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ABSTRACT

Two melting problems are considered.
(1) The descent of an internally heated spherical particle of unit radius
embedded in a low melting point solid is analyzed when the velocity of
descent is very slow. When Q, a measure of the strength of intemnal
heating, is less than unity, no melting occurs. When Q = 1 + €, where
e << 1, the cavity Surroundlng the partlcle is spharlcal of radius Q, and
the velocity of descent is equal to 3e3U /4 where U is the usual Stokes
velocity.
(ii) The influence of the rear boundary condition on the melt- through of
a plane slab ablated by a large and constant heat flux is analyzed by an
approximate method which gives satisfactory agreement with numerical
results over a wide range of parameter space, This method also allows
the characterization of the logarithmic time singularity which occurs for
sufficiently large heat transfer coefficient at the back face. Simple
formulae for the onset of melting are also given.

(Paper presented at the Symposium on 'Free
Boundary Problems: Theory and Applications'
at Montecatini, June,1981),

Sept.1981,






1. INTRODUCTION

A wide range of free boundary problems arise in reactor safety studies - in the
movements of solid, liquid and gas phases through pools of coolant, in the quenching
of hot solids and in the melting attack on solid structures, Of these, two are dis-
cussed in this paper viz. (i) the slow descent through a low melting point solid of a
heavy particle which is internally heated by, for example, radioactive decay heat and
(ii) the influence of the heat transfer coefficient at the rear of a plane slab on its
ablation by a large and constant heat flux; this latter is relevant to the melting of
a steel plate one face of which is cooled convectively and the other is strongly
heated. Particular regimes are considered for idealized models which have interesting

features.

2y THE DESCENT OF AN INTERNALLY HEATED PARTICLE THROUGH A LOW MELTING POINT SOLID

The essential characteristic of the descent through a low melting point solid of
a hot particle is that it does so by melting a transient liquid cavity in which it falls
under gravity. After an initial transient period of acceleration, a particle containing
a constant heat source falls at a steady velocity with an invariant cavity shape. For
a given weight of particle and strength of heat source, the fall velocity in a given bed
material is determined. The weight of the particle is balanced by the drag exerted on
it by the flow of liquid in the cavity. The drag depends on the shape of the particle
and of the enveloping cavity, which is determined by the heat transfer from the particle:
this is itself influenced by the rate of fall. This regelation problem is related to
the classical experiment of a wire pulled through ice [1]; and to similar experiments
with spheres [2]. However for a hot particle the melted cavity is produced by the
sphere's internal heating and not by pressure melting. For ice skating, friction pro-
vides the heat source, which can produce the 1ubricatinghwater film even when pressure
melting is negligible [3].

2.1. Formulation

Here the particle is taken to be spherical, of radius a, and it is assumed that the
thermophysical properties of the solid bed material (including the thermal diffusivity
k) do not change on melting. It is convenient to work with dimensionless variables,
measuring length and time in multiples of a and aZ/K respectively. The dimensionless
temperature 6 has been scaled so that & = 1 is the melting point of the solid and 8 = 0
is the ambient temperature far from the particle. The configuration is axisymmetric;
splierical polar co-ordinates centred on the particle are taken with r = (r,¢) where r
and ¢ are the radius and co-latitude respectively, When the particle is falling
steadily, we have in the frame of reference of the particle

(u.7)8 = 729 (r = 1) (2.1)

and in the liquid cavity, u satisfies the Navier-Stokes equation:
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Fig.1 The motion of the melting substrate Fig.2 The fall velocity U as a function of the normalized
material in the frame of reference of the sphere gas thickness ¢; U, is the Stokes velocity.
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p (u.V)u = V'u - VI, divu=0 (2.2)

where T is the normalized deviation of the pressure from its ambient value and p 1s
the Prandtl number. The boundary conditions are (i) 8 » O as r » =, (i) u=1U, 6 =1
and - [36/an] = S U.A on the cavity boundary r = s. Here S is the Stefan number,[.]
means jump across discontinuity, and U is the steady vertical velocity with which the
bed approaches the particle (in the latter's frame of reference). (iii) The total (norm—
alized) rate of heat production rate in the particle is Q. Below we use 36/3r = =Q/4m on
r = 1, but in general the particle's temperature distribution depends om o, the ratio of
particle thermal conductivity to that in the bed material. (iv) u = O on r = 1. In
steady fall, the balance between the reduced weight of the particle and the drag exerted
on it can be written in dimensionless form as 12pUo = CDUZ where Uo is the Stokes term-
inal velocity of the particle in an infinite medium, and is a measure of the particle's
weight. cp is the drag coefficient.

If {y} represents the set of parameters {Q,S,p,Uo,a} then it is clear that
u = u(r;{vh 6 = o(r;{v}), s = s(¢,{v}) and U = U({y}). Depending on the values of the
parameters in {¢} a number of different regimes may be discerned.

2.2, Solutions

A. No melting. One solution regime involves conduction through the bed material without
melting. If the heat source distribution is spherically symmetric, then outside the
particle, 8 = Q/r; thus 8 < 1 on r = 1, provided Q < 1. For this regime the remainder
of the parameters in {y} are not relevant,

B.Slow Descent. A second solution regime is that for which U is sufficiently small that
(1) equation (2.1) reduces to Laplace's equation; (ii) the Reynolds number (U/p) 1is
small so that Stokes theory is valid in the cavity; and (iii) the discontinuity in the
temperature gradient at the cavity interface can be neglected so that the cavity remains
spherical. If Q=1+ ¢, then 8 = (L + €)/r is the solution of (2.1); thus the cavity
radius is 1 + €, and the cavity gap thickness is €. To relate the heat source strength

to the fall velocity it is necessary to calculate the velocity field in the cavity
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and thus.the drag on the particle. The configuration is shown in Fig.1.
An axisymmetric Stokes stream function ¢ may be introduced such that
rsing (u ,u) = (x713/36,3/3r)y (2.3)
where ¢ is the co-latitude. The velocity u satisfies (2.2) with the 1.h.s.neglected

and the boundary conditioms u=0onr=1and u=Uonr=Q. The solution is

W= wl v, t $3 where 3 -3
by =4 A Uo [1+}r 7~ - 3r/2]
2 -3
Uy = 4 A0 [1 - £ ) .
wB = 3 AZUGZ[I = r2]
in which ¢ = rsiné, A, = 4Q(Q? - 1)/D, A, = 2Q(Q - 1)/D and D=(Q-1)*(4Q2+7Q+4).The

first term ¥, corresponds to the viscous flow around a rigid stationary sphere of
radius unity with uniform free stream velocity A U[4,p231] The second term vy
represents an irrotational flow around the unit sphere with free stream velocity

A U[4 p452] The third term ¥4 corresponds to a distribution of vorticity

w = 15A2U0/2 (cf Hill's spherical vortex [4,p526].) The values of Al and X, are
determined by the outer boundary condition only,since Al and (Az + A3) satisfy the
boundary conditions on r = 1 independently, The vorticity has only an azimuthal
component of magnitude éUsin¢(15A2 r —3l1 r—z) and the corresponding pressure
distribution is —%Ucos¢(30l2r + 3A1r_2).

On the particle surface, the normalized force F per unit area exerted on the
sphere is -Ii - (drw) [4,pl78]; the total drag exerted by the fluid can be obtained by
integrating this expression over the surface of the sphere. It is however more
illuminating to consider separately the three contributions wl, wzand ¢3 to the stream
function. From d'Alembert's Paradox, the irrotational flow w cannot contribute to the
net drag. For w3,the vertical component of the force acting at a point on the particle
surface is 15A2U.P2(cos¢) where P2 is a Legendre polynomial; when this is integrated
over the surface, the resultant vanishes. The sole contribution to the drag conseque-
ntly arises from *1’ which is the stream function for the regular Stokes problem. Thus

Up = %40, or 4,, 2 5
U/U, = (Q-1)" (4Q%+7Q+4) /4Q(Q°-1) (2.5)

which is the required relationship between U and Q. When ¢ + @, U tends to the Stokes
velocity UD. When € << 1, (U/Uo) = 353. A cubic dependence on & is also obtained in

[5] for the thin spherical cavity, and in [6] for lubrication flow beneath a plane circ-
ular disc. Fig.2 shows (U/Uo) as a function of €; the limiting forms for ¢ >> 1 and

€ << 1 are good approximations except when 10_1 < e < 10,

| In the solid, the Peclet number is simply U. 1In the spherical shell of liquid,

the flow is most rapid past the equator of the particle, and the average flow velocity
Um there satisfies 17U (Q -1) = FUQ If a<l,Ume is the appropriate liquid Peclet number.
When e is small, Ume = {U; when € = 1, UmE = 4U/3. Thus the condition U<<l is sufficient
to ensure that the 1l.h.s. of (2.1) is negligible in both solid and melt. Similarly the

condition U << p ensures that lubrication theory is valid in the liquid shell., From
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boundary condition (ii), the jump in the temperature gradient at the melt-front is
negligible provided SU << 1. Finally eqn.(2.5) implies U < Uo' Hence the condition
for the slow descent solution to be valid is

U << U* = min [l,p,S_l,Uo] (2.6)
holds and (2.5) is true.
2.3 Comment ~0.8 U,

Note that for a sufficiently light -

particle in a viscous fluid with a low -~

F0.6 U, -~
Stefan number(i.e.UO<<1,S<l,p>l), the two -

regimes - (A) no melting and (B) slow des-
cent — constitute the complete solution for 0.4 U, /
all values of Q. For other values of the u
parameter set {¢}, the non—limearities in 02 U,
this free boundary problem cannot be cir-

cumvented; these will be considered else-

where. Some experimental results for the 0 2 . 3
descent of internally heated spheres are
presented in [7]. Fig.3 The fall velocity U as a function of heating rate Q

Note also that whereas the Stokes when the Stokes velocity U, =2. For p>1 and §<1,

. : . U* = 1. The solution is valid for U<<U*.

analysis for an isolated sphere in an in-
finite medium is only valid for Uo << p,
the analysis in 52.2B is valid for E3UO<<p i,e.it is the gap size which is restricted,

not the particle size.

3. THE ABLATION OF A PLANE SLAB

The one-dimensional melting of a slab of finite thickness, when the melt is
instantaneously removed, is a classical problem for which accurate numerical solutiomns
are available and for which uniqueness has been established [8]. A number of different
regimes may be discerned, depending on the governing parameters, and approximate methods
may be used in those which enable the functional dependence of the solution on the char-
acteristic dimensionless parameters to be clarified. One such method "the pseudo-
separation of variables" is discussed and used in this context below in §3.3.

3.1.Formulation and Melting Regimes

If a normalization is chosen so that the slab is initially of unit thickness and
zero temperature (equal to that of the coolant), that the melting point of the slab
material is unity, and that time is measured in units of the thermal diffusion time

for the slab, then the equations for this one phase Stefan problem are

Fourier Equatioh D BT = axx X(t) < x <1 (3.1)
Front face : Y = Su - Bx (3.2a)
5 = sotT) } at x = X(t), Tv =20 (3.2b)
Back face: Newton's law of cooling : 8x+H8 =0 (3.3)
Initial Conditions : B=0 0<x<1l, T=0 (3.4)

— 4=



I
X(t) is the location of the front face of the X (T)

solid, and u = dX/dt.During the initial heat- Lt
up phase (0 < 1 < tp), 80 is below the melt- EEEE:L | F%T)
Flux ¥ .
ing point, X = 0, and u = 0. For T > 1 . ,
. P | 8.(1)
80 £ 1 and melting occurs so that X > 0 and ————8:=0
u > 0. The configuration'is shown in fig.4. | R Fio
From these governing equations it is w;:l‘”"* .r/

A
apparent that 6 and X have the functional  face Eﬁ%ﬁ}&?¢2§é§
forms & = 6(x,7;¥,H,S),X=X(7;¥,H,S) where x=0 x=1
¥ is the dimensionless heat flux at the

: F . Fig.4 The configuration for
front face, H is the Biot number i.e. the the melting of a plane slab.

dimensionless heat transfer coefficient at
the rear face, and S is the Stefan number, the dimensionless latent heat of melting.
The time for melt-through i is given functionally by Te = Tm(?,H,S).

When the slab has completely melted, the sensible and latent heat absorbed by the
slab is 1 + S. The rate at which heat is conducted into the coolant is HGl where BI(T)
is the temperature at the rear face. The energy balance at melt-through thus gives

Yot ¢ 1+ 8+H er 8, (t)dt {3.5)

If Q = ¥/(1+S), then T, = Q-l for HO= 0. However there are some ranges of ¥ and
H for which T does not exist. It is straightforward to show [9] (i) melting can only
occur if and only if ¥ >H/(H+1) (ii) complete melting can only occur if and only if
¥ > H (iii) when equilibrium is reached with only partial melting, the fraction melted
Yy =1+H1-yl

Numerical integration of (3.1) = (3.4) has been carried out using the MELTIN code
[10]which uses Crank-Nicolson with front tracking. Sufficiently small space and time
steps have been used to assure the accuracy of the method. Fig.,5 shows temperature

profiles when S = 1 and H/Y = 0.25. These illustrate clearly the marked difference in
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(a) ' (b) (c)
Fig.5 Evolution of temperature profiles for 3 cases when H/y =0.25.
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I~ CURVES are labelled with
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Fig.7 Time to first melting when H = 0.

Fig.6 Dependence of melt through time 7, on H and . The dashed curves (---)

indicate the fractions melted when melting isincomplete. The line (- - - )is { = H(1 +S).

the evolution of the temperature profiles when ¥ << 1 and ¥ >> 1. The dashed profile
shows the temperature distribution when melting first begins. A parametric study was
carried out [9] using MELTIN for S = 0.37, a value appropriate for steel. The lines of
constant melt—through time ('isochrones') obtained therein are reproduced in Fig.6.

3.2. Premelting

Prior to melting, the temperature profile can be calculated as a Fourier sum
[11,p125.] The time T before melting is implicitly given by

= ¥ -l
Y by Bnexp( anTp) (3.6)
n=o

-1 2

where vy = 1 + H = ‘i’_l

_ g .3 2 2
as above, Bn = 2(c>¢n + H )/{ctn (H + H® + @ Y} and the o are
the roots of « tan o = H [11,p491],
When H >~ O and ¥ < w/2, then Tp is sufficiently large for all except the first
term in the Fourier sum to be negligible and the profile at the onset of melting is

essentially parabolic (see also [12]).
2

6 = LP{—3 x) + (5 + Tp)} = 1 + ‘}’[2 x] (3.7)
where L1, =
TP -5 ¥ xm/2 , H=0 (3.8)

When ¥ >> 1, the rapid temperature rise prior to melting occurs only in a thin
boundary layer and is thus independent of H. The temperature profile for an infinite

half space [11,p75] is appropriate in this case. It follows that
T, m/(4¥2) v >mn/2, H=0 (3.9)

The heat-balance integral method [12] underestimates (3.9) by ~ 15%, giving 2/(3¥2).

Fig.7 shows that (3.8) and (3.9) together cover the whole range of ¥ and match well

with a difference of ~ 57 at ¥ = 7/2,



3.3. High Heat Flux: Q >> 1,

It is convenient to renormalize into variables z = Q(l-x), o = Q2T, UzdZ/do where

Z is the position of the melting front. Then (3.1) to (3.4) become

BCi = azz o<z <2Z (a); 62 = ud on z = 0 .
(3.10)

8 =1and 1 + S = -5U + Bz on z = Z;
where u = H/Q, the slab thickness is now Q, and the 'applied flux' is 1+ S. In this
normalization the time o, to melt completely a slab with insulated rear face (pu=0)is Q.
When Q is large, the melting of the slab can be divided into four stages. (i) pre-

melting, lasting {ﬂ/4(1+5)2}< 1 - see above; (ii) an acceleration stage during which

(i) (i) (iii) the melting front speed increases to its
s 5 S = % steady value. This has been analysed when
g =125 § >> 1, by Andrews and Atthey [13]and their

o8 Q=10 solution shows that |U|approaches 1 when
-0 g ~ 1. The solution by Landau [14,15] con-

X (position of

06 Mmeiting front) firms this for the full range of S. (iii)

H Tm
-0.5 (i) 0 0.1 a period v Q during which the front adva-
(ii) 10 0.108 . .
L 0.4 (m) 12.5 @ nces steadily towards the rear face (iv)a
- final stage in which the rear boundary con-

PREMELTING dition exerts a significant influence.This

T = dimensionless time | stage can be rather short if H - 0, or in-

finite as H + Y. These phases are clearly

Tx102
T 2 3 4 5 § 7 é é ﬁ IH discernible in Figure 8 for Q = 10. We are

concerned here with the analysis of the

Fig.8 Position of melting front as a function of time. .
final stage.

An important special case is p = 1 (i.e. H = ¥/(1+S)). After a time period on0(1),
the front will have accelerated and the temperature profile relaxed to
B =exp (z - Z) (3.11)
giving U = -1, This profile satisfies the rear boundary condition at all times when
M =1, and so the speed of the front is unchanged as it approaches the rear face. The
normalized enthalpy in the thermal front is 1 (unity), and this is equal to that con-
ducted through the rear face prior to complete melting. Thus
(1 + S)om =Q(1 +8) +1 (p =1) (3.12)
For gemeral u, the method of pseudo-separation of variables may be used. In this
we write 8 = 8(012) = G(0) F(nz) where n = n(o) is a slowly varying function of time,
to be determined. Substitution into the Fourier equation (3.10) gives GU/G + FG/F
=F /F or
2z GG/(nzG) + (noz/nz)Fy/F = F/F (3.13)
where y = nz. Provided the second term on the left hand side is negligible then a kind
of separable solution can be obtained. Introduction of a separation constant C°, gives
F n exp(fCnz). Since n is to be determined, C can be absorbed in n and chosen to be

unity. The second term is then negligible provided noz/n2 << 1.
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Fig9 Plots of the melt front velocity against position. The initial position of the front face is x=0.
Smooth curves are from (3.20); for comparison the accurate results from MELTIN are denoted by xxx.

In order to satisfy the rear boundary conditiom at all times, the following

Ansatz 1s made for 8:

g = el(c) {cosh(nz) + (u/n) sinh(nz)} (3.14)
where 81 can be identified as the temperature at the rear face. At the melt-front

1= Gl{cosh(nZ) + (u/n)sinh(nZ)} (3.15)

_ sinh(nZ) + (u/n)cosh(nZ)

Let " cosh(nZ) + (p/m)sinh(nZ) (3.16)
then Bz =nl at z = Z (3.17)
and the Stefan condition becomes

1 +8+SU = ol (3.18)

Since § = 1 at the front at all times then in the frame of reference of the fromt,
Uec+ecc+o as 0 where £ = z — Z. Insertion of the amnsatz (3.14) gives

Unl + n? = 0 (3.19)
The 3 equatioms (3.16), (3.18), (3.19) can be manipulated into the form

U ==(1+8S)/("? +8)
i (3.20)

(1/2n) 108({%;%}{355})

which for fixed S and p give U and Z parametrically in terms of T. Fig.9 shows U as a

n

function of Z for a range of values of p. The smooth curves have been calculated using
(3.20), the "crosses' are the exact solution calculated using MELTIN [10]. The agree-
ment in general is good. It is simple to confirm that those solutions which differ
from the true ones to some significant extent are precisely those where the coupling
terms in (3.13) is not negligible. The steadily advancing solution corresponds to
u=T=n-=-U=1 giving Z indeterminate. When u # 1, the solution far from the rear
face is also a steady advance : ' = n = =U = 1,

When U is small, expansions in the small parameter r7l are appropriate. For n and
U, only the first term is needed; for Z it is necessary to keep the first two terms.

Elimination of n and I' gives the approximate formula :
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Z+o U = Q(1-y) = z (3.21)
where 0,2 {80 + (1 - 4%)/3}/(1 + $)2 and A = Y/H. The solution of (3.21) is

Z = ZD + B exp(—o/ca) (3.22)

where B is a positive constant determined by matching to the appropriate solution
at earlier times. When Z0 < 0, the rear face is reached in finite time with velocity
U= ZO/oa. For Z0 > 0, the slab reaches equilibrium when Z = Zo after a logarith-
mically infinite time with only the fraction Y melted. When Zo = 0, both U and Z
decay exponentially, and the slab takes an infinite time to melt completely. When ZO
is small and negative i.e. ¥ is close to H, the dominant contribution to the time for

melt-through is
g - {S/(l + 5)2}1og(w -~ H) (3.23)

Thus the Ansatz (3.14) leading to equations (3.20) gives a good representation of the

solution as the melting front approaches the rear face, except when u is small.
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