
interpreted in terms of medium-range frequencies for m = 1, 2, 3,
(see Table 1I). Similarly, a signal at 125 kHz can be interpreted as
an m = 3 mode. For regime II (see Fig 4) only m = * 1 are clearly
observed, and our prediction of V = + 16 kHz is consistent with peaks
which occur in the power spectrum.

The theory being linear and dissipationless, cannot of course,
give the relative intensities of the various modes. Only a
sophisticated non-linear theory could explain why all the modes
predicted by linear theory are not actually seen. We have demonstrated
that the predicted frequencies are insensitive to details of temperature
and density profiles. . The choice of boundary conditions is not
expected to be important, influencing the calculated frequencies only
through the numerical value of u . We now briefly review the caveats
underlying the present formulation.

In the absence of dissipation there are two extreme values for the -

exponent O , namely, 0=2/3 and zero, corresponding to adiabatic and

_15...



isothermal fluctuations, respectively. We have assumed adiabaticity
throughout although, strictly, this is invalid for low frequencies.
Fortunately, however, we have found these frequencies to be
independent of o to a leading approximation. In principle the
relationship between %?1 gg}s STe is determined by the two energy
i e

equétions, but for calculating frequencies in the absence of
dissipation, we assume the present procedure to be adequate.

For the low - B , low axial current values of the experiment,
it can be checked that electromagnetic effects are small compared
with electrostatic effects. The validity of the procedure can be
demonstrated by comparing the magnetic fields produced by the
observed density fluctuations with the main magnetic field. In
a similar manner, any induced electric fields are small in
comparison with the electrostatic fields. More precisely, electro-
magnetic effects are unimportant provided that 1§>akzﬁ>8; this rules
out consideration of kz = 0.

We note that the theory predicts the intensity of density

2

fluctuations, (%?) , to be an increasing function of x for the first
eigenfunction. Interestingly, such an effect has been observed
in the outer region of tokamaks (Paul (1979)),suggesting that the physics of
this region may be similar to that discussed here. However, it is
important to note that tokamaks, in contrast to the present experiment,
are low - B, high current devices. It can be shown that it is never
permissible to neglect magnetic fluctuations in comparison with
electrostatic oscillations for such machines. Therefore, an uncritical
application of the above ideas to tokamaks would lead to incorrect
results.

From our investigation we conclude that the theory presented is



consistent with the published data. In the succeeding paper,
we show how the density fluctuations together with the above
spectrum can be correlated with the observed particle transport.
The value of the above ideas lies not so much in explaining the
measurements in a particular experiment but in serving as a

necessary preliminary to interpreting particle diffusion in

tokamaks.
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TABLE I

FREQUENCY SPECTRUM PREDICTED BY THE DISPERSION EQUATION

Low Frequency

Medium Frequency

High Frequency

¥ s vci ¥ =% Vei Vo2 vci

Regime

Characteristics
m v m V m AY
(kHz) (kHz) (kHz)

Regime I 0 *2.5 0 None 0 *72
B=1.5kG +1 -11 +1 94, -82
a = 3.0 cm (k_ = % -1 +11 -1 -94, 82

s

L =1.5cm +2 =17 +2 108, -91
T =6 eV -2 +17 -2 | -108, 91
vcil=-57 kH=z +3 -19 +3 127, -108
Ls = 50 cm -3 +19 -3 -127, +108

=20 (m > 1)

=7 (m = Q)
kz - nﬂ/LS

Regime II 0 *3.0 0 None 0] *+111
B= 2.0 kG +1 -16 +1 125, -106
a= 3.0 em +1 -1.0 -1 +16 -1 =125, +106
Ln==l.0 cm -1 +1.0 +2 -27 +2 140, -114
T =29 ev -2 +27 -2 | -140, +114
Voi = 76 kHz +3 -31 +3 160, -129
LS = 50 cm -3 +31 -3 | -160, +129
U=2.2 (mzx1)
H =7 (m=0)
kz = nW/LS
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Fig.1 Frequency dependence of Mode (I) on the magnetic fields (Chung and Rose (1968)).

T
* Stainless steel
wall ——»

A

Neutral Gas

R R AR RRRRERRRERRREESRY

>

|
|
|
|
|
|
|
|'
0 a- Ax a a + Ax
2 2
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Fig.3 Power spectrum in regime (I) directly obtained by spectrum analyser (Chung and Rose (1968)).
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