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ABSTRACT
The behaviour of a range of impurities, in the presence of neutral thermal hydrogen
atoms, is examined analytically for non-equilibrium coronal conditions. The time,
Tog? required for an impurity species to esiabl;sh equilibrium is found to be
sensitively dependent on the plasma electron temperature and is strongly correlated
with the ionisation state distribution at equilibrium. Peak values of
neT ~2x1018 03 5 are found. The temporal and ensemble averaged calculations of the
impurity charge states and radiation power which are presented here allow for the
treatment of iImpurities without recourse to lengthy computation. The impurities
(carbon, oxygen, irom and molybdenum) are considered in terms of the electron

temperature, the fractional neutral hydrogen concentration, and the time spent by the

impurities in the plasma.
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1 INTRODUCTION

The treatment of impurities in low density plasmas of thermonuclear interest can
be exceedingly complex if account is taken of impurity transport and recycling at the
walls. Since individual impurity ioms, in traversing the plasma volume, may
experience rapidly varying plasma conditioms, there is generally insufficient time
for them to reach coronal equilibrium. The time for an impurity to reach this state
depends on the species considered and on the plasma electron temperature and density

(tleTss ranges from ca. 2x101® - 2x1018 d'as). Use of the steady-state corona model,
when the impurities have spent less time than Tss in the ©plasma at constant
temperatures, can often result in the radiated power being grossly underestimated.
This happens when the impurities find themselves in lower ionisation states than
those obtaining at equilibrium; the consequent increase in the ions” excitation
rates usually increases the radiation power. Therefore, a detemmination of the

impurity ionisation state distribution that considers the temporal evolution is

clearly a fundamental requisite for evaluating the role played by impurities.

The problem can be tackled in several ways, most of which utilise the corona
model [1] of impurities. One approach is to comstruct a model, that may include one
or more spatial dimensions, which calculates local densities of impurity ionisation
states by simulating the various transport mechanisms and atomic processes. While
this method is useful, the applicability af such models is often restricted by the
uncertainties which exist in some of the basic physics processes involved and by the
artificiality of the boundary and initial conditions imposed, as well as the
approximation of the true geometry by a simplified one. Thus the results may only

apply to very specific cases.

The approach taken in this paper is to study analytically the evolution of the

impurities” charge-state distributions from their moment of entry into the plasma.
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Although the physical model can cope with the plasma being subjected to continually
varying parameters, the results presented apply to impurities in plasmas which suffer
an instantaneous electron temperature change. The value of the present treatment is
that consequences of impurity contamination are immediately calculable from the
results presented and a greater appreciation of the physics of the resulting plasma

behaviour is therefore available.

The impurity atomic processes included in the calculations are collisional
ionisation, radiative and dielectronic recombination, and the recombination by
charge-exchange with neutral hydrogen atoms. The complete set of dionisation rate
equations for each species (ranging from carbon to molybdenum) is solved
analytically. This is preferable to a step—by-step numerical approach, with its

associated stability and accuracy problems.

The evolution of the impurities is examined in terms of the ionisation state
distributions and the resultant radiation power levels. By defining a quasi-steady-
state that requires the mean ionic charge and the radiation power to be within 1% of
their true steady-state values, we can calculate the n, T value required for an

impurity to reach equilibrium.

We also calculate the total energy radiated at various dintervals during the
approach to equilibrium. Thus a temporal or ensemble averaged radiation power can be

assigned to impurities whose confinement time is too short to enable them to reach

coronal equilibrium.



2 THE IMPURITY IONISATION STATE DISTRIBUTION

2.1 ATOMIC PROCESSES

In the corona model, ions are excited by electron collision and then immediately
decay to the ground state. As a consequence, the excitation rate coefficients are
fully determined by the electron density and temperature. The radiation power is
calculated from the sums of the products of the excitation rates and energies at each
ionisation state which are then weighted according to the ionisation state
distributions of the impurities. The essential problem in the time-dependent

treatment of impurities thus consists of determining these ionisation distributions.

At plasma densities of interest (1018-1021 of3) the dominant source of impurity
ionisation is through their collision with the electrons (Lotz [2]) while the
relevant recombination mechanisms are radiative (Von Goeler et al [3]), dielectromic
(Burgess [4], Beigmann et al [5]), and charge-exchange with the neutral gas. Since
the first three have received sufficient attention elsewhere we shall refrain from
commenting further on them except to note that in this density range the rate
coefficients describing them are predominantly dependent on the electron temperature.
The weak density dependence of the dielectronic recombination process [6] is

neglected.

At fractional neutral densities in excess of about 3x10~% of the electron
density, the mean ionisation state of the impurities will be so reduced, through
charge—-exchange recombination, that the radiation power will be noticeably enhanced
(Hulse et al[7]) and so this process must also be included under such circumstances.
However, a complete data set of the charge exchange cross—sections data does not
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exist for a wide enough range of relative velocities (temperatures) and impurity ion
states. The data that are available, however, show clear trends from which neutrals

can be considered in a general fashion.

When the relative velocities between the neutrals and the impurities is low,
compared with the electron orbital velocity of hydrogen in the ground state, the
detailed atomic structure of the impurity must be considered in any calculation of
the charge-exchange cross—section. This is especially so for light impurities (cf.
Olson and Salop [8]). Furthermore, the cross-section does not have a monotonic
dependence on the charge state. We have neglected such effects because of (a) the
large disparity in estimates of the cross-sections at these low velocities, from the
various models available and (b) the minor role played by the neutrals, as will be
seen below, during the impurities” evolution to equilibrium. Their influence is most
apparent in the steady-state results where, fortunately, corrections for errors in

the cross-section estimates may be made.

Charge—exchange cross-sections, o, as functions of the iomic charge, q, are
illustrated in figure 1, as taken from Crandall et al [9], Hulse et al [7], Olson and
Salop [8,10], and Ryufuku and Watanabe [11] for various interaction velocities, v.
The disparity between the absorbing-sphere-model of Olson and Salop (0SAS) [10] and
the universal-unitarised-distorted-wave—approximation (UUDWA) of Ryufuku and
Watanabe [11], especially at low q, is largely due to two effects: (a) the O0SAS
curves represent maxima in cross-section at each gq wvalue for a range of atomic
numbers considered, and (b) the UUDWA is an averaged curve computed from many UDWA
profiles covering a wide range of elements (cf. figure 2). 1In addition, the 0SAS
model generally gives larger cross—section values, especially for lighter elements,
than do other models (e.g. Salop and Olson”s 6-molecular state model [12] and the
Vaben and Briggs ll-molecular state model [13] which gives the closest agreement with
experimental values of C®% + H -» C3" + H¥ of Crandall et al [l4]). However, recent

experimental results of Crandall et al [9] (cf. experimental points in figure 1) show
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that the O0SAS model overestimates ¢ by, at most, a factor of 2 at q = 3 and
v = 4x10%ms ¢ but typically overestimates by < 30% for higher q wvalues. This
discrepancy hardly affects the results because of the much higher ionisation and
dielectronic recombination rates compared with the charge-exchange recombination

rates of low ionic charge states.

In the results presented below we have used the scaling appropriate to the 0SAS
model at vl = 2x10%ns ~! which gives a q : dependence (cf. figure 1). In general, of
course, the true <ov> cross—-sections will differ from those used in the computations.
However, this can be rectified by applying a correction factor, ¢ = <0v>/%_vl, to the
fractional neutral abundance, We may then write for the charge-exchange

recombination rate coefficient

%o
o = g — g.v (1
cx n i
e
wherecl v, - 5.5x10 1% q% m3g! » 0 is the neutral hydrogen density, and n, is the
(o]

electron density.

2.2 THE TONISATION RATE EQUATIONS

The ionisation rate equations describe the net effect of the ionisation and
recombination processes, and of transport. Neglecting the latter, they are written

as

— = a, ( yk—l Sk—] —yk(Sk + ak) + P Uk+l) (2)




where _ ¥ = the fractiomal abundance of the k“th ionisation state = n /n

k I,k
nI = the impurity density
nI i = the impurity density at the k“th ionisation state
s
Sk = the ionisation rate coefficient from state k to k+l
o = the recombination rate coefficient from state k to k-l
A = the atomic number

It is computationally convenient to symmetrise the rate matrix by replacing the

fractional abundances, y , with new variables, v , according to the transformation
k k

i k =1
vk = Tk Yk Tk_= N \ (3
Uty wee O \2
55 S k=1
1Sy +en k_I}
We then have
<.’n.rI
= = gy vt v Syep)
dvk I e
% = o8, (Vk—l /Sk—lak - vk(Sk + (xk) * Ve S ) (&
dka ——
dt = ne (Vz Szmz+l - 1'rz+l uz+l)
which can be written in matrix notation as
dy
ET éi (5

where A is the tridiagonal symmetric matrix given by



1 72
é= ¥ Sl c!.z - (32 + 0'-2) v 52 0:3 .. (6)
0 " S, a4 L.

It is then assumed that the solution vector v is of the form

v = Z: a. X. exp (ne Ai t) (7)
i

which on substitution into equatiom (5) gives

1 e L e

Z a. n_ \. X, exp (ne Ai B = Z a; n, éﬁi exp (ne li t) (8)
i 1

The non-trivial solution to equation (8) requires that

A - A I) x, = 0 9

and thus equation (7) is the solution of equation (4) if Ai are the eigenvalues and

X ; are the eigenvectors of the matrix A. 1In order to calculate the constants a; it

is necessary to consider the solution at t = 0 i.e.

= . X, 1
v 2 oA x (10)
i
The vector v depends on the values assigned to the impurity initial fractional
-0
abundances (e.g. ﬂ =1, v]£= 0 for k > 1 in the case of neutrals). Recalling that

the matrix A is symmetric and, therefore, that its eigenvectors are identical to
those of its transpose, pre-multiplying equation (10) by 5;, the transpose of . and
invoking the orthogonality relationship which exists between the eigenvectors of a

matrix and those of its transpose gives

X v = a x'x = a (11)



It is interesting to consider ome of the consequences of this solution. As the
system of equations (2) 1is conservative the matrix A is singular and one of its
eigenvalues is, therefore, zero. The other eigenvalues are all negative, so the
eigensolution corresponding to this zero eigenvalue becomes dominant as t = ®. This
is none other than the steady—-state solution corresponding to the temperature at

which the elements of the matrix A are evaluated, i.e.

y
k+l k (12)

3 THE RADIATED POWER AND MEAN CHARGE OF IMPURITIES

Impurities in plasmas give rise to line and recombination radiation in addition
to enhancing the bremsstrahlung. The power, P, radiated by a particular impurity

species may be written as

P = 1\Z?M+ B ¥Ry # B R (13)
where P kﬂis the line radiation from impurities in the k”th state
P is the radiative recombination radiation
P is the dielectronic recombination radiation
P is the charge—exchange recombination radiation
P is the bremsstrahlung due to the impurities

We will now deal with these separately.

(a) Line Radiation

In the corona model excited ions are assumed to undergo instantaneous radiative
decay. Thus the line radiation is given by the product of the ion abundances, the

excitation rates, and the transition energies. We have
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= 14
Pk£ R 4" z : an AEkn (14)
n=] .
where N is the the number of transitions included (typically 1-10)

Qk is the the excitation rate coefficient of the n”th transition
L

QEE" is the the excitation energy of the n"th transition
n

(b) Radiative Recombination Radiation

In this process a free electron is captured by an ion; the kinetic energy of the

electron and the potential energy of the recombined ion is radiated, to give, on

average
= + <E > 15
Pkr Rk arrk ( Xg-1 e ) (13)
where ¥ is the - ionisation potential of the recombined ion
<Ee> is the average kinetic energy of the recombining electrons

(c) Dielectronic Recombination Radiation

When the energy of an electron is below the excitation threshold energy it can
excite an ion and subsequently find itself with insufficient energy to escape from
the ion”s Coulomb field. If the excited electron decays radiatively (the stabilising

transition) then the colliding electron is captured. The radiation which results 1is

+ E ) (16)

Ba = P % Oldr.k Xy k

where Ek is the excitation energy of the resonant transition.

The atomic data used for the above processes are as used in the MAKOKOT code
(Equipe TFR [15]) except for the lower ionisation stages of iron (Fe I to Fe VII)

where the values are taken from Uchikawa et al [16] and molybdenum (Mo I to Mo XXIII)

where the relevant data are calculated using the Average Ion Model of Post [17].
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(d) Charge—exchange Recombination Radiation

The charge—exchange electron will be in an excited state immediately following
the collision. However, there will be a ramge of principal quantum states available
with associated differential cross—sections (cf Ryufuku and Watanabe [11]). This
makes the radiation calculations exceedingly difficult, especially as most of the
data available at present are for fully ionised impurities. Nevertheless, when we
assume, in the manner of Hulse et al [7], that on collision the full ionisation
potential of the recombined ion is radiated, we find that this loss is less than the
additional power radiated as a result of the altered charge-state distribution. Thus

we have

P (7

ke - Pe1Vk Qchk k-1

(e) Bremsstrahlung

The additional bremsstrahlung power due to the presence of a particular impurity

charge-state is

_ -38 ba. . sudig =2
PkBr = 1.53 x 10 nenkaTe (k 1)7 Wm

(18)

(f) The Mean and Mean Square Charge

2
The quantities <Z> and <Z > are used to calculate the number of additional free
electrons produced when impurities are ionised, and the enhancenent of the plasma

resistivity and bremsstrahlung; we have, by definition,

(k - 1) (19)



7 = By (k= )2 (20)

The increase in the electron density, A ne, is simply
A 0, = Z; n; <Z>I (21)

In addition, the plasma can be considered to be composed of ions of an effective
ionic charge, 2 e when calculating the resistivity and the total bremsstrahlung.
e

This is defined as - 2
o +;n1 L7
Zeff = (22)
n
e

where n  is the proton density.
i

(In practice <Zz2> need not be calculated independently since, with good accuracy,

we may write <z%> = <Z>2, for <Z> > 1, and <22> = <Z>, otherwise.)

4 RESULTS

We have considered a range of impurities from low Z (carbon) to high Z
(molybdenum), and examined their behaviour for a range of neutral densities under the
headings steady-state time, average charge, and radiation. The sequence of events
followed in our calculations is one in which the impurities are introduced as
neutrals to a region of steady electron temperature or, equivalently, where starting
with a cold plasma, a constant temperature is reached in a time much shorter than
that required for the impurities to reach steady-state. Since the first few
electrons are shed rapidly from the impurities, (typically in a few LS at
o s 1019 m'*% it makes little difference to the results presented below 1if,

e
alternatively, they are initially partially ionised. The only provise 1is that the
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initial ionisation state distribution is similar to those found at temperatures
somewhat less than that at which the first radiatiom peak occurs. (When impurities
are introduced with a coronal equilibrium distribution characteristic of some
arbitrary temperature, we find that the results are accurate only for temperatures

beyond that at which the next radiation peak occurs.)

This approach is of particular relevance to the start up phase and, also, to the
edge regions of plasmas (cf McCracken and Stott [18]) where there may be rapid
recycling of impurities. These emerge from the wall (predominantly as neutrals)
radiate as they are ionised, and finally return to the wall where they are

neutralised.

(a) Steady-state Time

Clearly, the treatment of impurities is greatly simplified when they can be
considered to be in coronal equilibrium. Data are available from many authors
(e.g.Post [17]) which describe, for such impurities, the average ion state and power
radiated, over a wide range of electron temperature, for many elements. It is
therefore of some interest to calculate the time required for impurities to reach

such a steady-state.

Steady-state conditions rarely exactly obtain but, for most practical purposes,
we may define such a state to exist when P and <Z> of the impurity in question are
each within 1% of their true coronal equilibrium values. It is apparent from the
ionisation rate equations that the factors which determine the evolution of the
impurities are the initial ionisation state distribution, the neutral hydrogen
density, the electron temperature, Te’ and the time integral of the electon density.
We usually represent the latter by the quantity ner, which is conveniant since the
quality of plasma confinement is often judged in terms of neTE and neTP where s and

Tp are the energy and particle confinement times respectively, of the electrons and
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ions. (Of course, the appropriate independent variable is n.t and, in fact, CRT e

is calculated.)

The n,T values required for initially neutral impurities to reach steady-state,
as defined above, are shown in figures 3(a) to 6(a). It can be seen that the
n,T,,(T,) functions of the various impurity elements are markedly different both in
terms of the temperatures at which the peaks and troughs occur, and in the amplitude
of variation. The height of the peaks of the light impurities are all of similar

8

1 -3
magnitude (“2x10 ~ @ "s) in contrast to those of the heavy impurities where the peaks
at low temperatures are substantially less than the high temperature peak. Although
the maximum neTss peak of molybdenum, for example, is comparable in magnitude to the

carbon or oxygen peaks, the low temperature ( 110 eV) peak is an order of magnitude

lower.

When an envelope is taken of the ionisation distributions shown in figures 3(b)
to 6(b) a strong correlation is seen between these and the T functions. The
relatively small values of n,T required to reach steady-state for the He-1like,
Ne-like, and Ni-like ious is a result of the large difference in ionisation potential
between that of a single electron shell state and a closed shell state. The reduced
ionisation rate prevents the next state (i.e. closed shell minus one electron) from
being heavily populated and the dielectrionic recombination rate, which exceeds the
radiative recombination rate, is also severely reduced. Both of these factors ensure
the rapid population of the closed shell configurations. Thus a minimum in By Tug

will be found at those temperatures where closed shell configurations predominate,

i.e. where the envelope of the ionisation distribution has maxima.

The presence of hydrogen neutrals, even in small quantities, can reduce the ne T

ss
values, as seen in figures 3(a) to 6(a). A general shift of peaks and troughs to
higher temperatures is also observed. This is a result of the increased

recombination rate necessitating an enhanced ionisation rate, and hence higher
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temperatures, to establish similar ionisation state distributions. The overall
reduction in n 1 is principally due to the general lowering of the average
e ss

equilibrium ionisation state, i.e. a neutral impurity does not have so far to go, in

terms of ionisation state.

(b) Impurity Temporal Behaviour

(i) Average Charge

The evolution of the mean charge—state <Z> of the various impurities is shown in
figures 3(c) to 6(c). When neutral hydrogen is included only the equilibrium values
of <Z> are calculated, since then the evolutionary behaviour preceeding equilibrium

is so similar to that in the absence of neutrals.

It can be seen that as neT is increased the ionisation states which are first to
reach their steady-state are those whose ionisation distribution curves are broadly
peaked at steady-state. As a result of the increased recombination rate, a general
shift of ionisation state to higher temperatures is seen as the fractional neutral
density is increased. It is of interest to note that at very small ner values the
slope of the <Z> function is negative at high temperatures; this is a reflection of

the similar behaviour in the ionisation rates of the lower charge states.

(ii) Radiation Power Function

The power that the impurities radiate, as a function of neT, is shown in
figures 3(d) to 6(d). Only in the lower Z impurity cases is there a strong
correlation between minima in radiation power and closed shell configurations (cf <Z>
curves). The reasons for this are as follows. An examination of figures 3(b) to

6(b) shows that as the impurity atomic number, Z, is increased a merging of

ionisation state distributions occurs in the vicinity of closed shells. This merging
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of states is due to the fall-off in the fractional separation of ionisation
potentials of the neighbouring ion states as Z is increased. Since closed shell
configurations radiate least, due to their relatively high excitation energies, the
minima in radiation from high Z impurities are less pronounced and more displaced
with respect to the closed shell. It is quite evident from the figures that the
farther the impurities are from coronal equilibrium (i.e. small n,Tvalues) the
flatter the radiation curves are. I.e., the closely packed ionisation states, which
are the strongest radiators, must be “burnt-through” to reach the closed shell
configurations. It follows that considerable enhancement of radiation, over that of
steady-state, will wusually occur only at temperatures in excess of that of the firsc

radiation peak.

The plasma electron temperature at which a time-dependent treatment of the
impurities becomes necessary in order to accurately determine the radiation power can
be found on examination of figures 3(d) to 6(d). Clearly for low-Z elements this
temperature is simply that of the first radiation peak; if temperatures above this
are of interest then the coronal equilibrium modei is of only limited use. For
high-Z elements no such clear-cut temperature exists, though there are obviously

regions where the equilibrium model would probably be sufficiently accurate.

The presence of neutrals has little effect on power functions at low Te or low
n T values. This is primarily because the charge-states under such conditions are
e
3
low. Thus (a) the charge—exchange cross—section reaction rates, which go as ¢¢ , are

low, and (b) the increasingly large effect on a given charge-state due to the

cumulative effects of charge-exchange on the lower states is still small. However

where both TE and n T are large there is an increase in the radiation level for even
e

small fractions of neutrals (strictly speaking small SQD/%E values). This is because

the increased recombination rates make the ionisation distributions (figures 3(b) to

6(b)) less irregularly dependent on the temperature. The relatively large
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temperature range occupied by the closed shell states is encroached upon by adjacent
jon states. Since these states can radiate orders of mwmagnitude more power than
closed shell states, a small increase in their population, through charge—-exchange,

can considerably increase the radiated power.

(¢) Temporal and Ensemble Averaging of <Z> and Radiated Power

The above results are most relevant to the case where a study is required of the
temporal behaviour of a particular batch of impurities which enters the plasma at a
specific time. It may be important, for instance, to determine the period an
impurity must spend in a plasma, to reach a particular ionisation state, in order to
account for the experimentally observed history of lines. The simplest case to treat
would be that where dimpurities are present ab initio with no further influx

throughout the period of interest.

To calculate the total energy radiated at specific temperatures we perform a
temporal integral of the radiation power function. The average radiated power is
obtained on dividing this by the integration period. In plasma devices where the
impurity content 1is largely determined by the starting conditions (e.g. Dbase
pressure or inital wall content) economies in the plasma losses may be made through

suitable temperature programming which takes such averaged data into account.

However, the temporal averaging of the data can be viewed usefully in a much
broader context. In most plasmas there will be an ensemble of impurities which have
entered the plasma at different times. We assume a simple particle confinement model
where individual impurities spend identical periods of time in the plasma. A
temporal averaging is therefore exactly equivalent to an ensemble averaging, provided
that the particle densities remains constant throughout the integration period. In
such cases the integration period is to be interpreted as the impurity particle

confinement time.



(1) Average Charge

The time-averaged charge of a batch of impurities in a plasma is

0T
- 1
<z> = E;; J[‘ <z> (n_t) d(n_t) (23)
o

and substituting equations 19, 3 and 7, and integrating, this becomes

a.
= L T w-n T { T % A 25 [ex (™) —1]} (24)
e i#N T

where the subscript N denotes the steady-state component. This quantity is plotted

in figures 3(e) to 6(e) for the various impurities.
(ii) Average Radiation Power

The total energy, Ey, that a single impurity will radiate in time Tt 1is

n,T P
E L 4@ (25)
I = nenl e
(o]
Writing
P
I
= (26)
n 0y %; Yk,I Rk,I

where Rk are the total radiation coefficients. Equation 25 becomes

n-T
e
e = f Zk:yk By dn,t)
(o]

a.

L 2 F res (nx.t)—l} 27)
igN M B [ ek !

Z 17 r {ay S ngr s

k

The average power radiated, Py, per unit volume is then given by
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TR (28)

The results of the calculations are shown in figures 3(f) to 6(f) where the
normalised radiation power, EI/(nenI) = EI/(néT) is plotted against T, in the usual

way.

5 CONCLUSIONS

The time, L that impurities must spend in a plasma before reaching coronal
equilibrium has been computed for a wide range of electron temperatures and impurity
elements. The evolution of the impurities during the non~equilibrium phase has been
examined and the radiated power and average ion state have been calculated as

T
functions of T, gne(t)dt, and o, . (t is the period spent by the impurity in the
plasma; n | is the neutral hydrogen density.) It is shown that when impurities are
introduced into plasmas whose temperatures give closed shell iomnic configurations at
equilibrium, the time T_  is minimised. However, since such configurations radiate

least, the initial radiation power can greatly exceed the final value.

The power radiated from an ensemble of impurities, which have entered the plasma
at different times, but which have identical confinement periods, is calculated from
a simple temporal averaging of the radiation power functions. When T << T . there is
little fall-off in the radiated power at temperatures exceeding that at which maximum
radiation is observed at equilibrium (e.g. Te = 20 eV for oxygen). This 1is in
contrast to the equilibrium situation where there are generally orders of magnitude
difference between maximum and minimum radiation power levels. Thus local or
transient radiation losses in plasmas can greatly exceed those at coronal

equilibrium. This is of particular significance in the case of iron where, even at
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low temperatures (several eV), the power radiated was found to exceed that of oxygen
18 -3
by a factor of over 20 at n T §b 10 m s.
e
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Fig.1 Charge-exchange cross-sections, 0., » as functions of the ionic charge g, for a range of

relative velocities. The models used are (i) the absorbing-sphere model of Olson and Salop (OSASO)

[10] (ii) the classical trajectory model of Olson and Salop (OSCT) [8] (iii) the universal-unitarised-

distorted-wave-approximation (UUDWA) of Ryufuku and Watanabe [11].

Recent experimental points from Crandall et al [14] are also shown for Xenon (A) and Argon (A)

where the relative velocity of the ions and the neutrals was 4 X 10° ms™' . The open circles corre-
3 .

spond to a q” best fit.
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Fig.2 Charge-exchange cross-section, O.xr 282 function of the relative
velocity or energy for fully ionised ions up to Si'*".
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Fig.3(a) The n,7 values for carbon to reach a steady-state.
Carbon abundances
1.0 2 5 7 ]
\ E
0.1f i
0.05L ‘
1 10! 102 103
Ta (eV)
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Fig.3(c) The carbon mean ionic charge, <Z>>, at various values of n,7)

b

and the equilibrium values with neutral hydrogen present (



. Carbon time-dependent power 2
r neT(m”s)  ng/ne
310
110®
1116
10 i
10
10°
-6
10
17, .1
: e 0
1635: ! -
1 10’ 102 10
T e(ev)
Fig.3(d) The carbon radiation power functions, P/(n_n,), at various values of n 7 (--=-)
and the equilibrium functions with neutral hydrogen present (——).
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Fig.3(e) The carbon time or ensemble averaged jonic charge, <Z>>, for various

values of 7, (the impurity ion confinement time, or time in plasma).
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Fig.3(f) The carbon time or ensemble averaged radiation power functions, P/(n n;), for

various values of 7, (the impurity ion confinement time, or time in plasma).
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Fig.4(a) The n,r values for oxygen to reach a steady-state.
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Fig.4(b) The oxygen equilibrium ionisation state distribution.
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Fig.4(c) The oxygen mean ionic charge, <Z>>, at various values of n TE")

and the equilibrium values with neutral hydrogen present (—).
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Fig.4(d) The oxygen radiation power functions, P/(nn,), at various values ofn ()
and the equilibrium functions with neutral hydrogen present ( ).
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Fig.4(e) The oxygen time or ensemble averaged ionic charge, <Z >, for various
values of 7, (the impurity ion confinement time, or time in plasma).
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Fig.4(f) The oxygen time or ensemble averaged radiation power functions P/(n_n;), for
various values of 7, (the impurity jon confinement time, or time in plasma).
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Fig 5(b) The iron equilibrium ionisation state distribution.
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Fig.5(c) The iron mean ionic charge, <Z>>, at various values of ner(———-)
and the equilibrium values with neutral hydrogen present ( ).
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Fig.5(d) The iron radiation power functions, P/(n ny), at various values of
n,7(----) and the equilibrium functions with neutral hydrogen present ( ).
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Fig.5(¢) The iron time or ensemble averaged ionic charge, <Z>, for various
values of 7, (the impurity ion confinement time, or time in plasma).
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Fig.5(f) The iron time or ensemble averaged radiation power functions, P/(n.n,),
for various values of 7; (the impurity ion confinement time, or time in plasma).
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Fig.6(a) Then,7 values for molybdenum to reach a steady-state.
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Fig.6(b) The molybdenum equilibrium ionisation state distribution.
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Fig.6(c) The molybdenum mean ionic charge, <Z>>, at various values of
n,7(----) and the equilibrium values with neutral hydrogen present (

).
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Fig.6(d) The molybdenum radiation power functions, P/(n,n;), at various values of
n 7(--—-) and the equilibrium functions with neutral hydrogen present ( ).

T

Molybdenum ensemble averaged < i 1

4ot

Te (eV)

Fig.6(e) The molybdenum time or ensemble averaged ionic charge, <Z>, for
various values of I (the impurity ion confinement time, or time in plasma).
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Fig.6(f) The molybdenum time or ensemble averaged radiation power functions, P/(n )
for various values of 7; (the impurity ion confinement time, or time in plasma).
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