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ABSTRACT

The transmission of a gaussian beam of electromagnetic
radiation through a refracting medium such as plasma, containing
within it a localized sinusoidal disturbance, is described
entirely in terms of refraction and diffraction. The lowest
order terms of an expansion for the intensity profile of a beam
in the front focal plane of a lens situated a focal length
beyond a beam waist in the medium are identified with well-
known optical effects usually treated independently, including
shadowgraph, scattering, and schlieren. The latter is shown
to be indistinguishable from spontaneous heterodyning of the
scattered radiation with the unperturbed beam, and is sensitive
to frequency, wavelength, and the location of the disturbance
in the medium. An experiment using a HeNe laser and mono-
chromatic ultrasound in atmospheric air has verified the
predictions of the model over a wide range of conditions.

As a plasma diagnostic, the method may offer a unigue
means of measuring otherwise inaccessible very long wavelength
instabilities such as trapped ion modes in large tokamaks like
JET.
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1. Introduction

A powerful method of measuring turbulence and microinstabilities
in fusion research plasmas 1s collective scattering of laser
radiation. Sucéessful studies of this kind have been reported
from the ALCATOR tokamak (Slusher and Surko 1980), the WENDELSTEIN
stellarator (Meyer and Mahn 1981), and the INTEREX thetapinch
(Pahrbach =t al 1981), all wusing COz lasers. Work with FIR lasers
has been reported from the MICROTOR tokamak (Semet et al 1980,

Park et al 1980).

In the conventional arrangement, the domain of fluctuating
wavelength is accessed by using a range of scattering angles and
probe beam wavelengths. . If long wavelength fluctuations are to
be measured, the scattering angles, especially for COz lasers, can
become smaller than the beam divergence, and resolution both in
k-space and real space becomes very poor (Holzhauer and Massig 1978).
Nevertheless experiments have been performed under such conditions,
 for example by Slusher and Surko (1980) who call it '"homodyne"
scattering, and by Pots et al (1981) who have referred to "small k"
scattering.

The approach described in the present paper is suggested by
the observation that any beam of radiation traversing a refracting
medium emerges modified in phase and amplitude. It turns out ‘tHat
wavelength, frequency, amplitude, and even location of the phase
fluctuations in the medium can’ be deduced from tﬁe emergent beam's
wavefront. The analysis is considerably simplified if ‘the incident
beam is a coherent gaussian and the phase shifts it encounters are
sufficiently small.

in passing through a fluctuating medium the probing beam's
intensity profile will have acquired oscillating components, and

the amplitude, frequency, and relative phase.of these, and their
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distribution over the profile constitute the measured data.
Techniques based on refractivity have been used in the past
to diagnhose turbulence in magnetically confined plasma e.g.
Gondhalekar (1968), Robinson and King (1968), Hamberger and
Sharp (1976). They are also used in radio astronomy to study
interplanetary plasma scintillation e.g. Cohen et al (1967) and
a general theory applicable to the latter has been provided by
Salpeter (1967) and Lovelace et al (1970).
The method is also known to electrical engineers involved
in acousto-optic signal processing methods e.g. Korpel(1972, 1981},
Rhodeé (1981).‘ ‘
Section 2 of this paper outlines the theory pertinent to
our case, developed on the assumption of a monochromatic disturbance
in the plasma, which could be one Fourier component of more general
turbulence. Tt leads to an equation for the intensit& distributior
of the beam in the front focal plane of a lens placed a focal lengtt
beyond a gaussian beam waist within the medium under investigation.
Sections 3 and 4 describe the time-independent and the lowest
order time-dependent terms of the intensity distribution. The
dependence of the latter on z , the measure of position along the
beam axis, is also discussed.A feature of the method is its capacity
to locate long wavelength fluctuations using a single probe beam,
and it therefore offers-an alternative to the crossed beam
correlation technigque used by Surko and Slusher (1980).
Section 5 deals with the time-dependent second order term.
Experiments lending strong support to the calculations are described

briefly in Section 6.



2. Theory

The propagation of a beam of radiation can be entirely
described by diffraction, and its interaction with the inter—

vening matter by refraction.

Let radiation travel in the +z direction, and let its
amplitude distribution in any plane to which the z-axis is
normal be U . Let z be measured from the left hand, or back,
focal plane of a lens of focal length f lying in the (x4,v,)

plane, as illustrated in Figure 1.
Acecording to Huygens—Fresﬁel diffraction theory (Goodman, 1968)

the amplitude distribution U(x,y) at a plane a distance z from the

lens's baek focal plane,‘and the distribution U(xﬂ,yz) at the lens

plade are related by the integral equation

[22]

By, vyl = JJ h(xy,v,,%,y) Ulx,y) dx dy w1}

where, in the Fresnel approximation, the kernel hi(x,,y,,x,y)



is given by

i A(f-z)

A being the wavelength of the radiation.
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The effect of passing through the lens is represented

by multiplying U(xﬂ,yﬂ) by the phase factor
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Projecting to the front focal plane of the lens by a second

application of the diffraction integral results in the

amplitude
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where —y—z— & Kx plays the role of a sPatlal wavenumber in

the (x,y) plane.

We now consider a particular experimental arrangement,

illustrated in Figure 2, where the amplitude distribution

Ulx,y) is taken to be that of a gaussian beam a distance

beyond its beam waist, say Ug(x,y), modified by a phase
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factor e m(x,y)_ The gaussian amplitude difribution

can be represented by (Siegman, 1971)

S1EE L a(2)) <P 4y?) Q°

U (%:¥) = —L e e ¢y 3 )
g AT W
Here, Q° = (1/2W2)(1+i§ ) , W being the beam width parameter

r
at z , defined so that the half-width of the intensity profile

at the 1/e height is W . At the beam waist, where z=0 , W

2
becomes Wo . The parameter z_ = EEXEQ— , the Rayleigh zone,

E
and &(z) is a phase factor independent of distance transverse
the z-axis.

It can be seen that‘Ug(x,y) describes constant phase
surfaces, i.e. wavefronts, that are curved, except at the
beam waist (z=0) where they become plane. For the phase
factor we adopt a monochromatic oscillation, wavenumber K ,

frequency @ , varying only in the x-direction, which we

write
p(x,y) = Ap sin(Kx-Qt), s s )

Ap being related to the refractive index of the medium at

Z by

Acp=21'r%AM
where L is the length along the z-axis over which this phase
grating interacts with the beam of radiation.

Localizing the disturbance in the form of a phase dgrating
at the axial position z in this way amounts to adopting a Raman-
Nath rather than a Bragg model for the interaction. This is

' ALK

justified by the fact that the Klein-Cook parameter =5

(Klein and Cook 1967) can be assumed to be << 1 in all that

follows.



In un-ionised gas the phase factor becomes

do = ZE (po-1) L2 vis (59

where Ap/pe is the fractional pressure change and Ko is the

gas index of refraction. For plasma w? = 1 - mpz/wa, wpe

being the electron plasma angular frequency, and accordingly
AQD= re )\ LA[’Je. 000(6)

Here, r_ is the electron radius and ng the electron density.

i Ag sin(Kx-=0t)
We accordingly substitute U(x,y) = Ug(x,y)e

into equation (2) and perform the integration to obtain the
amplitude distribution U(x.,y.) in the front focal plane.
To facilitate the integration, the phase factor is expanded

in a Bessel function series

+CD
i Ap sin(Kx-0t) i Z(KX-0t)
e = ﬁZ J, (L) e s

2]

use is made of two relations from gaussian optics, viz.

W WO = )\f

. = and W = WoJT1+(Z/Zr)2] ’

is normalised to the spot size W in the front focal

* £

f

plane:

u = xf/wf :

and finally, the dimensionless parameter v relating the
spot size at the beam waist Wo 1in the refractive medium

to the wavenumber K of the phase modulation, is introduced:

1]

vV KWO - 010(7)‘

The amplitude in the front focal plane is then found to be
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This is multiplied by its complex conjugate to produce the
expression for the intensity distribytion in this plane.
' As we envisage viewing through a slit parallel to the
wave fronts of the phase modulation, that is, parallel to the
Y¢ direction, the integral along this direction is also performed.

The resulting intensity distribution is

I(u) =l U(u)]g
" ; ~3 (u-1v)? V
= ——————{(EJﬁ(Aw)e cos[%(z/zr)(u—ﬂv)a— £0t]1)%
T W
~3(u-4v)?
+(ZJ ,(Ap)e sin[%(z/zr)(u—ﬁv)z—ﬁﬂt])el .

The Bessel functions are replaced by their small argument

approximations

Jo(8g) ~ 1-3(8p)?, T,(ap) ~ Bap)® I | wnere I ,= (-D)5, ;
£ -

and terms in Ap of order greater than 2 are discarded. The
outcome of this procedure is the following expression for the

intensity distribution in the front focal plane.



To _ue
T(u) = —{e [1-3(2p)?]

Jﬁ W
£ —(3v)®  —(u-3v)?
+ Ap € - [e cos[z/z v(u-3v)+0t]
—(u+dv)?
—-e cos[z/zr viu+dv)+ Qt] )
—(u-v)? —(u+v)?
+(300)® [e + e
-V =lu=v)?
+(3Ap)?® e [e cos[20t + 2z/zr v(u=v) ]
—(u+v)?
+ e cos[20t + 2z/z, v(u+v)]
- 2e cos[20t + 2z/z uv] ] }

When the phase disturbance is located at the beam waist, z = 0,
the spatial profile and the time dependence can be separated.
Figure 3 shows z = 0 spatial profiles of the leading terms

for four values of the parameter v .

3. Time Independent Terms 5

—u
The first time-independent term, Jo (Agw) e  without

approximation, describes the undeviated but slightly attenuated
transmitted beam. It has a gaussian profile with a half-width
Wf conjugate to the half-width Wo of the beam waist at the

back focal plane. The small attentuation can be understood

as the loss to the main beam of radiation that appears displaced
from it in the higher order terms, the most prominent of these
being the second time-independent term.

The latter is proportional to (3Aw)® and is accordingly

very much less intense than the undeviated beam. It is also
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independent of the axial location =z . When the refracting

medium is plasma,
1 2 e q 2 2 2 , 2
(380)° = 3 £~ A" 17 (Aan))" ,

which can be recognised as the Thomson scattering of a
gaussian beam from a monochromatic electron density wave.
The spatial profile of this term consists of two gaussian
maxima disposed symmetrically on either side of the origin,
centred at u = * v 'reSpectively, and each with the same width,
W., as the undeviated beam spot.

The equation u = v can readily be shown to be equivalent
to the Bragg relation, K.= 4m A™! sin 6/2, for small scattering
angle & . Moreover, if Wf is regarded as a measure of the

uncertainty in the exact position xg of the maxima, viz

: K.X F K A f
Ax. = W;, then from equation (2), K/AK = 27 A%, = 5= W,
= KWg = v . .That is to say, the parameter v can be seen

to be a measure of the resolution in wavenumber K , and is

essentially the K-resolution parameter called "r" in Holzhauer

and Massig (1978).

4. First Order Time Dependent Term

The term proportional to Ay oscillates at the frequency 0
of the phase wave and is accordingly easy to distinguish
experimentally from the time—independentrterms. .Unlike them,
it is also a function of axial position =z .

Fluctuations at the beam waist where z=0, have a profile

~(3v)®  —(u-3v)® —(u+iv)?
A cos Qt e [e i 1; sem L)

which is the difference of two gaussians centred at u = = 4v
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and is evidently antisymmetric with respect to the origin.

The profile maxima almost coincide with those of the
gaussians when Vv = 2 , and when vV approaches 0, the profile
maxima approach ¥1/42.  Thus the accurate location of these
maxima, for example by a process of curve fitting, permits the
wavenumber K to be determined to arbitrary accuracy, at least
in principle.

Figure 4 plots the strength of these maxima as a function
of v . They are most pronounced near v=1, that is, when the
wavelength of the phase disturbance is about three times the
beam Waist Spdt size. They diminish rapidly when v 1is much
larger or smaller than unity.

The antisymmetric and oscillatory character of this term,
as well as its dependence on the first power of Ag invites its
identification as a refraction or schlieren phenomenon. That is,
the antisymmetric oscillations could be interpreted as the result
of the phase wave passing across the radiation beam and deflecting
it to and fro, resulting in the oscillation of the spot in the
front focal plane of the lens as diagrammed in Figure 5.

Further insight into the nature of this first order term
is gained by noticing that it could have been generated by the
Thomson scattering terms

—(u-v)? —(u+v)?

(2a0p)%e : and (Lagp)°e

beating or heterodyning with the term describing the unperturbed
beam, e_u , which then plays the role of a local oscillator.

In fact, this heterodyne term, which appears spontaneously

in our analysis, is the one already familiar as "homodyne

detection" in Slusher and Surko (1980).

When dependence on axial position 2z of the phase disturbance

I



relative to the beam waist is retained in the first order time-
dependent term, the latter continues to describe the difference
of two gaussians, oscillating at frequency Q , but now out of
phase with a phase difference which depends directly on =z .
Accordingly, appropriate phase sensitive techniques should
allow signals originating local to a predetermined =z to be
discriminated and selectively measured.

. To emphasise and illustrate the z-dependent behaviour
of the first order time-dependent term, we separate it into

the sum of its odd and even parts:

-(3v)® -a® -A+2
I=Ape [e 7 cos(z/z_ vA_+Qt)-e cos(z/z vA_+0t)] ...(10)
= Ieven+ Iodd’ where
_ I(u)+I(-u)
even 5
_(%V)E _A+3 . 2
= Ap e [e sin z/z_ vA_ -e T sin z/z vA ] sin Qt
7 : wu i 11)
1 - Il - I(-u)
odd 5
-($v)® -A 2 ~ & =
= Ap e [e cos z/zr VA = B cos z/zr vA+] cos Qt
i il L)
where K, = u z iv .
Leven a0d IOdd can be constructed in a practical experiment

by adding and subtracting the positive and negative sides of
the real time recorded profile I(u,t). Curve fitting can
then be ilised to extract the values of 2 , v , @and Agp -

I = 0 when z = 0 , and varies rapidly as =z increases.

even

IOdd is sensitive to the direction of the phase wave in that

a change from K to -K alters IOdd to _Iodd'



The functions Ieven(u) and Iodd(u) are shown plotted
for v = 1.5 and a selection of values of z/zr ranging from
0 to 3.6 in Figure 6. The spatial frequency of these functions'
structures increases with z/zr and the precise profiles are
uniquely determined by the pair of parameters (z, V).
The intensities of Ie

and Io as opposed to their detailed

dd ’?

structure, depend on v and 4Ag , but not on =z .

ven

Sets of functions of this kind could serve as reference
curves for the analysis of profiles measured by detector arrays.
The measured data would be cross-correlated with the
calculated cﬁrves for a range of =z values, and the location
of a plasma disturbance would be indicated by a high value of
the cross-correlation coefficient. A strong maximum would
signal a highly localized disturbance, while a plateau would
correspond to a broad band of fluctuation. |

The axial resolgtion or "depth of focus" that could be
realized by this technique would not be limited to the Rayleigh
zone z_ , but would be determined ultimately by the number of
resolved elements and the experimental signal-to-noise ratio.
Such a correlation approach and its similarity to synthetic

aperture synthesis is discussed by Leith (1978).
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5. Second Order Time Dependent Term

_Because the second order time dependent term in equation (8)
is proportional to (Am)a and oscillates at 2}, twice the frequency
of the plasma disturbance, it is suggestive to identify it with
the shadowgraph effect ‘already familiar in plasma diagnostics.

It is well known that a dispersive medium, the second derivative
of whose index of refraction p is non-vanishing, behaves like a

lens with a focal length

i
T = L ,
Bl gy
dx®
L being the interaction length. For a medium with the

sinusoidal phase fluctuation we have assumed throughout, and

using _2nL (u-1)
A

we find fp. =5 Ap sin(Kx-Qt) .

The result of adding this fictitious lens to the real focusing
lens is to shift the effective position of the beam waist in

the medium relative to the real lens, thus moving the waist
outside away from the front focal plane, broadening the spot

in that plane, so reducing the central intensity, and increasing
the intensity far out in the wings. Onhe period of the sinusoidal
»disturbance in the medium crossing the optical éxis can be seen

to correspond to two periods of intensity change, which means

that the intensity oscillates at twice the frequency of the

phase wave.
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The size of the intensity oscillation produced in this way

can be shown Eo be

AT/I ~ $(z, fp_1)2 ~ (A@)®

while its distribution across the profile, given by the derivative
of the gaussian with respect to the spot size, 1is strikingly
similar to the symmetric profiles predicted for the second order
time-dependent term, shown in Figure 3 .

So the (Am)a dependence, the second harmonic frequency,
and the spot profile of this term are all consistent with its

interpretation as a generalised shadowgraph effect.

6. Experimental Verification

Figure 7 is a schematic of an experimental assembly in
which the conditions described in the foregoing theory were
satisfied as closely as possible. A HeNe laser beam was
focused to a waist having Wo = 10"% cm and monochromatic, plane,
ultrasonic waves at frequencies from 10° to 3 x 10° Hz were
launched transverse to the beam axis by a 1 inch piezoelectric
crystal in atmospheric air. The crystal could be translated
parallel to the beam from the waist to a point 40 cm distant,
thus covering four Rayleigh zohes, Z . being 9.9 cm . The
intensity profile in the front'.focal plane of a lens was
swept across a slit by means of a vibrating mirror and the
resulting photodiode signal was divided and fed to a pair of
lock—-in amplifiers refered to the frequency of the signal
generator that powered the piezoelectrid crystal, and mutually

separated in phase from each other by 90°.
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Traces made in the way described for various positions z/zr
of the transducer are displayed in Figure 8. The wave frequency
was 1 MHz, corresponding to a wavelength in air of 0.3 mm . The
left hand tracesrare the integratéd lock-in output for Ieven; the
right hand ones are Iodd' Comparison with Figure 6 demonstrates
that these experimental curves reproduce the corresponding computed
profiles in surprising detail. It can be seen that as the wvalue
of z/zr increases from 0 to 4 , the profile shapes alter dramatically.
The effect is particularly marked for Ie for z/zr betweert 0 and 1 3

ven

: is
even

over the same range the change in IOdd is only slights So I
the best indicator of the location of activity in the medium over
this range.

: Surko and Slusher (1980) remark that in their correlation
experiments, the failure of their homodyne signals to appfoach
zero at the centre of the laser beam profile is not fully understood.

Our analysis permits us to explain their discrepancy in terms of

plasma fluctuations located away from the laser beam waist.

7. Summary and Conclusions

We have discussed the transmission of a gaussian Beam
of radiation through a refractive medium, such as a plasma,
exclusively in terms of refraction and diffraction. The effect
of phase fluctuations upon the resulting intensity in the front
focal plane of a lens located -a focal length beybnd a beam waist
in the medium was investigated, and for simplicity of imnterpretation
attention was confined to a single sinusoidal mode of the
fluctuation travelling transverse to the beam direction.

We find that the lowest order members of an expansion
for the intensity profile in terms of phase shift Ap can be

identified with various well-known optical phenomena usﬁally
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thought of as independent. Thus, the second order time-
independent term describes scattered radiation satisfying the
Bragg condition (which arises naturally out of the theory) and
which can be seen to correspond to Thomson scattering when the
medium is plasma. The first order time-dependent term appears
to describe beam deflection or schlieren, but closer enquiry
reveals that it can equally-and more profitably be thought of
as spontaneous heterodyning of the scattered radiation with
the unperturbed part of the beam acting as local oscillator.

A second order time-dependent term, oscillating at twice the
frequenﬁy of the mode in the medium is evidently a generalisation
of the well-known shadowgraph effect.

Apart from the unperturbed continuous beam, the self-
heterodyning term is the most easily measured since ik &S
comparatively large, being proportional to the first power of
Ap , and readily discriminated from the unperturbed beam; since
it oscillates at the frequency { of the phase wave in the medium.

One of its most striking features is the sensitivity of
its profile to the spatial location along the beam of the
wave in the medium. This profile consists of two gaussian
maxima spaced symmetrically on either side of the axis,
oscillating out of phase with eéch other at the wave frequency { .
The location along the beam of the wave in the medium manifests
itself in the phase difference between the two oscillatipg gaussians,
which reaches its maximum of 180° when the wave is at the beam
waist. Accordingly, appropriate phase sensitive detection
would focus on a particular location someﬁhere along the beam,

and would record preferentially fluctuations from that location
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and discriminate against all others. The method is therefore
inherently capable of locating fluctuations without recourse
to crossed beams. Indeed, the present analysis suggests that
crossed beam dafa is subject to éontamination by fluctuations
induced by long wavelength turbulence on the . local oscillator
beam alone.

The depth of focus, or along-the-beam resolution that
could be realized in practice is not limited to the Rayleigh
zone z but must be determined ultimately only by the
statistical noise on real observations.

An experiment in which the conditions prescribed by our
theory have been met as closely as possible has been assembled
usipg a HeNe laser and near monochromatic ultrasound generated
by a small piezoelectric transducer in atmospheric air. The
profile of the self-heterodyne term has been analysed into even
and odd parts in order to reveal phase information, and the
detailed form of these has been measured for a range of
fluctuation wavelengths and positions along the laser beam.
Predictions of the thgory have been verified in every particular
over the range of conditions we were able to examine.

Our technique makes it possible to investigate turbulence
wavelengths longer than any that could be studied by conventional
scattering. It may accordingly be of particular importance in
large tokamaks like JET where- for example trappéd ion mode
instabilities having transverse wavelength 6-12 cm " may be

inaccessible by any other means.
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Fig.1 Geometry for Fresnel Diffraction calculation. A lens, focal length f,
is located in the xg, yg plane. Radiation proceeds from left to right along the z-axis.
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Fig.2 Experimental arrangement under analysis. A gaussian beam of radiation, beam waist W, at the back
focal plane of a lens, focal length f, proceeds from left to right and encounters a monochromatic phase
wave, width L, wavelength A, a distance z to the right of the beam waist. The intensity distribution in the
front focal plane is calculated.
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terms to second order in Ay, Phase disturbance located in the z=0 plane. The self-] heterodyne term arises

from the beating of the Thomson scattered and the carrier terms.
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Fig.5 Schlieren interpretation of first order time-dependent term.
Gaussian spot in front focal plane of lens shifted slightly to left and to
right by simple refraction as phase wave moves across beam in back
focal plane, leads to antisymmetric intensity changes in the wings.
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parative sensitivity of I, to z/z_ is apparent.

Fig.6 The function I, (u)and I 44 (u) forv=1.5
wave relative to the lens back focal plane. The com

CLM-P655



He Ne

CLM-P655

Signal
generator

Signal
generator

Osc.

mirror

Photodiode

o+—¢
Lock-in
—0 e4——-o0
C- [ ]
o——
90Q°
@

Lock-in

Fig.7 Experimental assembly to measure L., and I 44.
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Fig.8 Oscilloscope traces made with the experimental assembly shown in Figure 7. Shown in each case is
the diode signal after analysis into I, and I, 44 by the lock-in amplifiers.
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