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ABSTRACT

Matrix inversion and least squares fitting have been
used to recover two-dimensional distribution functions from
a small number of line integrals taken along chords across
them. A self-consistent optimization procedure, free from
reliance on comparison with a trial source function, for
optimizing the configuration of these chords is described
and used to demonstrate that an asymmetric arrangement
usually leads to greater reconstruction accuracy than a
regular array.

Smoothing is incorporated by imposing auxiliary conditions
relating to the second derivative V°f of the source function f y
and its effect on reconstruction accuracy and resclution is
investigated.

These methods are applied to the ten-channel far-infrared
interferometer being prepared for use on JET. Electron density
contour shapes can be identified rather sensitively if the

source function contours belong to a predetermined family.
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1. INTRODUCTION

Many plasma diagnostics measure line integrals of quantities
such as electron density, Faraday rotation, electron cyclotron
emission, visible, ultra-violet, and x-ray emission. In a plasma
whose cross-section is circularly symmetric, the two dimensional
distribution corresponding to these line integral projections is
routinely recovered by the use of the Abel transform [1]. For
more complicated cross-sections having higher order symmetry or
no symmetry at all, such as the ellipse and the quasi-D shapes
expected in the next generation of experiments on magnetically
confined plasma (JET,TFTR) the local quantities 'can better be
reconstituted by methods of computerised tomography [2].

These methods have already been extensively exploited in
medical radiography [3] and in radio astronomy [4], but their
potential in fusion research diagnostics is only beginning to be
appreciated [5].

The general problem can be formulated by reference to Figure 1,
where f(x,y) is a two-dimensional distribution of some property
in a plasma. Let

h=-x sin6 + y cos®
be a straight line whose perpendicular distance from the origin
is h , 6 being the angle between the 1line and the x-axis.

The integral along this line is

(=]
I(e,h) = f sf(x,y) 8(-x sin® + y cos® - h) dx dy "
@
8( ) being the Dirac d-function. The problem is to invert the
integral to obtain an explicit expression for f(x,y), given I(e,h).
The solution to this problem was first found and its uniqueness
demonstrated by J Radon in 1917 [6]. A M Cormack analysed the

problem in terms of an expansion in circular harmonics [7], giving
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integral equations analogous to the Abel equation. Bracewell [4]
showed that line integrals of the above type are related to the
Fourier transform of f(x,y), and by Fourier techniques deduced

the inversion

B F
1 2

I(h,8) = S(k,8) = S(kx,ky) - f(x,y) w5 M)

polar cartesian

where F1 and F2 mean single and double Fourier transforms

respectively.

Williamson and Clarke [8] and others extended the analysis
to three dimensions, and further advances have now been made by
many investigators, e.g. [9].

The problem addressed by computerised tomography is the
identification of a suitable numerical technique corresponding
to the above sort of analytical inversion, and a review of
techniques in current use in radiology is provided by Budinger
and Gullberg [2]. The plasma diagnostics problem differs from
the radiological one in two respects. In the first place, in
contrast, say, to the EMI scanner, I(6,h) may be known at only
a few points, possibly less than 100, and perhaps even less
than 10, so methods like filtered back projection may be quite
inappropriate. The second difference is that the plasma often
does present some symmetry, and knowledge of that can greatly
simplify the reconstruction.

In this paper, Section 2 describes our basic method, and
following Sections discuss the choice of the best experimental
configuration, and the questions of smoothing and resolution.
In Section 6 we apply our results to an example with very few

lines of sight, submillimetre interferometry of magnetically
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confined plasma [10], making explicit use of the symmetry. Section 7

considers the optimal design of an experiment on a square mesh, and

Section 8 deals with an example of a larger number of sight lines

as in bolometry or spectroscopy.

2y THE PROBLEM AND ITS SOLUTION

The distinctive feature of the problem in plasma physics
experiments is the restriction to a small number of lines of sight,
and the principal question is how to optimise their use. In
the absence of any further information, one would have to divide
the plasma cross-section into an array of J pixels,

Figure 2(a), and the signals observed along L lines of sight

traversing the array would be

T = B M £ - nie b

where the matrix elements Aﬂj represent the extent that the source
function fj in pixel j contributes to the signal on line £ .
Straightforward matrix inversion then allows us to find fj. The
number of resolved pixels would be at most the number of lines
of sight, L ,and because L is small, little plasma structure
would be revealed by such a procedure.

We have therefore assumed that the shape of the contours
of the distribution under investigation (say density) is known,
for instance because they coincide with magnetic surface contours.
The pixels might then be defined as lying between pairs of such
contours, Figure 2(b).

A particular choice of J pixels and of L lines of sight,
each of the latter determined by its co-ordinates (8,h), allows
the components of the L x J matrix Aﬂj specific to that choice

to be evaluated. At its simplest, Azj could be taken to be the
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length of the line £ inside the pixel J. The more accurate
definition for Aﬂj actually adopted in our computation is discussed
in the Appendix.

In general the number of lines of sight L is different
from the number of pixels J , so a least squares fitting [11,14]

is used. This means that the quantity

2
- - & _z
X ) wm£(IE { Aﬂjfj)(Im j Amjfj) ... (4)

. P = =1 - - .

is minimised. Here, ng:[covar(Im’Iﬂ)] is a weighting
function. In what follows, for simplicity of presentation,

we will regard actual measurements as statistically independent,

so the weighting matrix w 1is taken to be diagonal with zero

1 _

off-axis elements, and Wyy = ey el W,
L

Before matrix inversion can be performed, a square symmetric,
positive definite matrix Q is constructed from the product of

matrix A and its transpose AT:

Q.. = £ AT, Boge s e s k57
jk

If the number of lines of sight L 1is fewer than the
number of pixels J, viz L<J , then det Q = 0 , and matrix
inversion is impossible. But for L > J, Q can be inverted

and the source functicn fj calculated from

f. = X

ZQ
J m,£ k

me] Ly = z Mjﬂ I, . eeo(6)

-1 T
.. A
jk " km )

-1 ,T . . .
AT w characterises a particular choice

The matrix M = Q
of lines of sight and pixels, and it is stored and used to compute
f.'s from the observed I,'s measured in this particular

configuration. The accuracy of the reconstruction is given

=1
by the covar(fj,fk) = ij §



3. OPTIMISING THE CONFIGURATION OF LINES OF SIGHT

(a) For guidance in optimising the configuration of lines of
sight, we have invented a quantitative measure of the freedom
from redundancy, or "usefulness", u,, of any line of sight £ .
The configuration can be varied and u, calculated for all the
lines for each variation. An optimum configuration is that for
which the minimum u, is maximised.

The concept of "usefulness" has emerged from the following
considerations. Suppose a measurement were performed on all
lines of sight except the line 4=1 . It might prove possible
to calculate a value for the signal on %=1 via equations 6 and 3 ,
from the measured values of the signals on all the other lines of
Blahlt £22,8 0 celi « This calculated value for the signal on #4=1 ,
gall i& If , Would have an associated variance, call it
var(If) = wf , Which would be calculated from the measured
variances on Ig,Ia... L o

L
Now suppose the signal on the line of sight £4=1 is actually

1

measured, resulting in I and var(Il) 1/ w . Then the best
estimate for the value to be associated with the line £4=1 must
be the mean of the measured value I1 and its calculated counter-—

part If , weighted according to their respective variances, viz

o
e w I +w'I
I~ = 1 "% 1l 1
1
=
W+ W
1 1
1
; ; ey = e o
and having a variance var(Il) ¥ == where w' = w + Ww® .
Wl

If I is only weakly dependent on I ,I_,...I., then

var(If) will be large; the best estimate I? ~ I , and wf ~o .
Since the signal on #=1 can be calculated only inadequately from

the measured signals on 4 = 2, 3, ..., L, the measured signal
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I1 on #4=1 contributes mainly non-redundant information to the

best estimate If , and it can therefore be regarded as a "useful"

measurement.

On the other hand, if the calculated value If is a good

estimate for I , then the var (IS) will be small, meaning

e
1

can now be calculated very satisfactorily from the measured

~ 1%, and var (If) ~ var (I?) . Since the signal on 4=1

signals on I2 IoseessIy, the measured signal on 4=1 contributes
mainly redundant information to the best estimate If y and ik
can therefore be thought of as a "not useful" measurement.

As a quantitative measure of usefulness u, to be attached
to a particular line of sight, we have accordingly adopted the
normalised variance

- e
u, = var(Iz) W,

= Z A,,. s
s 43 covar(fj,fk) Ay vy -
?

Q7* af

z
Bos Qg BPea Yy -

Jsk

The values of the normalised variance u, calculated according
to the foregoing recipe from the basic matrix A of the config-
uration lie in the range 0 to 1. If u, <1, it means that
the measurement £ is partly redundant in that the information
it conveys is already partly available from the rest of the lines
of sight. If u, = 1, its information is completely fresh.

By varying the values of 6 and h defining a line, its usefulness
can be varied, and one seeks that configuration for which the
minimum value of u, is maximised.

An important property of the usefulness parameter u, is

that its sum over all the lines of sight is invariant (but see
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Section 4 below) and equal to J , the number of pixels.

e - T -1 T
U=Zu, =3[ZaA, QA ,Jw,= ZQi[Zal, w,a,.]
) £ )Z‘j,k EJ Jk k£ £ j,k Jk P) Kk y/ flJ
= BT E = BT gl ouo (B)
] k ik )
j,k j y 33

(b) An alternative guide to the optimum configuration is
furnished by the sum of the errors on the fj's resulting

from their reconstruction from the measured set of Iﬁ's and

their variances. This quantity is the trace of the matrix Q ':
T= I var(f,) = Z Q% s wie O
j J j JJ

and the optimum configuration would be identified as that for

which T is a minimum.

In contrast to the method advocated by Frieder and
Herman [15] who measure the success of their reconstruction
by comparing with the original source distribution, our
approach relies entirely on self-consistency of the data,

and makes no appeal to any particular test distribution.

4, SMOOTHING

Data is sparse and it behoves us to utilize all the
information at our disposal in attempting to deduce the source
function f . And we do indeed know more about f than what
is conveyed by a set of measurements along the lines of sight.
For example, we know the plasma is inside and not outside the
vessel; we know it has zero density at some boundary, and that
it varies fairly smoothly within the boundary. It would be

unnecessarily self-denying to ignore this information in
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reconstructing f , and we therefore choose to adopt a Bayesian
approach and introduce this a priori knowledge through a technique
of smoothing the measured data.

Without smoothing, the set of equations that are to be
solved for the fj's would be ill-conditioned, all the Azj's
being positive, and the resulting uncertainties attached to the
f.'s would actually turn out to be larger than one might have
expected in view of the accuracy of the measurements on the
chords.

The errors on the f.'s could be reduced by decreasing the
number of pixels relative to the number of chords so that we
would deal in effect with an overdetermined set. For example,
Sweeney and Vest [14] with 102 sight lines retained only 36 of
their extended basis functions (their analogue to our pixels)
to diminish their réconstruction eFror.

Such a strategy is ruled out for us by our aim of being
able to deal with an interferometer having only 10 sight lines.
Instead, we choose to reduce reconstruction errors by introducing
smoothing, which has the effect of relaxing the restriction that
the number of pixels must be less than or equal to the number
of lines of sight. This means that a more accurate calculation
of the A,. coefficients is possible, and also the optimization
of the location of the chords is not artificially dependent on

the exact arrangement of the pixels.



One way to introduce smoothing is to impose auxiliary
conditions relating to the second derivative V°f of the source
function. Setting V°f = 0 would imply f wuniformly zero,
while V®f = constant implies some knowledge of the absolute
magnitude of f . However, the choice of V?f = - K°f gives a
"consistent" result when the constant of proportionality, -K° ,
is the smallest eigenvalue of the operator V°. By this we mean
that if a measurement were made on only one line of sight, we
could expect to deduce only a single datum from it, namely a
scaling factor, while the shape of the distribution f would be
entirely determined by the smoothing conditions. For instance,
in the case of circularly symmetric pixels, the profile would be
the zero order Bessel function Jo(Kr) with its first zero at
the boundary.

Smoothing is incorporated into the calculation-by extending
the set of equations (3), by adding further members of the form

6 =8% (T ¥¥) fj =gz B3 £ e« C10Y

where the arbitrary constant B determines the amount of smoothing.

We now do the least squares fit to the new extended set of

equations

..‘(11)



Hitherto the usefulness parameter was attached to each line
of sight, and it was shown that the sum of wu, over all lines
of sight resulted in a constant value J , the number of pixels
into which the source function is divided. A natural extension
of the idea of usefulness to embrace smoothing is secured by
attaching the usefulness parameter not so much to the physical
line of sight as to the individual equations in the set (11) .
The first L of these indeed do stand for lines of sight, but the
rest are auxiliary smoothing equations. By going through an
argument analogous to that leading to equation (8), it is readily
shown that the sum of the extended usefulness parameters, summed
over not only lines of sight but all the equations in set (11),
remain equal to J , the number of pixels. Thus in the presence
of smoothing, the usefulness in its extended definition, summed
over lines of sight only, must be less than J .

So smoothing diminishes the usefulness of the lines of
sight, thus too much smoothing is undesirable because in the
limit pf large B ; the fj's will have been reconstructed almost
wholly on the basis of artificial smoothing. At the same time,

non-zero P can be seen to reduce the uncertainty of the fj's .

m

That is, T = Z var(fj) is reduced.

When B~ 0 , with L = J , all lines of sight are nearly
as useful as they are ever going to be, and the total usefulness
is saturating, then only T can be used as a guide to optimising

the configuration. When there are more lines than pixels

(L > J) or when we have smoothing (B > 0) there is scope for
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optimising the configuration using the minimum usefulness.
In practice we have usually found that minimising T i85 the
more effective procedure. Over a sequence of a few tens of
attempts to optimise a design, a better minimum u, was achieved
by working with T , than by trying to increase the minimum u,
directly. Increasing the minimum u, seems as likely to lead
to a higher as to a lower value of T, whereas when minimising T
the minimum u, seems either to increase or remains more or less
unchanged, but it seems never to decrease much. This: effect
may result from concentrating on one line, that for which u, is
minimum, when trying to increase the minimum u, directly, even
though a change elsewhere, better reflected in the value of T,
can have overall a more beneficial effect.

We are left with the question of the best level for the
smoothing, and one possible criterion is suggested by a

consideration of resolution.

e RESOLUTION

Each measurement along line of sight £ results in a definite
datum I, , and I, is the sum of positive contributions from all
the pixels through which the line £ passes. If in reconstructing
the f.'s one decides that the contribution to I, from one pixel
should be larger, say, then the contribution to I, from its
neighbour must ipso facto be smaller: there is a natural negative

covariance Q.. between adjacent pixels j and k .

jk

Incorporating smoothing tends to compensate for these negative
covariances and too much smcocothing results in the QE;'S becoming
positive, which can be regarded as unnatural. This amounts to

saying that smoothing has smeared out the pixels to such a degree

that adjacent ones are no longer distinct, and the resolution
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has thereby been diminished. We therefore increase smoothing
only until QE; = 0 , at which point adjacent pixels j and k <cdn
be said to be marginally resolved.

The meaning to be attached to the phrase "resolution of
adjacent pixels" is clear when the pixels form a nested set
based on magnetic field contours. But the concept demands
further interpretation in the case of a pixel array in two
dimensions, such as a square array. The idea here is illustrated
by reference to Figure 3(a), which shows dots at the centre of
each pixel in a square array of 25 elements, traversed by a small
number ,6, of randomly placed lines of sight. In Figure 3(b)
the pixel centres are joined by lines, solid where the pair of

pixels exhibit positive correlation (Q71>0) and dotted when they

jk
exhibit negative (Q3;<O). Though it need not have turned out

so, in this particular example, there is a solid line route
directly or indirectly,between every pair of pixels. Even

though there exist some negative correlations shown by the

dotted lines, the set of all pixels constitutes a single,
unresolved whole. On the scale of the pixel separation

distance, then, this array shows no resolution.

We next increase the inspection scale length by discarding
alternate pixels, as has been done in Figure 3(c), where lines
joining the surviving pixels are now diagonal. The values of
QE; are again examined for all pairs, and the results shown by
the lines are that three pixels, being negatively correlated
with all their neighbours, are individually resolved, and a fourth
group comprising the ten remaining pixels 1s one unresclved smear.
This group of ten is processed still further with the result

shown in Figure 3(d). In fact no further pixels have been

resolved at this stage. Further discarding of alternate pixels
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and recalculating of QEL'S leads, through Figure 3 (e) to the
final result Figure 3(f) where at last five pixels have been
completely resolved from each other. The lines in the last
Figure are a rough delineation of the boundaries of each resolved
region and show the pattern of resolved areas characteristic of
the particular configuration of six lines of sight with which

we started. Superimposing Figure 3(a) upon 3(f) shows that the
lines of sight lie near the boundaries of the resolved regions.
As no line of sight happened to traverse the lower right hand
quadrant, it is perhaps not surprising that this whole area

remained unresolved.

6.v APPLICATION OF THE METHOD TO TOKAMAK INTERFEROMETRY

(a) Interferometry at 195 pm wavelength is designed to measure
the electron density distribution in the JET tokamak where densities
in the neighbourhood of 10*“cm™” are anticipated. Engineering
constraints impose severe limitations on the number and location
of possible lines of sight, and we investigated configurations
consisting of seven vertical and three oblique lines arranged
to fit into the ports available. The exact positions of the
vertical lines of sight were fixed, but limited freedom, particularly
with respect to angle was allowed to the oblique lines, which
will be reflected back on themselves by mirrors, and thus will
traverse the plasma twice.

The electron density distribution was assumed to possess
the same symmetry as the magnetic contours, which in JET can
vary through ellipses and circles to D-shapes, as described by
Green et al [12]. The pixels were accordingly chosen to be a
set of nested annuli centred on magnetic contour lines. The

particular choice of contours used throughout this investigation
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were those described in the Appendix as JET standard. They are
illustrated in Figure 4.

Twenty pixels were chosen, first because the more pixels,
the less their choice influences the configuration of lines of
sight, and second because the spatial resolution.is more readily
determined with many pixels. The pixels were spaced according
to ¥ (see Appendix) rather than for instance J/¥ or we, and this
gave them approximately egual areas. It also meant they were
more closely spaced near the plasma periphery than at the centre,
and this has the effect of making the experiment particularly

sensitive to steep density gradients near the vessel walls.

The positions of the three oblique lines were varied,
consistent with the engineering constraints, and minimising the
trace T , the optimum configuration was identified as

e =  44° 39° 30°

Th 1.79 m 1.04 m 1.00 m.

This configuration is displayed in Figure 4.

(b) The optimisation process used involved twenty smoothing
equations, one for each pixel, so values of T, and indeed, of
the total usefulness U as well, depended upon the cholce of the
smoothing parameter 8 . Figure 5 shows the rms standard deviation
of the reconstructed fj's for the optimum configuration, for an
earlier proposal, and for the seven vertical beams alone. The
ordinate is normalised so that it gives the factor by which the
error in the fj's exceeds that on the measured quantities Iﬁ.
Although the search for the optimum line of sight configuration
was performed at the specific value of B = 0.002, the Figure

demonstrates the same configuration is indeed optimum in the

sense that T is the best choice for all values of B . These
curves also give some guidance as to the best choice of B,
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since they show, for example, that for B < 0.001 y-the enror
on the fj's increases very rapidly.

Figure 6 shows the total usefulness U for the lines of
sight for the same configurations. As B becomes vanishingly
small U is expected to approach L, the number of-lines of sight.
That is U approaches 10 when L = 10, and 7 when L = 7 .

The number of resolved pixels as a function of smoothing
parameter B is shown in Figure 7 for each of the three line of
sight configurations under consideration. When smoothing is
virtually absent we find excellent resolutieon, but at the
expense of ridiculously large errors on the fj's, since the
standard deviation is proportional to B~ for small B . On the
other hand, if so much smoothing is introduced that the standard
deviation falls below unity, then the experimental measurements
are being effectively ignored and the resolution reflects this
by becoming unacceptably poor. In the case of the optimum JET
configuration, we find a resolution of 10 , just equal to the
number of lines of sight, when the standard deviation is around

two to three, which is about what one might expect.

In the earlier configuration referred to above, the
resolution approaches L only when the standard deviation
is already as high as 8 . For standard deviation in the region
of 2 to 3, the number of resolved pixels is only 8 . This is
nevertheless better than the configuration of seven vertical
lines of sight alone, when, for the same standard deviation,
only six pixels are resolved.
(c¢) All these calculations have of course been performed for
a specific set of pixels, namely, those illustrated in Figure 4.
The set of contours to which the pixels conform is determined by

a particular choice of the parameters R1 R3 Rm and Zm, which
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constitute the JET standard set, for which the values are given
in the Appendix. If a set of pixels distributed differently
across these same contours had been chosen, then the optimum
configuration of lines of sight might well have been different
from the one we have identified. If in addition the contour-
determining parameters had also been varied, an even more dramatic
change in the optimum configuration of lines of sight might have
resulted, and this raises the question as to whether the config-
uration which has been designed to minimise the error for a
particular choice of pixels could be used to discriminate between

pixel shapes, and so determine the shape of the plasma contours.

To investigate this possibility We generated measurements Iﬂ

by simulating a density distribution conforming to JET standard
contours. The Iﬂ's were then used to reconstruct the source

function using different pixel sets corresponding to different

values for the position of Rm. Standard values of R1 Ra and Zm
were retained throughout. The sum of the residuals on the I,'s,
Xa, was computed and found to exhibit a well defined minimum at

the simulated source function's actual value of Rm, as shown by
the open circles in Figure 8.

The error bars attached to the points in this Figure stem
from introducing a random error of realistic size (1% of the
largest signal) in the data I,. When reconstruction is performed
on a set of pixels that conforms to the correct contours, the
value of X°® differs from zero only by the average value of this
random noise. But if a fit were attempted to the wrong contours,
¥?% would exhibit an additional systematic component reflecting
the discrepancy, as well as the noise. Figure 8 shows that this

systematic part and the noise are the same size when ARm is as small
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gga 2 cm, S0 In this case 1t ‘gppedrs that the correctrcontolur

set can be identified to within a surprisingly narrow margin.

In a second trial, the contours of the simulated density
distribution were corrugated, as shown in Figure 9, and so not
a member of the family of possible JET shapes. Proceeding as
before, fj's were reconstructed for JET contour sets differing
only in their wvalue of Rm. This time the values found for xa
proved to be much larger than previously, and although they did
display a minimum, it was much less well defined than before
(closed circles in Figure 8).

That the values of xa are now large everywhere means that none
of the test contour sets bears much resemblance to the simulated
contours, but the set for which xa is minimum is the closest
approximation that can be found by varying Rm alone. Even so,
this best wvalue of RTn is defined to about I 4 cm. As the JET
contours are defined by four parameters, a complete search would
entail minimising x° in four dimensions.

(d) Even in the configuration of lines of sight that we have
described as the optimum, not all the lines are equally useful,

the values of the usefulness parameter ranging from 18% to 96%.

We therefore enquired how many of the ten lines were indeed strictly
necessary, and began by removing the least useful, which was the
vertical line nearest to the horizontal viewing port. Reconstructio
based on the remalning nine lines proved to be virtually indistinguis
able from those based on ten, the standard deviation having increased
by only 0.3% and the total usefulness of the lines having decreased
from 6.99 to 6.97 . We then identified the least useful of the

nine lines, whose usefulness was 49%, removed it, and considered
reconstructions based on only eight, again producing very little

change. This process was repeated until only one 1line survived,
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and the resulting line of sight configurations at the various stages
is shown in Figure 10. In Figure 11, we have plotted the total
usefulness and the standard deviations characterising the config-
urations at each stage of the process. It is apparent that the
performance of these configurations has begun to deteriorate when
seven lines remain.

(e) So far our configurations of sight lines have been optimised
for what we have called the standard JET contours, and for twenty
pixels distributed in a particular way across these contours (see
Appendix). If the pixel distribution across the contours is
changed, though without altering the contours themselves, we
enquire whether the line of sight configuration is still the
cptimum.

The original choice of pixels had what would have been equal
areas i1if the pixels had been circles, and we now change to the
analogue of equal spacing and recompute reconstructions. We
compare the resulting standard deviations with those found originally
in the accompanying TABLE, for the earlier, and for our optimum line of
sight configurations.

The standard deviations for the early configuration are
substantially unchanged by the alteration of the pixel system,
meaning that it performs equally well in either system. By
contrast, our optimum configuration is 30% more effective in the
"equal area" system, but about 30% worse in the "equal spacing" one.
So we looked for an alternative optimum configuration in the
"equal spacing" pixel system, and found the following set of
oblique lines

* 9 13° 9° 37°
T h 0 0.5 0.98 metres

and the TABLE indicates that the standard deviation of this

= B



configuration is 8.82 as opposed to the early standard deviation
of 4.48 in the system for which the former is ocptimised. In. the
equal areas" system, this alternative proves to be marginally
superior to the early configuration, but significantly inferior
to the optimum previously identified. Its overall performance
over the two pixel systems seems to be an improvement on the

optimum we had before.

7o Optimising Line-of-Sight Configurations on a Square Array

Hitherto, we have allowed our few lines of sight to be
augmented by knowledge of the symmetry of the two dimensional
source function whose projections are being measured. We now
consider the case where no a priori knowledge of symmetry is
assumed. A simple square array of pixels is chosen. The methods
already developed are applied to a 3 x 3 square array and used to
find the optimum configuration of nine lines of sight.

To begin with, three vertical and three horizontal lines
were placed through the pixel centres. The three remaining lines
were set at 45° and spaced apart by the same distance as those
of the other groups of three, as shown in Figure 12(a). The
standard deviation of the resulting reconstruction turned out to
be very large compared to the error assumed on the measurements,
viz 8.9 times larger. We next optimised the locations of the
three oblique lines, holding the vertical and horizontal sets
fixed. The result of this exercise was the almost symmetrical
pattern shown in Figure 12(b). This time, the standard deviation
of the reconstruction was improved to 6.4 , still a very large
uncertainty.

Finally we optimised allowing all the lines to vary their

positions. The resulting grossly irregular pattern shown in
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Figure 12(c) proved to have a standard deviation of only 2.7 ,

an astonishing improvement on the symmetric pattern of Figure 12(a),
which, though it turns out to perform very poorly, is one's
intuitive first choice.

That symmetric line-of-sight patterns are often rather poor
experimental design can be further illustrated by the following
simple example. Suppose all horizontal, vertical, and diagonal
lines on a 3x3 square array happened to sum to the same number.
Then the underlying distribution might be uniform, as in (a)

below, or it could be a "magic square" as in (b). The addition

of one more sight line grazing one corner, making nine in all,
would still fail to determine the distribution uniquely, since
both (b) and its mirror image in a diagonal would satisfy the

equations, as indeed, would square (c) too.

(a) (b) (e )

15 15 15 18 . 24 18 11 16
15 15 15 21 15 9 13 15 17
15 15 15 6 27 12 14 19 1.2

Even if one more line-of-sight were added (now a total
of ten) to graze the opposite corner, the data would even then
be inadequate. So here it is impossible to deduce the nine
elements of a 3x3 sguare array from data measured on ten
symmetrically arranged sight lines. One must resort to an

asymmetric configuration to measure even such a simple distribution.
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8. Many Lines of Sight

As a final exercise, we increased the number of lines of
sight to 30 , disposed in a configuration consisting of six fans
of five beams each, as shown in Figure 13. No assumptions about
the contours of the source distribution are made, except that it
exhibits symmetry about the horizontal plane. We accordingly
adopted a square array of independent pixels, 25 in number, bounded
by the JET vessel wall.

A simulated source function possessing the contours of the
standard JET plasma, and featuring a hollow centre was constructed,
and values L, of observed data on the lines of sight were calculated.
From these, the source function was reconstructed, resulting in
the distribution shown in Figure 14.

Here, one can see a clearly resolved central minimum, even
though the reconstruction standard deviation proves to be very
large, namely 10 . To judge the quality of the reconstruction,
we compare its contours with those of a standard -JET. In part-
icular, the reconstruction mirrors the close packing of JET contours
at the outer edge and their wide spacing towards the torus centre.

In view of the suspicion with which we have learned to regard
comparatively symmetric arrays of 1lines of sight during the course
of this investigation, we anticipate a considerable improvement
could be brought about by optimising the present configuration

in the way we have already discussed at length.

_21_.



9. Conclusions

Conventional matrix inversion has been applied to the problem
of recovery of two-dimensional distribution functions from their
one-dimensional projections in cases, exemplified by multichannel
interferometry, where a few and sometimes only one point at each
of a small number of projection angles is measured.

A least squares technique has proved powerful for analysing
data expected in such experiments, whose efficiency can be
expressed either in terms of the accuracy of reconstruction of the
source function, or the freedom from redundancy (usefulness) of
the observation channels. Both criteria have been used to
optimise the design of experiments, and an optimum design has
been shown to increase reconstruction accuracy several fold.

We find that the performance of an asymmetric arrangement of
lines of sight is always superior to that of a regular array.

Reconstruction is improved by the judicious application
of smoothing. The degree to which smoothing should be applied
was investigated in numerical experiments where the effect of
smoothing on reconstruction accuracy, on data channel usefulness,
and especially on the resolution, were examined. We find that
reconstruction error can almost diverge if too little smoothing
is used. Our definition of resolution is based on statistical
correlations in the source density, and we judge that smoothing,
should be increased until the natural negative correlation between
adjacent pixels just vanishes.

The methods we developed were applied to the ten channel
far infrared laser interferometer being prepared for the JET
tokamak. Within the engineering constraints, it proved possible
to identify an optimum experimental configuration by minimising

reconstruction error. We find that contour shape can be identified
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rather sensitively if the source density conforms to a contour set
which is a member of a predetermined family. It is also possible
to determine when the contours are not a member of such a family,
even though then, the contours cannot be further defined.

We demonstrate that it is possible to detect contours with
no a priori knowledge when more sight lines exist, by recovering
a hollow-centred distribution, and reconstructing a recognizable
approximation to a set of originally assumed contours, in spite
of using a badly designed, i.e. symmetric, configuration of 30
channels and a square array of picture elements.

A FORTRAN programme [13] embodying our techniques for designing

experiments and analysing data stemming from them has been prepared.
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TABULE

Line-of-Sight
Configuration Early Optimum Alternative
"Baual Area” 4.26 3.13 4.16
Pixels
"Equal Spacing"
g 4,48 6.01 3.82
Pixels

Numbers in the TABLE are standard deviations.
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APPENDTIX

Calculation of the transfer matrix A

The nested pixels are defined by a function ¥(x,y) which
varies from zero at a point within the plasma to unity at its
edge. For sources with circular symmetry, ¥ would be just
x3+y2, and for JET, ¥ is given by [12]

2 2
g,°- 28 & + E_

Vo= (878 )%+ (n/m )7 = .o s (A1)

2

g2
_ .2 2
where E =R —R0 = x(x+2Ro)
E =R® R® = x (x +2R)
m m o m m 0
- 2 2
ga = R2 -R = xa(xa + ZRO)
"m T Zm T ¥Yn

R?=2(R?R?),
o] 1 2

Fgi JEL, R0= 3.213 metres
B.= 4,71 "
1
R = 4.21 i
=2
R = 2.61 u
m
7 = 2.10 " .
m

Both these choices for ¥ give pixels of roughly equal area, but
the spacings can be varied, for instance to equal steps in radius
by replacing ¥ by 4V , or to closer spacing near the edge by
substituting ye. The centre line of pixel j is defined as

the contour v = (j-1)/J , so that the (J+1)th pixel (at which

the distribution equals zero) would be centred on the plasma

boundary.



At a point between the pixel centre lines j and j+1, the
source intensity is cobtained by interpolating between fj and fj+1‘
Spline fitting was not used because its "action at a distance"
would allow a measurement in the outer region to imply something
about the intensity in the (possibly unobserved) interior. In

order to deal logically with the region near the origin (pixel 1),

the interpolation was made linear in v® rather than in V¥

g3y . ®
—fj) — eeo (A2)

2 2 e
Vi1 7Y

fly) = fj+(fj+,l

Each row in matrix A is obtained by integrating along the

line-of-sight, each step contributing to two elements Az. and A, .

J i+l
according to the proportions indicated by equation (A2), i.e.
Aﬂj= S glvix,y), jl ds * ese(A3)
2,2 . 2
where glv,j] = N - £]-2) for j-2 < J V¥ < j-1
23-3
. 2 2,2
4 - d ¥ for j=1 < J ¥ < j o 5 Gl
251
=0 for J V¥ > j

or J Yy < j=2

When a rectangular mesh of pixels is used, the simplest
procedure is to evaluate the length of the line-of-sight in
each (constant density) pixel. Once again, a smoother result
can be obtained by interpclation. The source function is taken
to be fj at mesh point j and the density between pixels is
calculated by bilinear interpolation. Working relative to the
centre of one pixel in units of the mesh interval, its influence

at point (x,y) is (1-|x])(1-]y]) out as far as the next row and
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column of the mesh, x = ki dig yr= A | , beyond which its influence
is zero.

The calculation of matrix A proceeds by splitting the line-
of-sight into segments obtained by cutting along the rows and columns
of the mesh. Each segment gives a contribution to each of the
elements in A corresponding to the four pixels that surround it.

To avoid problems with lines-of-sight that are almost parallel to
the x and y axes, the integration is performed with respect to s,
the distance along the line. The perpendicular distance from the
centre of the pixel to the line is p , and s is measured from

this perpendicular. Contributions to Aﬂj of the form

SE
{ i-lxp -]y as =
5

1

{ s + sign(x)[sp sine - %s®cose] - sign(y)[sp cose + 4s®sineg]

, s
- sign(xy)[[4sp® - s®/6] sin2e - 1s°p cosZG]}a
Sl I..(AS)

are summed for every segment that the line produces.
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f (x,y)

Fig.1 The two-dimensional distribution f(x,y), whose one-dimensional projection
in the direction 8, I(6, h), is measured. The problem is to reconstitute f(x,y)
given some values of I (8, h).

2, /
\

7

/

A

\_____/
Fig.2(a) An arbitrarily chosen array of square
picture elements (pixels) superimposed on the Fig.2(b) A set of pixels bounded
plasma cross-section. by magnetic surface contours.

CLM-P656



(a)

(b) I

positive correlation joining pixels not resolved

——=—=— negative correlations

° centres of pixels

——3 line of sight

(c) (d) @
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@ representative pixels now fully resoived
from all others.
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boundaries of resolved pixels

Fig.3 Determining resolution on a square array of twenty five pixels traversed
by six randomly located lines-of-sight. (a) shows the arrangement under
investigation; (b) to (e) solid lines denote positive correlations, dashed lines
negative ones. (f) Lines serve to delineate roughly the boundaries of the resolved
regions. See text for a detailed explanation.
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Fig.4 Set of nested magnetic contour lines defining the JET standard set of pixels. The ten straight lines
are the proposed FIR laser interferometer channels. Dashed lines are an alternative, superior, subset;
vertical lines are common to both ‘earlier’ and ‘superior’ configurations. The number attached to each sight
line is its ‘usefulness’ in its configuration. Numbers in brackets ( ) refer to the ‘earlier’ configuration.
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Fig.5 Error (rms standard deviation) of the reconstructed fj’s for the
optimum configuration ( ), the earlier proposal ( — — —), and
the seven vertical lines-of-sight alone ( —-—-— ), as functions of smoothing
parameter § defined in the text.
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Fig.6 The total usefulness U for the optimum configuration of ten channels
( ), the earlier proposal for ten channels (—— —), and seven vertical
channels alone ( — —- — ) as functions of smoothing parameter § .
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Fig.7 Number of resolved picture elements as
a function of smoothing parameter §, for the
optimum configuration ( ), for the earlier
proposal ( — — — ), and for seven vertical chan-
nels alone ( —-—-— )-

Fig.9 Corrugated contours of simulated density
distribution giving x*> shown by closed circles in
Fig.8.
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Fig.8 Discriminating contour shapes. Open
circles when simulated distribution conforms to
one of the possible JET configurations, closed
circles when it does not.
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Fig.10 Sequential elimination of least useful
line from optimum configuration. After remov-
ing least useful line, usefulness of remaining lines
is recalculated, and the least useful is again
removed, and so on.
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Fig.11 Total usefulness of lines (right hand scale) and standard deviation (left hand scale) of
reconstruction based on remaining lines at each stage of the process illustrated in Figure 10.
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Fig.12 Square array of nine overlapping pixels (centres marked by dots; dashed lines
show one pixel) with nine regularly arranged sight lines. Reconstruction error improves
as sight line configuration becomes more random.



Fig.13 Regular array of square pixels and symmetric configuration of thirty
sight lines used to attempt reconstruction of simulated hollow centre density
profile, when no contours are assumed.
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Fig.14 Reconstructed distribution using arrangement shown in previous Figure.
Lines of constant density (relative density indicated by attached number)
deduced from simulated data.
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