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Abstract

The equations of MHD equilibrium are solved for a large class of
low-f stellarators with arbitrarily prescribed pressure and current
density profiles by means of a large aspect-ratio ordering scheme. The
fields and flux surfaces are found to sufficiently high order that the
surface shaping and the axis-shift are recovered; the relation between
the latter and the applied vertical field is given. Using these equi-
libria, we evaluate the resistive interchange stability criterion [11].
We apply these results to discussion of several special cases, and note

the potential advantages of an £=2 configuration.
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1. INTRODUCTION

A great deal of effort is currently being devoted to the study of
stellarator-like configurations, with a view to finding systems with
steady-state reactor potential [1,2]. The prospects for true steady-
state operation have been strengthened by recent experimental success
in the production of current-free plasmas [3,4], and it seems possible
that the well-known problems of access and structural design associated
with conventional stellarator windings can be overcome by use of modular
coil systems [5,6]. The potentially serious loss rates associated with
ion ripple trapping may be greatly reduced by an ambipolar radial potential,
and thus could account for the unexpectedly high beam trapping efficiency
observed in WVIIA [3].

Recent theoretical work has included the development of 3D codes to
study MHD equilibrium and stability [7,8], the results of which complement
those obtained by analytic means. The latter remain valuable in that a
relatively simple and general description can be obtained. In an earlier
paper [9], we employed an expansion based on an ordering introduced by
Dobrott and Frieman [10], in order to obtain the equilibrium configuration
for a general class of low-B, 2=3 stellarators. Making use of the same
ofdering scheme, we obtain here an analytical description of the equilib-
rium of low-B stellarators with general winding number £, and investigate
their stability to resistive interchanges [11,12] in several special

cases of interest.

We discuss briefly the features of an £ = 2 configuration which,
when constructed using modular coils, appears to be capable not only

of matching the tokamak as the basis for a reactor, but also of offering

significant advantages.

In order to solve the equilibrium equations, we use the quasi-
cylindrical co-ordinates (r, 6, ) of Fig. 1, and expand in powers of

the inverse aspect-ratio, €.
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->
The main (toroidal) field, Bo’ is in the £&=-direction; the
2
stellarator field is introduced in leading order e L

- - * -2
The number of field periods around the torus is P = Pt /s , Where

D ~0(1). These choices ensure that the vacuum rotational transform
is of order unity, and that the toreoidal and helical modulations of
the field strength are of similar magnitude [10].

We make use of scaled variables p = r/a, ( a being some
convenient minor radius) and s = p& = ﬁg%gg 5 and we define normalised-

magnetic field pressure and current density,

> -> iy > +
b=3/B, , P=P/B02 » J=1ga/B
where g =1 - €p cos®. Then with V = agV, the M.H.D. equilibrium
equations become
w=Fx% (1) F=0x% @i); §.8=0 @ii). (1)
!

The various quantities are now expanded in powers of A = ¢e”°;

?’:kGP* ses 3=?\33(3)+ PP §=E+12§(2)+
where P now denotes the leading order normalised pressure.

Thus B ~ 0(e?), and the plasma current gives rise to rotational
transform of order unity, as do the vacuum fields.

It proves instructive to write the plasma current in the form

>
g2 -
so that
gbelh = - (& x \’7"13)-6%) . (3)
b

*We divide the force-free current h into parts, representing the



Pfirsch-Schliuter current by hp’ and denoting by hc the remaining

part which contains any mean toroidal current. Then

gb-¥h =- @ x VP)-\?'(-‘—) ‘ (4)
P gz
and g E_ Vhe =0 . , (5)

With our ordering, this results in

ho= 2%h(3) & A'n (%) 4 A5h(5) 4 asp(s) & Aen(E) & . ..
c C c c )

2. EQUILIBRIUM CALCULATION
The exact solution of Laplace's equation in toroidal coordinates

may be expanded in our quasi-cylindrical coordinates, using the

-2
ordering p = pe % ; the result, for one harmonic, is

~

-2_% »
vP = Bp = (ep)™ {cos (nf+3) +

PE P
4(n+l)

5 cos (nb+s)

+ %g {(2n+1)cos ([n+118+s) + cos ‘([n—l]9+§)}

548‘73 Y _ 52 ;’apa_ )
+ 32(n+1) (n+2) ©°% (nb+s) + 1T6(ae1) {(2n+3) cos ([n+176+8)
+ 3 cos ([n-l]6+§)}} +0(e™?) . (6)

In order to describe a stellarator with an n = £ winding which is
slightly modulated, for instance in order to create a magnetic well or
to 'centre' the separatrix with respect to the windings, we add in

small amounts of 2= n * 1,

Vp = Bp,n [} - £2%;ll} (Ep)n+1 {cos ([n+116+3)

=2_% 2

%;’T cos ([n+1:|9+§)} (7)
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and

P 5 - , _
Yt ™ Bp,n % e? (ep)” 1 {C_OS ([n-116+8)
2
—-2_ %3 2
+-EL£%H£L cos ([n—l]8+§)} ; (8)
2, —
We set B = ‘5(/3 n)choa , where o 1is determined by the currents

p,n

flowing in the helical windings, and leave Y , ¢ as free parameters.

Suppose that the coils are wound on the surface p = p_ ;

c
d €0 _J €p_ by
H% - c ¢ = tf , where by 6 (3g ¢)
coil Jg lp=p ¢ 'p=p g ?
& ¢
correspond to the helical winding fields (currents) only.
We wish to describe a winding law %% ~ (1 + €Rcos B) . From Eqs.
(6), (7) and (8) with the above description of 0,
EPe S
be ~ sin (nb+s) +-7Er {Y(n+1) sin ([n+1]6+s) +E;7;(nr1) sin (Cn-1]6+%8) }
c
. -, . %P¢ 8
b¢ ~ sin (nb+s) + - {Y sin ([n+1]9+§)+'53 sin ([n-l]e+§)}.
c
Hence, 1in general
dg ( ®Pe { . 8 -
—Y ~ [ 1+ +1 f+8) - —— L - L 2
19 i oin (a0+3) ¥ sin ([n+11]6+3) ﬂf sin ([n 1]8+s)} + 0(e )),
EYp
but if y = - ~§f » then L - (1 + € cos 9)
Pa dé 2n )

Thus a winding law of the desired form is represented by choosing
==—— and ¢ = - 2nch. 0f course, a field with the same properties

c ;
could also be generated by means of appropriately shaped modular coils.

The equilibrium fields are found by solving (l,i-1iii) order by
order in A, up to 10th order, and details of the method are given in
[9] for 2£=3. We present here the results of this calculation, and

comment briefly on the structure of the fields.

_4_



The full set of fields is:

b =22 n—“Ffl—ul cos (u6+3) + A*45ap™L B2 L oyl cos (no+3)
p P 4(n+1)

+ )\5{% [( % (n+1) + Gpn_z(n—l)>cos ([n-116+3) + yp™ (n+1) cos ([n+1]6+§)]

+ V(p) sin 2 (nB+s3) }

-3 n+3
+ }\G{A(p) sin® + (f(p) + 1;;;(1:1—?)(;34-2)) cos (nB+s) + W(p) cos 3 (nB+8) }
n n

by = _peme”

sin (n0+3) + A%b(p) - A* {13apn+1 I+

4 (n+l) % (DU(D))} sin(nB+s)

=N

- )\5{%[( T Gpn_z)(n—l) sin ([n-116+8) +yp" (n+1) sin ([n+l]9+§)]

1 4

75 dp (pV(p)) cos 2 (nb+8) }

=3 n+3
+ ?\E{B(p) cos B +(g(p) _ P Anp

T (n+2)) sin (n0+3) -3 < (oW(0) sin 3 (n8+§)}

b,E =1+ A*(pcos 8-0p™sin (n6+3))

- As{aﬁzomz # B2 4 ooy - @) 1 -
4(n+l) ?dp pup ——.f)"— sin (nf+s)

+ As{pz cos? +

| e |
=l =]

L (ov(p)) + /““pn_lfo' ©] 2 o5 2 (a0s3) +b
dp \ 5 7 J 5y COS no+3 B(p)

(¢} i
b= ((2+Y)Dn+l sin ([n+1]6+3) + (3pu+l + 26pn-l) sin ([n—l]8+§)) } (9)
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The poloidal field component A*b(p) 1is produced by the mean
toroidal current demsity o(p) , the remaining functions of radius
in Eq. (9) being defined in the appendix.

We solve B.Vy =0 , as discussed in [9], for the fields (9),

and find the expression for ¢ :

ndpn_l : = 2 napn Zi d IJ)o"
= Yy -2 B sin osiy - V() L 35 () cos2 @84

w r - -
+ 1 0% cos0 | ae) + 022D 72y (s0+ Goayy+ 22RC) |

o

+ 7,(0) sin (aB43) + 7,(0) sin3 (@B+D) |} + OO (10)

where m,(p) and TW,(p) are given in the appendix, and

2, 2 _
b¥=b(p) - n (;31)& p211 3 .

Substituting o(p) for wo(p) we obtain an expression for

hc ; from (4) we find hés) = Zp-%g cos O /b* and so the expressions

for the fields, given in the appendix, may be understood by means of

(1ii), (1iii) and (2).

3. EQUILIBRIUM QUANTITIES

The rotational transform is found, from the method of averaging

(13], to be

0 vac

P

_ _ n*(@-Da?  2n-4
3 ;



P .
Having defined f = J b*(p) dp , we locate the magnetic axis by

o}
rewriting (10) as

Y= lfJo (f + A% cos @ {A(p) + ap An-1) % (5n+ (n+1)y + (n—pl)é) } )
(12)
where we have omitted helical terms, (valid for n > 1 ), and finding

the point where Wi =0 .

To the required accuracy, its coordinates are (px,w) , where

_ 43 d 3 (2n-3) ;
bEo) = A g (PA(P)) |gug + A% ST Biyae  (13)

The last term is only necessary for £ = 2 , where all the surfaces

are shifted by this small amount; we neglect it henceforth.

If we also define A(p) = pﬁﬁf) » then provided A(0)~0(1) ,

(13) becomes

b*(p - A%A(P)) =0 . (14)

The solution is then o, = AA(0) , to lowest order. In terms of

A(p) , Eq. (AX) becomes

2p 00 * %7 E_ ’ * _i, l._(.i..
b%%A” + b*(2b - ) A +bAdp 5 5 (pbg)
= 20P’ - b%*b +aZQZ(n_l)%G'(Sn-:—(nﬂ)'w(i%%ls) (15)
with
b _ nz(n—l)cr.2 2n-3
o= 57 ° ’

which is the toroidal shift equation [14], in the limit o = 0 s
ABA(O) being the axis shift. A first integral of Eq. (15) can be

obtained when & = 2 , which reduces to the well-known result for



tokamaks [14] when o = 0 .

Use of A(p) 1is not always appropriate; for instance, if o =0

=3
and A( z0, Pp_ = 81/(2n-3) AOP 1/(2n—3)
o) X

n?(n-1)g?
(Note, however, that for 2 = 2 , A(p) is always appropriate).
For 'tokamak-like" configurations, where A(p) can be used,

(for o= 0, or for & =2 ), we invert (10), to obtain

p(Y,0,8) = 04 W) + l—_~9-2— sin (nB+s) + )\2( _2 ) (22n-1) sin?(nb+s)
P P o
+ }\3 [ - [A(p ) + w 50 + (n+1)Y+M)-COS 8
| o’ " Thw(p )45’ 7/
U(p,) nlap P2 _ :
+ ( 2 = 53 b(po)) gin (nB+s)+-~ ] (16)

where we have omitted those vacuum terms from order A° which are of
order i or smaller.
vac ,
In [ 9] it is shown how the 'virtual casing principle’' is used
when applying the boundary condition at infinity: This determines the

external vertical field, which is given by

g2p
B_ = 2° {A(p) + é% (PA(p)) + b(p)(% + fn G%?))

2(n-1) -
_ p9(p) [A(p) L 207 n (5n+(n+m+ (n 1)6)]}

b* _3 P =

(pb is the lowest—order radius of a (closed) surface, outside the

plasma). When o = 0 , this also reduces to the tokamak result, [14].

=4.2(3~n)
When O =0 Eq.(Ax) gives - 2P i L ( 5 e

_;ETEZI;EE 'Ea ='35 Eﬁ) 3 using
Z(n-l)]

P = P(f) , we choose P = po'[1; (0/p,) , and find



P 2
A(p) = A =~ ﬁg-lg—ll (Jl) » Where p_  is the plasma boundary
o i 2 Pa a

radius, and ia is the rotational transform at P, -

Finally, (17) becomes
e?B

B, =2 {0 + & (oA () } :
P
S0
Bv . Po(n-l)
€2B o i :
o a

Specific equilibrium surfaces were computed in [9] for the
parameters of CLEO stellarator (% = 3) using Eq. (10). It was
found that although equilibrium could be maintained by the helical
fields alone, it is desirable to apply a suitably chosen vertical
‘field in order to reduce the distortionm and destruction of flux
surfaces induced by the plasma pressure.

Since the rotational transform is constant across the minor
cross—section in £ = 2 stellaratoré, we would expect that the flux
surfaces are less sensitive to the effects of finite pressure than
is the case for % = 3 where the transform in the centre is small.

2, we have calculated equilibria with B ~ 1 - 2%

]

For the case of 2%
for the parameters of WVII [3]. Typical results for current—free
plasmas are depicted in Figs. 2 and 3, where we see that despite the
abseéce of a vertical field the loss of confined plasma volume remains
small with increase of pressure. It is interesting to note that in
these calculations we observe a spiralling of the magnetic axis about
the lowest-order position given by the planar shift A3A(0) . By

including the higher order corrections in determining P » we find

Py = ACA(0) (1 52 sins) .



Since A =‘% , the spiral amplitude is about 507 of the lowest-order
shift in agreement with the numerical results.
4, STABILITY

In order to determine whether a plasma equilibrium is stable or
not, it is necessary to begin by studying the possible ideal M.H.D.
instabilities; if the system proves stable to these, it is possible
to proceed to investigate the influence of non-ideal effects, and
particularly of resistivity, to see if they allow instability.

In a stellarator without a net longitudinal current, the expected
ideal M.H.D. instabilities are localised pressure-driven modes.
The Mercier criterion [15], written in terms of surface-averaged
quantities, determines the stability of modes which are localised
radially but not azimuthally, i.e. interchange-like. Ballooning
modes [16], however, are able to localise azimuthally in regions of
'unfavourable curvature', when the plasma pressure is sufficiently
high. Since the equilibria under discussion have low B ~ g?, the
pressure~driven modes can exhibit ballooning character only in regions
of locally enhanced pressure gradient [16]. 1In the absence of such
steep gradients therefore, the ideal pressure-driven modes are inter-
changes and so their stability in the limit of large mode number is
determined by the Mercier criterion.

Given stability to modes capable of growing on the ideal time-
scale, it is then appropriate to test for stability to non-ideal modes.

Criteria for stability against resistive interchanges are given in
[li], [12] and [17] although that in [17] results from the other two
only when the poloidal "B" is small. In [12] it is shown that the
resistive criterion derived is always more stringent than the Mercier

criterion, and so it will be adequate for our purposes to evaluate the
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resistive criterion. Further, in the large aspect-ratio, large
toroidal field case, the results given in [11] and [12] can be shown
to be equivalent, and for our purposes the more convenient is that given

in [11]:
wio)_ A,>0 (18)

for stability against resistive interchanges.

W(O) = ¢}2

(PIV-” o I'X"" th)n ) __(5_}_2 (q()rxn_x.rcp") <UJ>

&)@

¢(X) and I(J) are the longitudinal (transverse) magnetic and
- >

J.B

current fluxes. W= =-. <x> is the average of x over a flux-
3 .
surface, and X = x - <@>, The glk are the metric coefficients of

the flux-coordinate system employed, in which current and field lines

4
da °

are straight: x! = a » the radial coordinate, and *

In [171, (replacing averages over closed field-lines by surface

averages), we have an expression for V*%* :

V% = Y 4 I')(" _J:d)ir _ ((p;xn - X:q)n) (w_B"2>

P’ p” .<§2>.

—~ pr (ﬁzfl\\
/

where ’ denotes the derivative taken with respect to some flux surface

coordinate. For convenience we shall take this to be the toroidal flux ¢.

22
SQETZ = <w> , and allowing
%)

for the fact that vg = aR(1+0(a/R)) in [111], we see that

When the main toroidal field isllarge,
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% 5
W(o) =.%§ .V* = P’ZWaBgv**. Thus W(D)— A,> 0 is equivalent to a

i s *% . 5
modified form of the V criterilion:

1
V**—?mg As < 0. (19)

We may write this last expression in terms of our dimensionless
variables by introducing the following dimensionless equivalents of

the quantities above:

If [x]

2m 21T_ p(lp: 9, g)
J de.[ ds j Xp(1-€p cosB)dp , then v =[1],
(o] (o} o

U =[b2], L

21 ~ _ 1 _ i d
[L(bYy*] andr ¢ = ﬁ'[bil (1_ gep cosB) ], ~;$ .

Henceforth we work in terms of these quantities (and drop the ~ on

~

¢).

If we put

v’ . v’ L’
Vk* - v." - U”- Pf ' (___ + __)
\ U’ v Ul v’ »
then taking the leading order forms of Vg, g, in A, we find the

criterion

V% - 4mP’q2 < 0 , (20)
with q = p/b* .

With the present ordering, V’, U’ and L’ are all ~ Zﬂa-o(emé);
so V&% = V# - UY - 4mP’ to the required accuracy, which proves to be
a convenient form, as V-U = 2[1-b] - [ (b-1)%1, where b = !gl .

The first parf of this expression contains the destabilising
magnetic hill term associated w%ph the geodesic curvature of the
stellarator field and the second contains stabilising terms arising
from favourable average curvature. However the ordering is mnon—

optimal with respect to the stability criterion, so that whereas the
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magnetic hill is O(E%é) » the curvature terms are 0(e?)

Higher order terms in general represent only corrections to those
already described, although in the interesting special case of a current-
free £ = 2 stellarator we shall see that pressure—-dependent effects
cancel exactly in 0(e?) so that finite pressure terms are recovered
only at O(E%%) . In this case we shall assume that BP = STrP/(EBoi)2
is suffiﬁiently small for the contribution of this term to be neglected.

For "tokamak-like" configurations, (16) can be rewritten in terms
of coordinates (p’,8’,f) centred on the magnetic axis by replacing
A(po) by A’(po) = A(po) - A(o) , and writing p’ for p and 6’ for 9.
We shall work in terms of these coordinates throughout the rest of this
section, although dfopping the primes on p’,08’ and A’ .

Let usrconsider the terms in V-U ; the second, [(b-1)2], is

easily evaluated, and to lowest order is

7
[szfp'cos 8 - ap"sin (n6+§)]2} +0(e /3]
¥ gl 2(n+1)

p 7
= m2g? ( 2 < ) + O(E’é) .
2 (n+1)

[(1-b)] is less useful than [(1-b)]’ , which is also simpler

to evaluate, being given by

2M 27
dp

2
[(1-b)]*r = Jode JOdE %-755—(1-€;3c05 8) (1-b) ,

where p = p(y, 6, §)

2
To evaluate this latter we need b and %?— g
Y 2
- 2 2 272 _ " 2 2 3
b = @E *b, +b9) b+ @p +be)+0(€ }

and so
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_1 2
- (1-epcos®) (1-b) = 5 (bp

: %
+ E(p cos B - o pn sin (n9+'s')] +g° bg(s) sin (nb+3)

+ g2 {b3+— — = —}

omitting periodic terms, which, on averaging, will vanish to this

order,
) , . naapoZ(n'l) y 2HOLDQ.'Z(l'l-?-) ¥
b® +b. =¢ - 1+g 2 ————sin (n6+8) +0(e a)]
o] ) 'p2 1—32

We find ¢ , from its definition, to be

2 3,2 _ N
¢=,n.(pz+€'3’ n’a’ | 2(n I))+O(€»5]
(o] 1‘)4 o]

- and, consequently,

dp? _ 1 ¥ , o n-2_, - _ X (- -2) -
d—g = 1 + E'gnz —_P—Q-{J;L sin(nb +s) - Elgn':' (HELI*) azpoz(n 2 cos 2(nb +s)
2 2(n-1)
ecos® 3 | Po° ( neR, (n-1)8 ] )
= A(p ) + = 5n+ (n+l)Y + —=—
b, 9p, |bER Y\ o 42 [ Po®
+ 0 (ea?) .

Finally, integrating the product in the expression for [1-b]’, we

obtain our criterion in the form

4 pag2ar S22
d¢D £° 4m T qg°< 0 4 (21)

_14_



where

p,* Po
+ g?orm -—-——+2J b(p)c(p)dp-bz(po)

2
0
1 d 0f'zpo?-(n-'-l) (n-1)8
+ g [poz A(po) + (511 + (¥ + -——2—)]
o s b*(po)4§3 o
+ —_— e -

In obtaining this result we neglect the contribution in 0(e?)
of terms proportional to ivac » some.of which represent corrections
to the leading order magnetic hill, since they are expected to be
small.

Thus,

where o
2
nop _
Blo = >— q [5n+ (n+1) y +8 126} s
4p 2 Po
* and
pO
q = P
b (oo)
2p P4
3A” . ’ *?
(A" +-?ir - ;ﬁ% ) can be found from Eq. (15); using %r = (% = %;;)
we have

_15-



_ o __b o v 4 LB 4 1 4
A"-I— b*z = e +W9(po) + ZA q b* dpo po dp (pobo)

and for . = 2 we are able to integrate this to give

ar = —L_ 70 [oopr = ptb + 2% bia(e) | od
CCED P v p) |pdp
o} 0

as the term in A vanishes.

From Eq. (22) we see tﬁat for the general & = 2 stellarator,
negative shear (q’/q>0) is stabilising, as has been shown for
tokamaks [11]; however in the.absence of an axial current, the
shear vanishes for £ = 2 , and as noted previously, the pressure
dependent terms cancel in 0(e?) of the stability criteriom (21),

which then yields

b,
S2_ e - (11+3y) ez=e2(2p|ivacl— (11 + 3Y)y) < 0. (23)

The first term arises from the destabilising "magnetic hill"

generated by the stellarator field, while the remaining stabilising

term results from the effects of toroidal curvature. Since the
... 4o . . : 7
flux-surface ellipticity mn = —5— , this result coincides in the limit
P

of low Bp with the ideal M.H.D. criterion (67) given in ref. [18]
which was obtained by means of an expansion in radius. The pressure

¥,
dependent term in O0(e % , omitted from (23) is found in ref. [18]

i B
to be destabilising and is given by £2P’ (p) —%%%-R Thus, provided

Bp <1 this term is indeed mnegligible in (23). It is interesting

to note that the already substantial margin of stability obtained with
a pure 2 =2 winding (Y = 0) can be enlarged significantly by an
appropriately phased poloidal modulation (y > 0) of the 2-winding

pitch, as discussed in section 2.

In the case of current-free stellarators with £ > 3 the axis
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shift can be large and this prevents us from using the above analysis
which assumes Py ™~ 0(e) . However, in the special case where
Ao = 0 , corresponding to a particular choice of vertical field, this
assumption remains valid and then for £ = 3 stellarators (without
coil modulation) we find the criterion

i (o) -6 -2 2@ (24)

vac p :2
Eran $0)

showing that finite pressure is destabilising, especially near the
axis. In the limit of vanishing pressure the criterion reduces to
V#* < 0 , which has been discussed previously in [10], although we
find the stabilising term to be somewhat larger. A comparison of
(23) and (24) thus suggests that £ = 2 stellarators without plasma
current are more stable to resistive interchanges than their £ = 3
counterparts, but this neglects the well-deepening to be expected
with a larger axis shift [19] and to examine this in general it
would be necessary to evaluate criterion (20) for equilibria with
Ao #0 . A numerical approach to this question should be possible,
but lies outside the scope of the present investigationm.
S DISCUSSION

Although numerous variants of the stellarator concept have been
proposed, the engineering problems of designing, constructing and
maintaining a device of reactor size impose strict constraints which
virtually exclude the more complex systems. As is the case with
tokamak reactor designs, cost and output power considerations lead to
low aspect ratio, and the many\problems associated with conventional
f-windings have led to several proposals for the use of coils with a

modular construction [5,6]. The solution proposed by Wobig and
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Rehker [5] to this problem is particularly attractive in that a single
set of coils, which could be individually demountable for maintenance,
would provide both the toroidal and helical equilibrium fields, and
leave adequate access for neutral injection or R.F. heating, and so on.
The choice of f-number in the étellarator field is effectively
limited to 2 =2 or & =3 by the difficulty of achieving satis-
factory rotational transform in a low aspect ratio device by means of
coils which necessarily must be separated from the vacuum vessel by
. a substantial thickness of blanket material. Since high rotational
transform in the centre of the plasma as well as at the edge is
desirable to ensure good confinement of energetic ioms, £ =2 would
appear to be preferable, and as the equilibrium calculations in
section 3 have shown, the & = 2 flux surfaces are mnot sensitive
to finiFe plasma pressure, obviating the need for a vertical field
system, which would be desirable for an % = 3 stellarator (9], and
essential in a tokamak. Although the detrimental effect of the
stellarator "magnetic hill" on interchange stability increases with
rotational transform, and tends therefore to be stronger in the
centre of an & = 2 stellarator than in the centre of an 2 =3
device, we have seen that there is nonetheless a substantial margin
of stability due to toroidal effects. From the criterion (23) for
2 = 2 current-free stellarators we see that if ivac ~ 0.5 which
is likely to be the situation encountered in practice, then provided
the number of winding periods p is not too large, say p <8,
then a sufficient well can be formed and stability against resistive
interchanges is possible over a useful range of poloidal beta values.
In addition, it has been shown that a modular & = 2 systém exhibits

substantial negative shear [5], even in the absence of a plasma
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current, which may be beneficial for interchange stability.
6. CONCLUSION

We have studied a general class of low-beta toroidal stellarator
equilibria in which plasma pressure and current density profiles may
be prescribed arbitrarily as functions of the mean flux surface
radius. Between the general stellarator equilibrium and the low-beta
tokamak which forms a special case, there is a strong similarity made
evident by our calculation. By evaluating the resistive interchange
criterion it is seen tﬁat notwithstanding the destabilising effect of
the magnetic hill a substantial margin of stability is available in
£ = 2 stellarators, which if constructed using a modular coil design
would appear to be an attractivealternative to the tokamak, especially

in view of the possibility of steady-state operationm.

i
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APPENDIX

In stating the expressions for the fields, (7), we have employed

the following definitions:

hCFg) = hc(g)(p) = o(p) 1is the toroidal current, and the associated

poloidal field is

G

dp

If we write

and

then

and

0, = {' 7 (a+l)

4

nop
s

1l
P

dp

ap™! (n+2)

4
dp

b(p) , given by

(pb) = a(p)

. n-1
(93 + b(p)a(p) + { (392———

p2

n—-1\3
) [

53

- Al -

n-2
+ 020 __ 4(p) - —U-%i)-} o’-ap”c

(A1)

(Aii)

(Aiii)

(Aiv)

(Av)

(Avi)

(Avii)

(Aviii)



1 d d 3n __ _ : .
Jnp dp (p ) (pw)) o w=g0) . (Aix)

Finally,
- b*(pA”™ + 3A’) + pPAC’ + 2pP’ - Db*b
+ P g [5n+ (n+l)y + ] =0 (Ax)
and
14d L BB .
5 dp (pA) 5= b(p) . (Axi)

The surface function U involves two functions as yet unspecified:

n+l Brd
™ (o) = {- o D) w0y p)- 20Dy

4 (n+l) p?

and .
ot = & (el L L e
2 3 \2p2 pdp \pdp \ p
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Fig.1 Coordinate geometry.

Fig.2 WVII flux surfaces for i = 0-5, § ~ 1%, B, = 0. The torus axis is to the left of the figure,
the location of the stellarator windings in this cross-section and their polarity (+ into the paper)
being indicated on the outer circle (dashed). The limiter radius is given by the inner dashed
circle,
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Fig.3 WVII flux surfaces fori=0-5, f~ 2%, By =0. Although § is twice as large as in the case
of Fig.2, the flux surface displacements are only slightly greater.
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