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ABSTRACT. It is shown that the equilibrium current distribution in
an axisymmetric discharge can, in principle, be determined completely
from purely geometric information about the shape of the magnetic
surfaces. As these surfaces coincide with those of constant density and
temperature it is possible that observations of plasma density and

temperature could be sufficient to determine the current distribution.
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1. INTRODUCTION
The current distribution in an axisymmetric tokamak, or equi-
valently the poloidal field distribution, is an important feature of
the discharge. It determines the g-profile, with important con-
sequences for stability and disruptions, as well as the distribution
of ohmic heating. Although direct methods for measuring the
poloidal magnetic field exist [1], none has yet been developed as a

routine diagnostic. However moments of the current defined by
u = Jx (R,Z) J (R,Z) dRdZ
m m ®
where xm(R,Z) are a set of functions satisfying
V.5V (R,2) = 0
"Rz Mg

(and R,¢,Z are the usual polar coordinates), can readily be
obtained from measurements of the poloidal field outside the
plasma [2,3].

In this paper we investigate an alternative method for deter-
mining the current distribution. We show that the current distri-
bution can be obtained completely from purely geometric information
about the shape of the magnetic surfaces. Since both plasma density
and temperature are uniform over a magnetic surface it is possible
that measurements of the density or temperature surfaces, eg by
X-ray emission, cyclotron emission or laser scattering, could alone
be sufficient to determine the current distribution.

It may be surprising that information about the shape of the

surfaces alone is sufficient to determine current profile in a
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tokamak since in a straight and circularly symmetric system (often
considered as the large aspect ratio limit of a simple tokamak) it is
clearly impossible to infer the current distribution from knowledge
of the (circular) shape of the surfaces. However, we shall show
that, except in the circular limit, knowledge of the shape of the
surfaces is not only sufficient to fully determine the current
distribution - it actually leads to a high degree of redundancy in
the determination.

The layout of the paper is as follows:- In section 2 we present
the basic method for determining the current distribution from the
surfaces in a linear system and show that it fails only when the
surfaces are circular. We also show that for any non-circular system
the information obtained exhibits redundancy. In section 3 we
describe the corresponding analysis for a toroidal system. In
section 4 we illustrate the basic method by some simple examples.
Finally, in section 5, we comment on means of exploiting the
redundancy to obtain the best estimates of current distribution from

imprecise data on the shape of the surfaces.

2, LINEAR SYSTEMS

In a linear system the magnetic field can be written
B=mnXVV¥+ nf
where n 1is a unit vector in the symmetry direction. A scalar
pressure plasma equilibrium then satisfies
VA = - T

where J(V) 1is the axial current density in which we are interested.



The function V¥(r,8) = constant defines the magnetic surfaces which,
as we have noted, are also pressure, density and temperature
surfaces.

Suppose that the shapes of these surfaces are known, but not, of
course, the magnetic field associated with them. Then one can
specify the surfaces by V(r,9) = constant , where V is the volume
of each surface. We now show that V(r,e), and hence all magnetic
quantities such as magnetic field and current profiles, can be
deduced from the function V(r,8) .

Since the surfaces V¥ = constant coincide with those of
V = constant there is a functional relation between V¥ and V
which we must find. Now if ¥ = (V) we have

d 2w

Tyl2 .-d_‘lf 2 = is
Wl\vl + = (V) = -y 308 (1)

2y =

",V and J are uniform over the

In this equation the unknowns W
surfaces V = constant . On the other hand the known quantities

|VV|? and T2V (in general) vary over the surfaces V = constant

Defining the average and varying parts of any quantity over a surface

. by
ds ~
<A>=%Alvvl , A=A -<A>
we therefore obtain
dz‘, dw_l —~ - R
a™ [f8Y%Y - | o2 Sy |2 1-1
dvz(dv) [v2v][]|9v|2] (2)

If the surfaces specified by V(r,e) do indeed represent an

equilibrium then the expression on the right side of Eq. (2) will be



a function of V only, and we may write
—~—~— T —
[T2v] [ |7V ]2]=t =x,(W)
Then elementary integration yields the required function W(V) in

terms of known quantities:

!

v
WV) = o Iexp (-I X, (V") dV")dV' + P
The constant R 1is of no physical significance and « is deter-

mined by the total flux. The corresponding current distribution is
Vv
uJ = -a X, (V)< [TV [2> + <T2U> ] exp (-J QA dv’)

We see, therefore, that if the shape of each surface is known
then the magnetic field and the current distribution can readily be
derived. The only situation where this is in principle impossible

—_—
is when |\7V[2 is zero; this is just the case of circular magnetic
surfaces and the usefulness of the method therefore depends on the
extent to which the surfaces depart from circular symmetry.

It is not necessary that the given surfaces be specified by
their volume; any function would suffice. For if the surfaces are
defined by any function F(r,8) = constant , then, in analogy to
Eq. (1), we have

d 2
dF 2

. WV g -
[7F[2 + 2 9F = -3V

The functions V", W' and J are uniform over a surface F = constant,
so if © 1is any convenient angle around such a surface and h(6) is

any function whose mean value over such a surface is zero, then



d 2 ﬂ_-l = 2 N 21 _
= (dF) - <hVZF> <h |[VF[2>7" =-2x,(F) (3)

where in this case we define
<A> = { Ade

Eq. (3) determines the required function W(F); hence the
magnetic field and current profiles are once again determined in
terms of known quantities.

There are two important points about the derivations given
above. First, only if the given surfaces represent some plasma
equilibrium will X, be a function only of V and similarly only
then will X, be independent of the "test function" h(e) . The
necessary and sufficient condition for a set of arbitrary surfaces to

—— T L
be magnetic surfaces of a plasma equilibrium is that (¥2V)(|7V|?)
T~ N
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or (V2F)(|7F|2)  be uniform over the surfaces. Second, if the

given surfaces do represent some plasma equilibrium, then the basic

Eq. (3) can be derived using many alternative test functioms h(e) ,
— p——— i ]

and Eq. (2) can be derived by determining (V2V) (|ov]|2) at an

infinite number of alternative positions on the surfaces. Thus,

there is a high degree of redundancy in the information available

through F or V . In practice one would know F or V only

inexactly and we shall return in section 5 to the question of

finding a good estimate of A,(V) or A,(F) in this situation.

3. TOROIDAL SYSTEMS
It is a straightforward matter to generalise the argument of the
previous section to the toroidal case. 1In a toroidal system R,¢,Z

the field is defined by



n X vy nf ()

= -
RTTR R

and an equilibrium satisfies
A = R2VoS VY = - pRI = - p R2p’(¥) - ff’
o

where p(V) is the plasma pressure.
If now the surfaces are specified by F(R,Z) = constant then as

in the linear case there is a functionmal relationship ¥(F) and we have

d 2\!':

dp df
T2 Wt

dvr
d dur dv

2 ol Uy = -
|oF |2 + = AF uRZ

Once again the unknown functioms V", V' ,p and f are constant
over a surface, whereas the known quantities A*F and |VF|? vary
over a surface. We now introduce two functions h (8) and h,(8)
(where 6 1is a convenient poloidal angle) whose mean value over a
surface is zero. Then after some manipulation we obtain
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_dm (d_\lf) _ <h,A*F> <h,R®> - <h,A*F> <hR?>
dr2 \dF <h,[VF|?> <hRZ>- <h,| F[5 <hR’>

= A(F)

which again defines W(F) in terms of known quantities:

’

V= J exp(-[ AFET) dF")dF' + B .

In the toroidal case the contributions to J arising from p’(¥)
and ff’'(V¥) can be obtained separately (unlike the linear case where

only J itself is relevant) as



F
" aexp (- [ MF') dF’ ) " %
p' (W) = - i <RRTS (A<h,|VFP>+<h AF>)

F
roan _ aexp (-] AMF') dF') -2 P
g0 = TS (A<hR™2|TF|2> + <hR-2A"F>)

This toroidal calculation appears always to be possible in
principle but becomes increasingly difficult and inaccurate as the
aspect ratio increases and as the surfaces approach circular form.
It is, therefore, most likely to be feasible in systems with small

aspect ratio and markedly non-circular cross section - such as JET.

4, EXAMPLES
(i) The simplest example is that of elliptical surfaces in a

straight system. Suppose the surfaces are specified by

F(r,8) = r2(1l - pcos 29)

Then
4F
2 = — - 2
|VF | T~ heosze (L - 2mcos 28+ )
and
V2F = 4 .

Hence, provided p # O (ie that the surfaces are not in fact
circular) we have, using any suitable test function h(8) such as

h(8) = cos 2p@ ;
<hV2F> =0 <h |VF|2># 0

so that Eq. (3) gives



(r,8) = aF(r,0) + R
and
J = 4o
(ii) A second simple example,with more complex surfaces, is given by

F(r,8) = [J (r) + Za J (r) cosms]?.
o m"m
In this case we have
2 m \21
Y — , ! — 1
|vF|2 = 4F{(J0(r) - Eame(r) COSmG) + (Erame(r) sz.nt} J

R = 7F|2 4+ 2F

L‘l
2F
Hence

1
<h(8) V2F> = —= <h(e) |7F|2>

2F
and Eq. (3) becomes
azv 1 v
dr? 2F dF
so that
U(r,9) = a(JO(r) + Eame(r)cosme) + B
and

pOJ(r,e) = (r,9)



5. USE OF INEXACT DATA

We have pointed out that if the surface shapes are defined
precisely then this leads to much redundant information. In the
linear system, for example, it would be enough to know only the
moments <hT2F> and <h|VF |2> on each surface, or alternatively to
know the mean values of 72V and |[VV|? together with their actual
values at only one point on each surface. In practice the surfaces
and the derivatives will not, of course, be known accurately, and the
problem becomes one which is overdetermined but inexact. One can then
exploit the redundancy to reduce the influence of errors in the data.
Thus in the linear system a "least squares" estimate for A,(V) ,

given by

o [§(22) 8]

|7v]2

would seem to be appropriate. In the toroidal system the redundancy
could be exploited by using a sequence of test functions hn , h

m

so obtaining a sequence of estimates Rhm(F) = lmn(F) ,m# n . Then

the least squares estimate would be

The errors in these estimates will depend on many factors including
the way in which the data is processed to produce hmn , the
instrumental errors themselves and the nature of the configuration

itself, particularly its aspect ratio and departure from cylindrical

symmetry.
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6. CONCLUSIONS

We have shown how the current distribution in an axisymmetric
tokamak discharge can, in principle, be determined completely from
purely geometric information about the shape of the magnetic
surfaces. This information might itself be obtained from experi-
mental observations of the temperature or density profiles. If the
surfaces are specified by F(R,Z) = constant then the poloidal flux,
and hence the magnetic field and current distribution, is given in
terms of a single function A(F) which can be computed on each
surface from the Laplacian and gradient of F . Since A(F) depends
on the variation of VF around a magnetic surface the method appears
most suitable for discharges with small aspect ratio and markedly
non-circular cross section. It fails for a straight system with
circular surfaces.

We have illustrated the method by algebraic examples, but in
practice it would have to be implemented numerically and would be
subject to errors - both numerical and instrumental. However the
information contained in F(R,Z) leads to redundancy which could
be used to minimise the effect of these errors. The practical

aspects of the problem will be discussed elsewhere.
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