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ABSTRACT
A Fokker-Planck treatment of the plasma electron current
driven by radio-frequency waves is presented for the electron
cyclotron and Landau damping wave absorption mechanisms.
Electron-electron collisions are taken into account using the
full Fokker-Planck collision operator which leads to an integro-
differential equation for the perturbation of the electron distri-
bution function produced by the wave. This equation is solved analytic-
ally in the Lorentz gas approximation and numerically in its full
form. Efficient current drive is predicted for high phase velgcity
waves in the electron cyclotron scheme while Landau damping is
efficient at both high and low phase velocities. The reduction of
the current due to trapping of electrons in a tokamak field con-
figuration is calculated and a dramatic suppression of the current
is predicted for low phase velocities. The efficiency of
driving currents with waves is found to be comparable with that
obtained using fast ion beams but much less than that using steady
electric fields. A comparison with an idealised wave shows that

the two practical'schemes considered are far from optimum.
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al INTRODUCTION

In 1971 Wort[1] suggested that the plasma current of a tokamak
reactor could be generated continuously using low frequency electro-
magnetic waves to drive the electrons by transit-time magnetic
pumping. More recently Fisch and Karney[2'3] have predicted that
currents can also be driven efficiently by electron Landau damping
of radio-frequency waves at both high and low phase velocities. An
alternative to the Landau damping scheme has subsequently been pro-
posed by Fisch and Boozer[4] which relies on creating an asymmetric
plasma resistivity rather than on transferring momentum to the
electrons. 1In this scheme an electron cyclotron wave, for example,
is used to increase the perpendicular energy of resonant electrons
moving in a particular direction along the magnetic field lines.

The reduced collisionality of these electrons leads to an asymmetry

in the electron distribution function which manifests itself as a

current.

In this paper a theory of wave driven plasma currents

oresented both for the electron Landau damping scheme

is

and for an asymmetric resistivity scheme which utilises electron

cyclotron resonance heating. In section 2 the electron distribution

function is determined for the case of a uniform magnetic field

using a steady-state Fokker-Planck equation which includes electron-

ion and electron-electron collisions together with the electron-

wave interaction. The electron-electron collisions are treated

using the full Fokker-Planck collision operator and,in this respect,

the present method differs substantially from that in refs.2 and 3.

The Fokker Planck equation is solved analytically in the Lorentz



gas approximation and numerically in its full form. Values of the
current density per unit power density, J/Pd,are obtained for a
wide range of wave phase velocity, several values of plasma charge,
Z, and for the £=1, 2 and 3 harmonics of the electron cyclotron

frequency.

In section 3 the reduction in current due to electron trapping
in the toroidal field gradient of a tokamak is calculated. The
results of the calculations both with and without electron trapping
areé compared in section 4 with the efficiencies of driving currents
by means of an idealised, hyrothetical radio-frequency wave, various

types of ion beam and a steady electric field.

2 THE ELECTRON DISTRIBUTION FUNCTION

(a) The Fokker Planck Egquation

The interaction between the plasma electrons and a radio-freguen
wave produces a time development of the distribution function which

can be written symbolically as

Bfe _ /3f \ afe
7 )t (‘)C (1)

of
where (B e) represents the velocity space diffusion caused by
t Jw ,of
the wave ang (EEE) is the Coulomb collision term. Using quasi-
: c

linear theory applied to a plasma in a uniform magnetic field

Kennel and Engelmann[s] have deduced a general expression for
of
(§E9/ which, for a tranverse electron wave with a wavelength much
w

w
greater than the electron Larmor radius (kL’ k|[<< GE),reduces to
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In the above equation v, and I are the electron perpendicular and

parallel velocities, D, is a constant in velocity space and is

proportional to the wave amplitude squared, w and wg represent the wave

freguency and the electron gyro-frequency respectively and k”is the

wave vector along the magnetic field. The diffusion term for the

electron Landau dawping case is given by[3]

3 f
e\ _ 9 [ w
(W}w = Ay LoT (k T )Ee ]

In the present calculation the wave amplitude is assumed to
be sufficiently small to produce only a small perturbation of the

electron distribution function which can be written
£ =F + £~ (4)

where Fm is the Maxwellian distribution and the zero subscript

denotes no trapped electrons. Egquation (1) can then be linearised

giving, for the electron cyclotron wave in steady state
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In eqg(5), C symbolises the Fokker-Planck collision operator. In

order to solve eq(5) (and the equivalent equation for Landau

damping) a Legendre polynomial expansion of the perturbation of the

distribution is made:



£

oo = Fmégan(v)Pn(E) (6)

where £ = vll/v.
Substituting eqg(6) into eq(5) leads to the following integro-
differential equation for a;, the coefficient which determines the

electron current:

a; + P(x)af-p Q(x)al— lé-;-—-IL-XI3(x)-l.2xI5(x)-x4(l—l.2x2)
3m2A
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Q = x “-2(B+E-2x°E') /A (9)
A =g - xg! (10)
E o= £ JX exp (-¥? )dy (11)
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: X
I (x) = { al(y)e_yzyndy (12)
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where x=v/ve, ve=(2Te/m)%, Te is the electron temperature, m is

the electron mass and 7 is the effective plasma charge. Equation (-

6]

is identical with that of Cordey et al[ except for the driving

term R(x) which is found to be

¢ N
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and R(x) = 0 for x < u_.



In eq(13)

4
- Am&nhAne ,., ig5 the Coulomb logarithm, and n is the

I
o 3 2
v m
e

electron density. The normalised phase velocity uj is defined

by u, = (w—ﬂwc)/k”ve and uo=w/k||ve for the electron cyclotron (EC) and
Landau damping (LD) schemes, respectively. The term R(X) vanishes

for x < ug because electrons with speeds less than the wave

phase velocity cannot resonate with the wave. The boundary

conditions on the solutions of eg(7) are

a; » ex? 3 EC
as x » o
al-écx; LD

and a; 5 0 as x » 0 for both cases.

The electron current density is given in terms of I3(m) by

de
= i - QPBy = - — ) . 4
J efv”feod v * venI3( ) (14)

3m

A measure of the efficiency of the current drive is the ratio of

the current density to the'power density, Py which is given by
Py

Py = J%mv \gg)wvldvldvll_ (15)

The ratio of current density to power density is then given by

u2
2v: v_ e
J _ o
B B 3™ G
¢
for the electron cyclotron case and by
uz
2v3 v_e °
J e o
Jd_ o = e L 0] (17)
2
P4 3DL ug 3
for the Landau damping case. The current density is expressed



in units of -nev, and the power density in units of nmvg v
following the convention of Fisch[7]. Note however that the
present definitions of Vo and L differ from those in ref.7 by
factors of v2 and (4/5)_1 respectively. 1In practical units of amés/

watt the total current I per unit power P injected into a tokamak

of major radius R and uniform pPlasma parameters is given by

T (kev)
E(ﬂP-%) =0.122 & "~ % (18)
P (watts) R(mn,ent *a

where the density 50 is in units of lOdOm_3.

(b) The Lorentsz Gas Limit (Z >> 1)

As the plasma effective charge becomes large the electron-
ion collisions dominate the electron-electron collisions and an

analytic solution of equation 7 is possible. Thus we obtain
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and a;(x) =0 for x < u, -

The solution for the electron cyclotron wave leads to the

following expression for J/Pd:
— 3 2 l.m £ 5.7V
TP T am ) Y () Fe Vay (20}

which has the following forms at small and large U,



30k
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and J/Pd - as u_ - « . (22)

Thus, the current drive efficiency is a monotonically increasing
function of the wave phase velocity with a linear behaviour at

low u, and a quadratic dependence at large u,.

For the Landau damping scheme we obtain

s - L lgw 43 + 3(2u® + 1)eu‘23re'x2dx1' 3
/Pd = 27 |°% Yo o J (23)

o u

O.
which reduces to
I e
J/Pd = uoz as u_ - 0 (24)
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and J/Pgq = 7 g W, B . €25

Consequently currents can be driven with high efficiency at both

extremes of u_ in agreement with the calculations of Fisch and

o]

[2'3]. At large u_ the electron cyclotron and Landau damping

Karney o

schemes both drive currents in proportion to ul and in the ratio

o
of 3:4 which agrees with the estimate of Fisch and Boozer[4 ].

Values of J/Pgy obtained from egs(20) and (21) are plotted against
ug in Fig.l where it can be seen that the above functional dep-
endencies at small and large u, are maintained in the full solution.

(c) Numerical Solution

The integro-differential equation was solved numerically
using the two point boundary value technique described in ref. 6

for values 0.01 < u; < 10, 1< Z <16 and electron cyclotron



harmonics £=1, 2 and 3. The discontinuity at X=u, was smoothed

as in ref.6 and the delta function appearing in R(x) for the

Landau damping case was approximated by a gaussian
» 4 ~(x=u )2 /A2 :
S (x uo) N W%A exp [-(x uo) /0% ] (26)

with A <€ 0.05. This gaussian was also used in the calculation
of Pd' In Fig.l the solid curves show the values of J/Pd plotted

against u; for Z=1 and 2. The Landau damping scheme is always:

the more efficient but the electron cyclotron scheme becomes
competitive at large U,. Also shown are the J/Pd values for the
third harmonic electron cyclotron wave which is more effective
than the lower harmonics at large uy but less effective at small
U,- A comparison with the Lorentz solution (the dotted curves
in Fig.1l) shows that the electron-electron collisions reduce the
efficiency by up to a factor of six for the electron cyclotron
wave and by up to a factor of five for Landau damping, the largest
reductions occurring at large u,. The solid curves for the
electron cyclotron wave have been fitted to better than 10% with
the expression

J/Pé1 = G,u + Bzué. (27)
The values of a,and B, for £=1, 2 and 3 and a range of Z values

4 4
are given in Table 1.

An interesting feature of the Landau damping scheme is that
the values of J/Pd approach those given by the Lorentz solution
at low U,- This can be derived analytically in the following way.

For small values of u, the particular integral of eg(7) becomes



a, (x) = el O eay w o w (28)
v

with a;(x) =0 for x < ug. The discontinuity in a; (%)
can be removed by adding part of the general solution as

described in ref.6. This smoothing makes no contribution to the

current which is given by

_1.33 (29)

and is identical with the Lorentz gas value.

The current predicted for Landau damping for Z=1 can be
compared with the results of the numerical calculation of Fiséh
and Karney[3] in which the collision term»Cee(Fm, fé) was omitted
and its effect taken into account by using a displaced Maxwellian
for the background distribution in the remaining electron-electron
collision operator. These authors show that their results can be
well represented by the expression
1

+ 0.7 u? (30)

.de = 1.4 u, S

where the coefficients are appropriate to the present definitions of
Vg and Vo Equation (30) gives good agreement with the present
results at ujy = 0.1 but underestimates the current by 20% at uo=3.

The dependence of J/Pd on plasma charge is shown in Fig.2
where the ratio J(Z)/J(1) is plotted against Z for u, = 0.1 and 3.

For u, = 3 this ratio approaches the (Z+5)“1 dependence derived



(4]

by Fisch and Boozer while for smaller values of Uy the variation
is stronger,with the Landau damping scheme showing the Z-'l variation

given by eg(29).

3 THE EFFECT OF TRAPPED ELECTRONS

In this section the reduction in wave driven current produced
by trapping of the electrons is investigated for plasmas in the
banana regime of collisionality.

(a) General Treatment for Large Aspect Ratios

In the conventional neoclassical theory of Rosenbluth et al[a]
and Hazeltine et al[9] the perturbed electron distribution function
fé, to order e% in the inverse aspect ratio (e=sx/R), is written in
terms of féo’ the perturbed distribution for no trapping, as

- - - @] *
fe feo + h™~ + f (31)

where h® is the part of the distribution function which is localised

in the trapped particle region and f* takes account of the friction

9
between the trapped and passing electrons[ ]. The function fé

satisfies the Fokker-Planck equation

afe ) & By Bfé
(3E )w T Coi (FerFp) + Cee (farFp) + Cee (Fnrfe) = £ §; 3 (32
where BG/B¢ is the ratio of the poloidal and toroidal fields respect-

of :
ively and (5?2) is given by eqs(2) and (3) for the electron cyclotri
w

and Landau damping schemes respectively. The functions h® and £*

are now expressed in terms of Legendre polynomials

e = FmZh?l(v,e)Pn(E) and f* = Fme;(v,e)pn(g). (33)
n n

Substituting eq(31l) into eq(32) and taking flux surface averages leads

an integro-differential equation, analogous to eq(7), for the first

order coefficients[10]

10



by + P(x)b] + Q(x)b - %[XIB(x)-l.zxxs(x)~x4(1—1.2x=) (T (x)=T (®)) ]

= R(x) (34)

_ o _

where bl = <hl> + <fI> (35)
<h?>

and R(x) = KE;[XE' + (2x?-1)E + 2Zx?] (36)

in which the triangular brackets denote flux surface averages. The
localised function <h?> is now obtained in terms of féé using the
cq&&rahﬁ:equation of ref.9 which ensures that the trapped part of

the electron distribution function is an even function of §. However
unlike the steady electric field case treated in ref.9, the resonant
wave—electr;n interactions generate Legendre polynomial terms in

féo of higher order than Pl(E). This can be seen from the coefficients

an(x) for the Lorentz gas:

8D
;' —
c (n+%) %2 (}{2_11_-102)'e l[xz—uoz—»&]Pn(uo/x)'r EC
viv 72 nf{n+l) Fox
e’ o
a_(x) = e
n 4D L °
L_ (n+%) [ZXZuan(uO/X)+Xu0Pﬁ(uo/X)'5(X_ud)xﬂ5 Lb
v3iv 'Z n(n+l)
e’o
(37)
with an(x) = 0 for x < ug for both schemes. The slow, n_1 variation

of these coefficients means that the higher order terms must . be taken
into account. In this case the solution to the zeroth order con-

straint equation of ref.9 becomes

) ; z a P;_>
EEQ = F E.ILfE.E%_ - g (Izl %n Pn> K <neven B B2 (38)
L o 2 (1-B) £ <(1—AB) > ((1-AB)%>
B P B t

11



where ¢ = Vi /[W||r A= VLZ/%ZB, B is the total magnetic field,
the argument of the Legendre polynomials is c(l—)\B);E and

the subscripts p and t refer to passing and trapped electrons
respectively. Equation (38) can now be used to obtain <h?> using

the expression
+1
o _ 3 ;
<hl>Fm =33 j I}OPl(E)dE. (39)
Changing variables from & toA and integrating by parts gives

o ———
<hp> = -3 + 2 #nfn (40)
odd
1/B

; Hax <PI'1[ (1-)B) %]>
where Hn = E<B> AdA

. <( l];)\B) g> '

The integrals Ho have been evaluated numerically for the tokamak

field configuration, B = Bo(l—ecose)_l and are shown in Fig.3 as

a function of € for n € 9.

The electron current is given by

dev_n
= - ' 2
£ E;g-— T3tot (42)
h = b )xle X
where I3tot O(a1+ l)x e dx . (43)

Thus the current can be determined once eg(34) has been solved
for b, using eq(40) to obtain <hT> which appears in the driving
term, R(x). Determination of <h?> requires all the coefficients
an(x) for the solution without trapping to be obtained from

integro-differential equations similar to eq(7). This complete

12



treatment is beyond the scope of the present paper, but calcul-

ations are given below for the Lorentz gas case for which the

coefficients an(x) are known analytically-

(b) The Lorentz Gas Limit (2 >> 1)

Tn this limit the electron-electron collision term is negligible

ith the electron-ion collision term and the first order

(9]

constraint equation of Hazeltine, Hinton and Rosenbluth , which

compared W

determines the localised distribution function ho, becomes the
exact constraint equation. Thus for the Lorentz gas case the
perturbation of the electron distribution function is given by

-~ _ - (o]
fe = feo + h (44)

and the vanishing of £* and higher order terms removes the
restriction of the calculation to small values of €. The result

<ff> - 0 can also be seen from eq(34) as Z + =.

The total electron current is given by substituting eq(40)

into eq(42) which becomes

4even —x?
<J> = - —1— x3e dxi a_(x)H (45)
3% n n
< Bodd

with the an(x) given by eq(37).

Normalising to unit power density we obtain:

( uz2 -]
16e ° (n+%) 5 -x? 2-1 f 1, (‘o
3207 E n(n+l)Hn x e (x* -u?) lug+.ﬂ-}ﬁan\?;)dx; EC
< n u
J> _ odd o | (46)
ug o 3§ u
8e (n+%) | o i 21
BZué n(n+l)Hn x*e lxaﬁ(x—uo)-szuéPn(G?)—xuoPn 3?)jdx5 LD
\ n > ]
odd u

o

13



The integrals appearing in eq(46) were evaluated numerically and
curves of <J>.Z/Pd versus U, for €=0, 0.03 and 0.1 are shown in
Figs. 4 and 5 for the electron cyclotron and Landau damping

schemes respectively. At high values of ug the electron trapping
for e=0.1 reduces the current by a factor of two in the case of

the electron cyclotron wave and by a factor of 3/2 for Landau
damping. At these high phase velocities most of the electrons
interacting with the wave have large values of Wl/v and are passing

particles so that the diminution of current is relatively modest.

At low phase velocity the trapped electrons effectively
destroy the current. Physically this is because the current is
being carried by electrons of low parallel velocity and soonly small
increases in Vs due to wave=-induced diffusion or collisions, are
sufficient to trap these electrons. For the Landau damping case,
the curves shown in Fig.3 fTor u; < 10“1 also apply when electron-
electron collisions are important since, in this region of phase
velocity, the electron distribution function for no trapping, féo'
is identical with that for the Lorentz gas.

The dashed curves in Figs.4 and 5 show the effect on the
Lorentz gas calculation of using only the Pl(g) term in f;o and,
for the high values of U,, give a reasonable approximation to the
results obtained using the full Legendre exXpansion. With such a
truncated electron distribution function we can also solve numer-
ically the full Fokker Planck equation (eq(34)) as described in

section 3(a) to investigate the effect of the electron-electron

collisions. The results of this calculation are shown in Fig.6

14



where the dashed curves are the values of J/Pd for e=0.1 and the

solid curves for e€=0 (no trapping). Comparison with the corresponding
curves in Figs.4 and 5 shows that at ué=10, the electron-electron
collisions approximately halve the percentage reduction in current
caused by the trapped electrons. At ué=l however the electron-
electron collisions have much less effect and, for Landau damping,

even increase the percentage loss of current.

4 COMPARISON WITH OTHER CURRENT GENERATING SCHEMES

In this section we compare the efficiency of driving currents
by means of the electron cyclotron and Landau damping schemes
with that obtained using (a) an idealised wave, (b) fast ion beams

and (c) steady electric fields (ohmic heating) .

To investigate how the wave-driven current scheme might be
opﬁimised we consider a wave which causes parallel velocity dif-
fusion and interacts with the electrons at a specific point in
velocity space. The co-ordinates, annd Vyr of this point of
interaction are then varied to maximise the value of J/Pd. The

driving term is taken to be:

(¥e\ 2 [ s(e-g )8 (v-v yoom] (47)
\3t T ooy, i o o’dvy, |
w Il Il
which gives
6Dj 2 4., , 1
R(x) = ;:—;—K[EOX 5 (x—uo)-go (2x2—l)x36(x-u0)+3(53—1)gox36(x—uo)J (48)
e o

re u =v_/v_.
where uj O/ "
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Approximating the delta function by a gaussian as in eq(26) and
numerically solving eqg(7) leads to the J/Pd values shown in Fig.7
as a function of both EO and u. Clearly the greatest efficiency
is obtained when the wave interacts with high energy electrons with
small parallel velocity components. For EO=0.1 and u0=3 the
efficiency is approximately an order of magnitude greater than

that of both the electron cyclotron and Landau damping schemes at
the same value of u, (see Fig.l). Thus these two practical methods
are relatively inefficient compared to the inherent potential of
the wave-drive mechanism which has an optimum efficiency comparable

with that achieved with steady electric fields (see Fig.8).

The efficiency of driving current using fast ion beams with

velocity ¥y, &% Vo- 1S given by[1o]

3H%Kl L
7/Pa T Ty T ) (178 /241 46782, /2) [14(3-2a78) 6 /140%) ]
1 14+8/3
[T 3+B(1+a?3 \
X | = \x"+a? ) dx (49)
o}
3 - % 2 3
where o® = 0.757 m(ZniZi /mn)/uo,

B = miZ/mb, § = Te/2eo, u, = vb/ve, €q is the injection energy,

Kl is the first order co-efficient in the Legendre polynomial expan-
sion of the fast ion angular distribution, Ny, My and Zb are the
density, mass and charge of the fast ions respectively and ng, My
and Zi the Corresponding quantities for the plasma ions. Values of
J/Pd calculated using eq(49) are plotted against ué in Fig.8 for
deuterium, helium and Oxygen ion beams injected into a mixed D,T plasm:

Comparison with the results obtained for the electron cyclotron

and Landau damping schemes shows the optimum currents driven by

16



both the ion beams and waves to be of similar magnitude-for equal
power depositéd in the plasma. Thi; conclusion is not significantly
modified by the presence of trapped electrons as illustrated by

the dashed curves which were obtained from the solution of the

full Fokker Planck equation with €=0.1 and only the Pl(g) term

retained in £ .
eo

The top curve in Fig.8 gives the current driven by a steady

electric field which was obtained from the expression

8y _
J/Pd = (50)
n%vgz
where vg = 3.3 X 10_.6 I/nzoié%wé with the plasma current I in kA, Te

in keV, and the minor radiu% a, in metres. The quantity

[11]

vy is the usual Spitzer resistivity correction factor . For a
given total plasma current,vg is inversely proportional to plasma
density so that the efficiency (in our particular units) for
ohmic heating current drive increases for increasing density, a

scaling not shared by the other schemes. The particular curve

¢ which is typical of the DITE

shown in Fig. 8 is for v} = 10
tokamak. Larger devices operating at higher temperatures and
densities tend to have smaller values of V3 giving efficiencies

far in excess of those calculated for either the wave or beam driven

currents.

5 SUMMARY

In this paper the plasma current driven by radio frequency

waves has been calculated for the cases of wave absorption by (a)

17



Landau damping and (b) electron cyclotron damping. It has been
shown that at high phase velocity the two schemes give comparable
efficiencies whereas, at low phase velocity, Landau damping is

the more effective with J/Pd scaling as uo-l compared with J/Pd
scaling as uo for the electron cyclotron case. The electron-
electron collisions were taken into account using the full Fokker
Planck collision operator and have been shown to reduce the

current obtained in the Lorentz gas approximation by up to a

factor of six at high phase velocities. The reason for this

is that the like-particle collisions, whilst not removing momentum
from the distribution as a whole, cause the momentum to be transferre
to electrons which are slower than those in resonance with the wave.
These slower electrons then lose the momentum more readily by

collisions with the ions.

The reduction of the current due to trapping of electrons in
the field gradient of a tokamak has been found to be particularly
effective at low phase velocity where the current is almost entirely
Ssuppressed. This is due to the fact that only small increases in
perpendicular velocity are required to move electrons from the
untrapped to the trapped region of velocity space. At high phase
velocity the wave interacts mainly with passing particles and so

the reduction in current is more modest.

In comparison with other methods of driving plasma currents, the
-radio~frequency waves of the present study are as efficient as ion
beams but much less efficient than steady electric fields. There
is, however, room to improve the wave-drive efficiency as shown by

the calculations for the idealised wave.
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TABLE 1

VALUES OF ap AND Bﬂ IN EQUATION 27
Z=1 2 4 8 16

oy 1.5 1.4 0.65| 0.37 0.20
Bl 0.06 0.13 0.14f 0.13 0..09
Oy 1.05 1.0 0.66 | 0.40 0.21
52 0.14 0.17 0.17| 0.13 0.10
03 1.4 1.0 0.70 | 0.45 0.27
83 0.16 0.19 Q.17 | 013 0.08
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Numerical solution
———— Lorentz gas limit
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Fig.l Current density per unit power density, J /P4, as a function of u?, for the electron cyclotron and
Landau damping schemes. The continuous curves show the results obtained using the full Fokker-Planck
collision operator for Z = 1 and 2, and for electron cyclotron harmonics £ =1 and 3. The dashed curves
are the results obtained using the Lorentz approximation. The scale on the right facilitates conversion to
total current (amps) per unit power (watts) injected into a tokamak of major radius R. The density, n,

is in units of 10*° m™>.
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Fig.2 Functional dependence of the current on plasma charge Z for both high phase velocity (ug = 3)
and low phase velocity (uy, = 0-1). The dashed curve shows the functional form given in Ref.4.
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Fig.3 Integrals H,, given by Eq.(41) as a function of the inverse aspect ratio € for n <9,
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Fig.4 Current density per unit power density times Z as a function of u, for electron cyclotron heating
with trapped electrons present in tokamak field geometry. The continuous curves show the current
calculated in the Lorentz approximation for € = 0, 003 and 0-1. The dashed curve shows the effect of

using only the n = 1 term in Eq.(46).
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Fig.5 Current density per unit power density times Z as a function of u}, for the Landau damping scheme
with trapped electrons present in tokamak field geometry. The continuous curves show the current
calculated in the Lorentz approximation for € =0, 0-3 and 0-1. The dashed curve shows the effect of

using only the n =1 term in Eq.(46).
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Fig.6 Current density per unit power density versus u} at high phase velocity with the solid curves
showing the current for no electron trapping. The dashed curves for € = 0-1 were calculated using the
full Fokker-Planck equation but retaining only the n = 1 term in Eq.(40).
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Fig.7 Current density per unit power density as a function of u}, for an idealised wave interacting with a
plasma according to Eq.(47). '
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Fig.8 Comparison of the efficiencies for generating current using waves, ion beams and steady electric
fields. The continuous curves are for no electron trapping and the dashed curves include trapping with
e=0-1. The scale on the left gives J/P4 while the scale on the right facilitates conversion to total
current (amps) per unit power (watts) injected into a tokamak of major radius R. Note that the value
of J/Py for the steady electric field has been scaled down by a factor of ten.
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