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ABSTRACT

The non-linear development of the m=0 resistive
'g' mode has been studied in the reverse field
pinch. A saturation process is shown to exist
in which the perturbations cause a guasi-linear
flattening of the equilibrium pressure near the
m=0 resonant surface. The mechanism for this
flattening is discussed.
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ABSTRACT
The non-linear development of the m=0
resistive 'g' mode has been studied in the reverse
field pinch. A saturation process is shown to
exist in which the perturbations cause a quasi-
linear flattening of the eguilibrium pressure
near the m=0 resonant surface. The mechanism

for this flattening is discussed.

1. INTRODUCTION

The reverse field pinch[1] and Spheromak[z] have adverse curvature and
as a consequence are unstable to the resistive interchange or 'g' mode. It
is therefore particularly important to investigate the non-linear consequences
of this mode. A numerical code has been developed to time advance a reduced

set of MHD equations.

It is known from previous work that while 'g' modes with azimuthal mode

number m > 1 may be stabilised by finite Larmor radius effects, the relatively

[3]

long wavelength m=0 mode is unlikely to be stabilised . Further we know

[4]

from the work of Schnack that the m=0 mode may continue to grow far into

the non-linear regime. This provides our motivation for choosing to study



the non-linear development of the m=0 'g' mode. This mode occurs about the
point at which the longitudinal field reverses and is driven by the pressure
gradient. To simplify the problem further we have assumed the plasma to be
incompressible. This has the numerical advantage of precluding magneto-scnic

waves which can lead to severe time-step restrictions.

2. EQUATIONS

We choose to study the 'g' mode in periodic c¢ylindrical geometry. This
means that the 'g' mode is driven 'correctly' by the interaction of pressure
and curvature rather than by a fictitious 'g' term[s] which is needed in slab
geometry. The incompressibility condition then allows us to define magnetic
and velocity stream functions. Using these the resistive MHD equations can

be reduced for the m=0 mode, to the two-dimensional form:
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V the fluid velocity, B the magnetic field and J the current.

Defining the vorticity w = (V x 3)8
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and the system is closed by the relation
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These equations are numerically advanced in time by a mixed ADI/explicit

algorithm similar to that used by Waddell et al[G].



3. EQUILIBRIUM

The investigations have been conducted using the Tearing Mode Stable (TMS)

equilibria[7] This is an analytic reverse field pinch model for which the

d ap 2 1
pitch, P (r) and the Suydam value, C, are specified (C = - a%‘ rBzz(a;/P) <3
is the Suydam stability criterion, where p is the plasma pressure). As a

further refinement a vacuum region is included in which Bz = constant, and

B, « 1/r. To avoid discontinuities at the vacuum-plasma interface a matching

8

zone is necessitated. In this region variables are matched smoothly to each
other, in particular C is taken gradually to zero with zero gradients at both
ends of the matching zone. In most of our runs we have taken the pitch in

r

4
2
the core of the plasma as P (r) = 2(1~ % - 266)' where the radius is defined

such that the longitudinal field and current on axis are unity.

The tearing mode stability properties of the TMS model have been exhaust-
ively studied by Robinson[7]. It is important for our purposeé that the
equilibrium be tearing mode stable, in order to isolate the non-linear 'g'
mode behaviour. However the m=0 tearing mode is very weak for this config-
uration, even if wall stabilisation is not effective, and the stability should

therefore be dominated by the 'g' mode behaviour. This property is fortunate,

since in testing for tearing mode stability at finite beta we are left in the

dilemma that the A criterion[s] does not apply whenever the 'g' mode is
dominant, in sucha high B configuration. In an attempt to satisfy ourselves
that our finite beta equilibria are tearing mode stable we have adopted two
methods. Both involve reducing the pressure to zero while maintaining some
property of the fields. In the first method we maintain the pitch constant,
and in the seond we maintain the guantity o = E.E/IEIZ constant. The second
is probably preferable as it is the gradient of ¢ which drives the tearing
mode. The reduced pressure configurations are tested for stability using a
precise value of A' obtained from the code RCWALL, which is based upon the

method developed by Robinson[?].



4, RESULTS AND DISCUSSION

(91

The code is run by priming with linear eigenmodes from the code RIP4A
It was found in all cases attempted, that if the non-linear code was primed
with sufficiently small eigenmodes to keep it in the linear regime then it
produces growth rates to within 2% of those of RIP4A. A typical magnetic
island structure and velocity flow pattern, with which the non-linear run is

started,is shown in Fig.l.

1 9 .
The growth rate defined as —-5% at the singular surface is shown for

v

3 full non-linear runs in Fig.2. They are for $S=1000 and 4000, with KZ=O.4,
C=0.05 and for S5=1000, C=0.05 and KZ=1.O (where S is the magnetic Reynolds
number). All three curves exhibit similar behaviour: a marked decrease in
growth followed by an increase. The decrease in growth is caused by
quasi-linear flattening of the zeroth-harmonic of pressure, in the region of
the singular surface. This is shown for the C=0.05, S=1000, Kz=1.0 case in
Fig.3. The increasing growth rate phase corresponds to resistive diffusion

of the magnetic fields, which increase the average beta and drive the 'g'

mode more unstable again.

The differences between the growth rate curves allows us to deduce some
important properties of these modes. For the S=4000, KZ=O.4 case it is seen
that £he growth rate increases much more slowly after turning, than the
corresponding S=1000 case. This is because the increase in pressure due to
the resistive evolution of the equilibrium is slower for the S=4000 case. The
different times to the turning points for the Kz=0.4 and KZ=1.O, 5=1000, cases
follow from a linear stability analysis of the equilibrium: it is found
that growth rate of the KZ=1.0 mode increases much faster with pressure than
does the Kz=0.4 case. Thus the decrease in pressure gradient, at the singular
surface, is more quickly counteracted by the increase in pressure in the Kz=1.0

case.



Examination of the magnitudes of the perturbations in the non-linear runs

shows that we are still in a quasi-~equilibrium state. Thus

L= > .
Vo, = J, % B (6)

where subscripts zero indicate zeroth harmonics. Now near the m=0 surface,
BzO must by definition be small. Hence the flattening of the pressure near
the singular surface can almost totally be accounted for by quasi-linear mod-
ifications to the JzO' This can easily be demonstrated to be correct: by

simply altering the JZO to that at a given timestep while maintaining Jeol BGO

and Bz at their original values we obtain an almost exact fit to the pressure

0

gradient in the region of singular surface at that timestep.

Using this knowledge we can obtain an order of magnitude estimate to the

saturation width. We have at the singular surface, g

f JzO = EzO - (VGBr)O (7

since Vr o = 0. It is the (VeBr)O term which causes the flattening in
s

pressure profile at r since if it were negligible the equilibrium would just

diffuse resistively in the normal manner. Hence for a saturation process to

occur we must have

(VgB) (8)
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where the subscript orig. implies the initial equilibrium value. Now at r,

from linear stability theory

s Ve1 - JzO orig Br1 =

where w is the linear growth rate and the subscript 1 indicates a linear per-

turbation term. Egquations (8) and (9) then give
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(5]

but from Furth, Killeen and Rosenbluth the resistive layer thickness, £,is
given by
\ 1/4
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Using (10) this then gives
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Hence we can expect appreciable saturation by pressure flattening when the
island width is comparable to the resistive layer thickness. This is indeed
found to be the case in our non-linear calculations. A somewhat similar situation

[10]

prevails when considering the non-linear behaviour of the tearing mode :
-0.22
Our calculations show that the resistive layer thickness decreases as S
4
for values of S up to 5 x 10 and the radial field perturbation decreases as

8_0'39. This is to be compared with the predictions from eqg(ll) for a pure

resistive 'g' mode and eqg(12) that the field perturbation decreases as 5—0'67.
We have also modified the equilibrium profiles in the linear code, RIP4A4,
to match the pressure profiles at variocus times of the non-linear evolution.
The linear code then gives growth rates to within 5% of the corresponding
non-linear calculation. Hence we conclude that we are dealing with a quasi-
linear phenomenon in which the dominant effect is that of perturbations on

their own equilibrium. The quasi-linear modification to JZO is shown in Fig.4.

5. CONCLUSIONS

The decrease in growth rate has been shown to be due to the gquasi-linear
modification to the axial current, JzO' The effect of this on the growth of
the linear perturbations can be seen with reference to eq(9). %etting JZ0 rg
equal to zero (which is equivalent to flattening the pressure at rs) essentially

stops the growth of the azimuthal velocity perturbations, Ve, at rg- This is

found to be the case on detailed examination of the results from the non-linear



calculations. The coupling between the radial field perturbations and the

agzimuthal velocity has been brcken and so the exponential linear growth will

cease.

The increase in growth rates caused by resistive diffusion of the
equilibrium reflects an unfortunate facet of our reduced MHD formalism. By
using an incompressible formalism we lose independent control of the plasma
energy content, which could have been used to control the diffusive rise in
pressure. The inclusion of more physical effects such as parallel thermal

conduction, to control this pressure rise, would allow the saturation process

to continue. This view is confirmed by the difference between the S=1000 and

4000 mode evolution.

In redistributing the pressure to achieve the flattening at the singular
surface, the m=0 mode increases the pressure gradient markedly in the core of
the plasma and to some extent iﬁ the outer regions of the plasma, Fig.3. This
effect is further enhanced by resistive diffusion. We have examined the linear
effect of this on the m=1 modes in the core and find that their growth rate
increases considerably. This could be an important effect, but we have not yet
examined the non-linear effects of the m=1 and m=0 mode interaction, which

would require a three-dimensional calculation.
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Fig.1 Magnetic fields and velocity flows (arrowed lines) with which non-linear run is primed.
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Fig.2 Growth rate curves for reconnected flux at the singular surface. All 3 curves are for TMS equilibrium
with a Suydam value, C = 0-05.
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Fig.3 Non-linear development of zeroth harmonic of pressure gradient for § = 1000, C =0-05 and Kz =1-0.
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Non-linear development of zeroth harmonic of axial current for S = 1000, C = 0-05 and K5 = 0-4.









