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Abstract
The experimentally deterﬁined power spectra of density
fluctuations in a particular low-f, low-current experiment are
correlated with the observed particle transport using a two-fluid
model. Whereas the electron diffusion is unaffected by fluctuatioms,
the ion diffusion is a few times classical and is consistent with the

experiment.
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T INTRODUCTIQN

This work is a continuation of our attempt (Haas and Thyagaraja
(1980)) to interpret a particular low-B, low-current experiment
studied by Chung and Rose (1968). The choice of this experiment
was determined by the relative completeness of its data, as well as
the analytic simplicity resulting from the aBove conditions. We
believe the present investigation to be a necessary precufsor to studies
of more complicated systems, such as tokamaks.

In our earlier work (Haas and Thyagaraja (1980)), we determined
the natural modes of electrostatic oscillations in the plasma. In
the present work we attempt to correlate the observed power—-spectra
of density fluctuations to the measured particle transport. Chung
& Rose reported two regimes (I and II) of operation associated with
distinct power spectra. They noted that although the fluctuation
level influenced the particle diffusion in both regimes, the form of
dependence differed. In our previous paper we were able to account
for the existence of the two regimes, In the present paper we show
that the diffusion does depend differently on the power spectra for
the two cases., In particular even when their amplitudes are
sizeable, frequencies small compared to the ion cyclotron frequency
make a negligible contribution to the overall diffusion. Chung andi
Rose observed the diffusion to be a few times classical; our calcula-
tion leads to diffusion rates consistent with their results.

An unexpected and apparently new feature of our investigation is
that it predicts the electron diffusion to be classical, that is,
it is unaffected by electrostatic oscillations. This result is a
direct consequence of the negligibility of electron inertia. The

ions, however, are influenced by the fluctuations and diffuse at



rates a few times classical. It follows that the overall
diffusion must be non-ambipolar. For quasi-neutrality to be
satisfied, we invoke the short-—circuiting mechanism first proposed
by Simon (1959) in a related but different context. Unfortunately,
the possibility that the diffusion in the particular experiment
might not be ambipolar, was not suspected by Chung and Rose.
Therefore we have no direct experimental evidence for the existence
or otherwise of Simon's mechanism.

For the conditions of the experiment, the two-fluid equations are
expected to be valid. Our second assumption, the smallness of the
fluctuations, is well supported by observation. The deduction of
non-ambipolar diffusion is a direct comsequence of these two
assumptions.

2. ELECTRON DIFFUSION

Following the spirit of the preceding paper, we neglect
electron inertial and dissipative effects; we also neglect fluctua-—
tions in the magnetic field. Adiabaticity is not required for the
electrons and it is again assumed that the "mean" quantities Te,pe,
as well as E , are functioms of x only. The y and z components

of the fluctuated momentum equations are
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respectively. Straightforward substitution of Eq. (2) into Eq. (1)



leads to

6Ue =0. (3)

Thus to the level of our approximations, fluctuation effects make no
contribution to electron diffusion. It follows that any'electron
diffusion which arises must be classical, being due, of course, to
the presence of resistivity and viscosity in the basic equilibrium.
Inclusion of these dissipative effects in the above flutter
equations leads to a small correction to classical diffusion.
For frequencies near the electron cyclotron frequency, wce 5
inertial effects are significant and this could produce an important
correction to the total electron diffusion. The frequency
spectrum published by Chung & Rose, however, is in a range of
frequencies much less than W.o » being of order W + Thus we
conclude, that for their experiment, electron diffusion is essentially
classical; the neglect of magnetic fluctuations and electron inertia
appears to be very well justified. Note that the above argument is
not directly applicable to tokamaks, since magnetic flutter plays an
important role in these devices.
. ION DIFFUSION

Unlike the electrons, ion diffusion due to density fluctuatioms
is dependent on inertia and dissipation - ion viscosity and resisti-
vity. If these effects are neglected, then by the above arguments
there will be no enhancement of the classical diffusion, which is
contrary to experiment. Note that inclusion of ion inertia alone
does not lead to enhanced diffusion, either. The physical reason
for this is clear: in the absence of dissipation the momentum

equations are reversible in time, and this implies that the net



diffusion,<<: Guﬁn.:>1, vanishes. Dissipation plays an essential
role in introducing a phase difference between &u and &n , and this
leads to a positive value (outward diffusion) for <<:§u6n:>f. For
purposes of illustration, we shall represent the dissipation
schematically, that is, by an inverse momentum relaxation time, 1/1 ;
The validity of this approximation will be discussed later.

Using Fourier transform notation (Haas and Thyagaraja (1980)),

the ion momentum equations can be written as

; ~ d (én), o dn
1miQ(Sui = (1 + Ct'.)TiE; (?>+L—P- Ti —I-'l_

JER

B O d
+ ? Vi d_X ((1 + G.)Te

) (4)

and
im. 060, = - (L+ T, ik B-LB s ik @q+mr 2
i i iy n ¢ i ¥ e n

(5),

where o arises from the adiabaticity assumption (Haas and Thyagaraja

(1980)), and the quantities Q and LP are defined by
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the above equations can be expressed in the simpler forms

1The operation <: :>denotes an appropriate space - time average,
which we shall define later.

2gtrictly <:§u6€>>has the sign of - %-%% .
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Eliminating Gvi between Eqs. (8) and (9), and defining
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we derive an expression for Gui , namely,
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It is now convenient to introduce the spectral representation

for the demsity fluctuations, that is
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We note that for %% to be real,
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Using Eq. (12), dui can be written as
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From the above results, we can now evaluate the net outward



diffusion of ions due to demsity fluctuatioms. Introducing a

: s dn
space - time average we determine <6ui ?> , where
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The time t is characteristic of the time-scale over which the
experiment runs in steady-state, and is long compared with the
"periods" of the observed fluctuations. Due to the integrations
over vy and z , <15u5-%?':> is of course, a function of 'x only.
As can be seen from its dimensions, <::6ui %§S:> is not the actual
diffusion, but is closely related to it. To develop our analysis

it is useful to introduce the spectral function Cz(ky,kz,w,x) "

which is defined by
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Thus substituting Egqs. (12) and (14) into Eq. (15) and performing

the integrations, it follows that <<Gui Si—?:) can be expressed as
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The quantity X is defined to be



(20)

We note in passing, that due to its oddness in ky , the term

w .k ~

cg - ~%? in Eq. (14) makes no contribution to the net diffusion.

4. COMPARISON WITH EXPERIMENT

The experimental results show the density fluctuation levels
to be strongly dependent on the source magnetic field (see Figure 1).
Chung and Rose found, however, that by optimizing the operating
conditions,fluctuations on axis could be made <1%. Because of the
low-level and the absence of coherent oscillations they described
this state as 'quiescent', with the associated diffusion being
apparently classical. As they varied the operating conditions
away from 'quiescence' the fluctuation level increased and partially
coherent oscillations were observed. Figure 1 shows two regimes
(I and II) which are distinguished by different characteristics of
the fluctuations. We described the waves and power-spectra
associated with these branches in our first paper.

In order to correlate the fluctuations shown in Figure 1 with
particle transport it is necessary to have a plot of the observed
particle flux against the source magnetic field. Unfortunately
such a plot is not available in the Chung—-Rose paper. These authors
publish instead a plot of the density e-folding length as a function
of the source magnetic field in the two regimes (see Figure 2).
Following Simon (1959), the e-folding length is taken to be proportional

to the square root of the effective diffusion coefficient. Thus



Figure 2 can be taken to be a plot of the square root of the
effective diffusion coefficient as a function of the source magnetic
field. The curves in the two figures enable us to relate the
diffusion rates directly with the fluctuatiom levels.

In our previous paper we gave a plausibility argument for
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to be the boundary condition at x = a . Since this implies that
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at x =a , it follows that Fth = 0 at the plasma boundary.

Thus the total rate of loss of ions through the boundary is
diff
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Now experiment indicates that €<« 1, and hence the main contribu-
tion to the integral in Eq. (24) comes from ¢ =1. Thus to a good

approximation
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This is the formula which we shall compare with experiment.

We consider regime II first. The power-spectrum for this
regime of operation is shown in Figure 4 of our earlier paper,
Crudely speaking, the spectrum consists of a single sharp peak
superimposed on a roughly uniform "background of noise" of frequency
range of order the ion cyclotron frequency ( Wy 5 x 10° rads/sec).
This suggests the simple model shown in Figure 3 of the present paper.
Thus denoting the height (intensity) of the peak by h , then the
observations indicate the height of the background to be of order

h/10. The width of the peak is 0(2/¢) , where T is the character-

m, T
istic damping time due to resistivity (T = or viscosity
e res 3m
m. a e
(Tvis:= T T‘) . Substitution of parameters typical of the experiment
i1
leads to T ~ 1.2 x 107 sec and Toia ™ 0.6 X 10 °sec. Since these

times are very comparable we can take either as characterising the
width of the peak. For definiteness, however, we shall suppose
viscosity to be the responsible process since it has the shorter

relaxation time. It follows that
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and hence
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In making the comparison with experiment it is instructive to
diff
consider the ratio of T (a) to the equivalent classical quantity
cl
T (a) . Thus we write
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Taking parameters from the experiment (B ~ 2kG) gives
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From Figure 1 the fluctuation level corresponding to B ~ 2kG is

approximately 47. Thus we obtain

diff

1
= gt (32)

cl diff
Hence the total diffusion (I' + T . ) is of order 1.5 FCI ,

. ; i cl
whereas from Figure 2 the total diffusion is approximately 2.0 |

This is reasonable agreement considering that the comparison can
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be little more than qualitative. The principal source of
4 2
uncertainty is the lack of precise knowledge of <<:(%§)'::> at

the boundary of the plasma. Thus Figure 1 applies to r = 1.0 cm

as does Figure 2, ﬁhereas Eq. (31) refers to the net plasma diffu-
sion at the boundary. Also our calculations are restricted to slab
geometry and therefore do not account for cylindrical effects.
Nevertheless the theory does predict the correct qualitative behaviour
of the diffusion coefficient as a function of density fluctuation
level.

In regime I there is a substantial amount of power, namely,
much larger than the background at around Uci (60kHz) . This
implies qualitatively that for the same value of <::(%?)%::> the
diffusion coefficient due to regime I fluctuations is larger
than regime IT fluctuations. This qualitative deduction from our
model is indeed supported by the Chung-Rose observations.

Ultimately the difference between the two regimes can be traced to
a velocity resonance at Wos > shown clearly in Eq. (11). Since
density fluctuations in regime I (mainly associated with frequencies
w ~ 1'25mci) have a sizeable power at this resonance in contrast

to regime II, the diffusion is correspondingly stronger.

Thus we are able to deduce the observed diffusion due to the
two branches of electrostatic oscillations reported by Chung and
Rose. Summarising, branch I has resonant behaviour in the vieinity
of W, - Since in our model the anomalous diffusion is determined
by the power-spectral density at or near Wi o these fluctuations
have a very significant effect on the particle transport as observed
by Chung and Rose. The low-frequency branch II on the other hand

is non-resonant near Wei and it is the background fluctuations

_11_



which are responsible for the transport in this case. Since the
background power spectrum can be expected to rise proportionately to
the total power, namely, non-resonantly, tﬁe diffusion depends less
sensitively on the fluctuation level, and this is obsérved experi-
mentally. Thus we can categorise branch I type diffusion as

resonant, while branch II is non-resonant. A cléar prediction of

our model is the fact that very low frequency oscillations (associated
with strong peaks in the power—spectra) are not directly responsible

for particle tramsport, as seen from Eq. (26).

s DISCUSSION
As we have previously noted, our novel boundary condition
(Eq. (21)) causes Fth to vanish at the plasma edge. Although

borh T°D apd TOL5E

vanish at the centre, their ratio ng/fdiff
is finite there, being of order f;/ii . The sign of Tt%x)
depends on the relative magnitudes of the temperature scale length
and the scale-length associated with the statistical function X .
Interestingly, the simple boundary condition %? =0 at x = a
causes the net diffusion to vanish. The boundary condition which
we have used was suggested by consideration of the recombination
layer at the edge of the plasma (Haas and Thyagaraja (1980)); we

note that it has the form of the most general type of boundary

condition, namely
én d (én
o dx (T) ‘ (33)

Physically, it signifies that the fluctuating electric field at the
edge of the plasma is zero. Although strictly only a heuristic
assumption, this boundary condition does lead to results consistent

with the published data. It would be desirable to have an
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independent experimental check of this boundary condition, in view
of its central importance.

In the absence of dissipation it is impossible for any net
diffusion to occur. This is due to the fact that in a dissipa-
tionless system the phase relation between ©&u 8n is such that the
correlation integral, <:?u 6§>' , vanishes. This can also be
directly inferred from our formulae by taking the limit T =+ ® .
This limit should be taken with the proviso that the power spectral
density at W, is zero. If this were not the case the theory
would become invalid since the flutter velocity would be infinite.
It should be noted that Eq. (26) does not show the T dependence
of Fd%gf explicitly. This is because Eq. (26) is the result of

taking w,;T large but finite, and not due to setting %-= 0.

The C? function implicitly contains any T dependence. However,
this function is taken as given in the present work. A determina-

tion of this function is a matter for experiment, or for a more
general non-linear analysis.

In the present application we have shown that electrostatic
oscillations make an insignificant contribution to electron diffusion,
which therefore, remains essentially classical. This result, however
will be generally valid for all low-B, low axial current systems in
which the "mean" temperature and density are constant on "mean"
pressure surfaces. The same result applies to ions provided that the
frequencies of oscillation are small compared with the ion cyclotron
frequency. Now under the appropriate conditionms, Chung and Rose
find the particle diffusion to be a few times larger than classical.
This indicates that the ion diffusion is predominantly determined by

the power spectrum of density fluctuations at or near CA
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To simplify matters we have assumed the fluctuations to be
adiabatic. While this may be correct for frequencies w 2 Wi
we anticipate that our assumption will fail for lower frequencies.
The latter, however, are not expected to contribute significantly
to the diffusion. Furthermore, the frequencies themselves are
not very sensitive to the value of o . Deviations from adiabati-
city are due entirely to electron and ion thermal conduction,
and a proper investigation of the demsity-temperature correlation
would require the fluttered energy equationms. This procedure is
not open to us, since Chung and Rose do nmot report any temperature
fluctuation measurements. In view of this we are impelled to
make the adiabatic approximation. We note, however, that our
ultimate results are qualitatively consistent with those observed.

For the conditions of the experiment we have shown that
electrostatic fluctuations do not significantly affect the electron
diffusion, but leave it classical. The ions, on the other hand,
are affected, their diffusion being several times classical. This
difference in behaviour is entirely due to the large mass difference.
It follows that the total diffusion cannot be ambipolar. For
consistency with quasi-neutrality it is necessary that a means exist
for removing charge separation. Such an effect has been suggested
by Simon (1959); he pointed out that short-circuiting electron
currents can arise in a plasma, leading to non-ambipolar diffusion
in a classical context, that is, in the absence of fluctuatioms.
This effect could be particularly important in experiments with ends,
or where toroidal symmetry is broken, for example, by divertors or
limiters. The present analysis indicates the necessity of Simon

currents in the Chung and Rose experiment, but unfortunately
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the latter workers give no direct evidence which supports our
prediction.

The importance of low-B and low axial currents consists
in the fact that under these conditions the magnetic fluctuations
are insignificant in their dynamical effects. This important
simplification distinguishes the present model from tokamaks.
Although the latter are low-B machines their large currents lead
to large fluctuating Lorentz forces which could play a significant
role in particle diffusion.

Formally Eq. (29) for the diffusion flux at the edge resembles
the Bohm diffusion flux in the sense that it is inversely propor-
tional to the magnetic field. However, the analogy stops there.
Bohm's formula makes no reference to fluctuation intensity, further-
more it conventionally contains the electron temperature. Our
general expressions for diffusiom, Eqs. (18) and (19), refer to the
ions, and as far as we are aware the thermal part, Fth s has never
been previously proposed. Although it vanishes at the edge (by
virtue of our boundary condition) and does not contribute a net
particle loss, it is nevertheless an important component of diffusion
within the plasma.

The work of this paper has required only that the fluctuations
be small compared to a suitably defined mean value. We have not
considered the origins of the fluctuations. In principle they could
be the result of non-linearly saturated instabilities, or they could
be due to unsteadiness in the sources. Furthermore, our analysis
does not have to invoke instability mechanisms. We conclude, that
taking the density fluctuation level as given, the measured and the

deduced diffusion rates are in qualitative agreement.
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