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ABSTRACT

Corrections for the systematic errors associated with
the measurements of electron cyclotron emission from
DITE +tokamak wusing &a Michelson interferometer are
considered under the following headings. (a) Finite
optical depth: an isotropic reflection model is
developed leading to a line-integral expression for the
emission intensity which depends on the optical depth
and the wall reflection coefficient. (b) Finite density
and refraction: the error due to the distortion of the
instrument antenna pattern is calculated from results of
ray-tracing computations. (c) Relativistic resonance
layer width: an expression is derived for the
corresponding spatial error for emission perpendicular
to the magnetic field. (d) Magnetic field corrections:
an expression for the spatial error due to the poloidel
and diamagnetic field contributions is given and its
effect on the observed Shafranov shift is investigated.
(e) Frequency response: the general principles of quasi-
optics are applied to the Michelson interferometer
demonstrating that a small-aperture blackbody oven may
be used to calibrate the system. (f) Spatial resolution
of the viewing optics: the equivalence of lens optics
and waveguide antenna is shown both theoretically and
experimentally and expressions are given for the
resolution perpendicular to the viewing axis. (g)
Frequency resolution: it is shown that the resolution of
a Michelson interferometer can be better than that
suggested by application of the Rayleigh criterion.
These corrections are applied to experimental emission
spectra and the derived electron temperature profiles
compared with laser scattering measurements in a
discharge where the plasma equilibrium is changing. The
Shafranov shift of the corresponding temperature
surfaces is shown to be in good agreement with that
expected for the magnetic flux surfaces. Using the wall
reflection model, the electron density profile is
derived from the emission profile of the third harmonic

cyclotron frequency.
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1. INTRODUCTION

The use of electron cyclotron emission, ECE, as a diagnostic for
measuring the electron temperature profile across the ma jor radius,
T(R), in tokamak discharges is well established (COSTLEY et al., 1974;
COSTLEY and TFR GROUP, 1977; BROSSIER et al., 1977; HUTCHINSON and
KOMM, 1977; HOSEA et al., 1977; BAGDASAROV et al., 1979; TAIT et al.,
1981). The principle whereby the radial variation of the toroidal
magnetic field, B(R), and the blackbody nature of the emission enables
the electron temperature to be spatially resolved was first given in
detail by ENGELMANN and CURATOLO (1973) hereinafter referred to as EC.
Provided certain assumptions hold, this elegant result enables the
emission at the second harmonic of the electron cyclotron frequency to
be interpreted in terms of T(R) where, as a fraction of the minor
radius r, the spatial resolution is of order r/R.

The use to which such profile data is put by the tokamak physicist
is dependent on an understanding of the errors inherent in the measure-
ments. Random errors due to signal noise are often very small causing
systematic errors to dominate the overall precision of the measure-
ment.

In this paper these systematic errors are considered in detail and
estimates obtained of the overall precision of T(R) measurements made
on the DITE tokamak (PAUL et al., 1977). Although there are several
methods for measuring ECE (BOYD, 1980), the work reported here solely
concerns the Michelson interferometer technique (COSTLEY and
CHAMBERLAIN, 1974). It is shown that by careful consideration of the
relevant errors, minor radius profile data to an accuracy of order
(r/R)2 can be obtained, leading to a measurement of the configuration

of the magnetic flux surfaces. Also, by considering emission at the



third harmonic in conjunction with a suitable wall reflection model, a
measurement of the mninor radius electron density profile can be
derived.

In section 2 systematic errors relating to the physics of ECE are
considered and estimates of their magnitudes derived. In section 3 the
general principles of using quasi-optical techniques to measure ECE are
reviewed leading to a description of experiments to calibrate the
frequency response of a Michelson interferometer. In section 4 the
error estimates and corrections are applied to experimental data
illustrating the improved precision and extra profile information while
in section 5 the implications of these corrections for ECE measurements

on future tokamak experiments are considered.

2. SYSTEMATIC ERRORS ARISING FROM THE PHYSICS

2.1 Basic Theory

For ECE at the cyclotron frequency and its harmonics, i.e.

w=nw =n-=— n-= 1, 2, B vus euw &l

the emitted intensity, I(w) of a given mode of polarisation is at the

blackbody level, viz:

w2kt (2)
8n3c? .

I(w) =

provided the electrons have a Maxwellian velocity distribution at

temperature T and the optical depth, 7 is large (BEKEFI, 1966a), i.e.:



T >> 1 .. (3)

In a tokamak the vacuum toroidal field, to within a few percent,

is given by:

B(R) = 22 cee (4)

where Bo is the value of B on the axis R = RO.

When observed perpendicular to B in the meridian plane, the
emission at a given frequency is narrowly confined to the resonance
layer at a given radius (EC), such that if the optical thickness
criterion (3) holds then relations (2) and (4) provide a one-to-omne
transformation between I(w) and T(R).

For thermal tokamak discharges this simple model applies, within
certain limits, to emission of the second harmonic extraordinary (E)
mode and hence measurements of the emission at this harmonic are used
as a diagnostic of T(R). However often these assumptions are not
rigorously valid and consequently the precision of the T(R) data is
called into question. In the following sub-sections each assumption is
examined in more detail than previously (CLARK, 1980) and the
consequences of its violation discussed. The resulting systematic

errors are classified under (a) temperature corrections and (b) spatial

corrections.



A TEMPERATURE CORRECTIONS

2.2 TFinite Optical Depth

If (3) is invalid then the resonant layer is optically thin and
radiation reflected off the vacuum chamber walls must be taken into
account. Previous methods (COSTLEY et al., 1974; HUTCHINSON and KOMNM,
1977) have used the ideal model of plane parallel walls. 4 more
realistic assumption is that wall reflections scramble the radiation
sufficiently to produce a background, isotropic intensity Io(w).

Thus for any point with co-ordinate z on the cylindrical resonance
surface R, (see Fig 1) the intensity of emission in direction (6,¢) to

B for each polarisation mode is a solution of the ray transport

equation (BEKEFI, 1966a)
1(R,2,6,0) = L, (R,2) [1 - e”"] + 1_(R) e " eee (5)

where 1T is a function of the form: Tn(R,z,B)/sine cos¢ for each
polarisation,* the relation w(R) is given by (1) and (4) and Ib is
the local blackbody emission (2). The background intensity IO may be
determined by a power balance between radiation emitted from the

surface and radiation absorbed both by the surface and the walls

(ROSENBLUTH, 1970; EC):
[f Ib(1 - e ") sin® cos¢ dQ dS =

I [nat - p) + f[ (1 - e ") sin® cos¢ dQ dS] cis (5]

*For clarity the polarisation mode subscript is omitted from equations

(5) to (9).



where the integrations are over the surface area of emission and &
solid angle of 2m. The parameter p is an average wall reflection
coefficient which takes into account conversion between polarisation
modes on reflection and A is the area of the vacuum chamber wall.* A
general treatment of the problem involves a set of simultaneous
equations of (5) and (6) for both polarisation modes and the reflection
coefficient becomes a 2 x 2 matrix [TAMOR, 1981]. However for the
second and third harmonics, emission of the ordinary (0) mode is very
weak for experimental conditions in DITE such that for the E mode
emission, equation (6) is a good approximation for Io'

Solid angle integration of (6) leads to:

JI, <1-e""> 4z
Io - i T woe (7)
(1 - p) 75 * [ <1-e"> dz

where < > denotes the solid angle average value. When T << 1 this
value reduces to ;n as defined by EC (see below). If this result is

compared with the corresponding expression for plane parallel

reflectors viz:

Py
¢ B TF 7
° (1 - pe"T)

*p and A implicitly contain the effect of radiation lost through holes
in the wall. To include these explicitly the factor (1-p)A should be
replaced by (1-p)AW * Ay where  p is now the reflectivity of the wall

material and AW and AH the total areas of the holes and the wall

respectively.



it can be seen that, in the limit of small 1, the factor (1 - p) is
effectively multiplied by the ratio of the wall area to the resonance
surface area and the optical depths become appropriately averaged
values.

For metal wells and millimetre wavelength radiation (1 - p) << 1,
hence consideration of (5) and (7) indicates that the level of emission

in the plane z = 0, falls into 3 regimes.

a) Optically thick

If ¢ >> 1 then expression (5) reduces to: I(w) = Ib(R,O)

b)  Optically thick by means of reflections

If 1> 1and [ 7 dz > (1 - gy A
47R
then equation (7) reduces to:
/1, T, dz
I(w) = - e (5
f t_ dz
n
c) Optically thin with reflections
K. 3 (1-p)i_>>'fEn'dz

41R

=B =



then equation (7) reduces to:

(o) = —— 1 % cr (9)

(1 - pla

To estimate the emission for the E mode second and third

harmonics, EC give the following approximation for <1-e~"> and hence

T 3

n
T
ety = nk
L -
nkE
wee (10D
e - g/ TuE J
LL)2 ]
. - dg2 & B kI (11)
where: TZE 4n TR W of i
5
F = =
2K 8 J
and Tag " gﬂé——fz—-th ver C12)
32 m c?
F3E _ 105
128 J

Here wp is the electron plasma frequency and A the vacuum wavelength of

the emission.

- =



In DITE, for the second harmonic E mode and reasonable values of T
and W regime (a) is valid in the centre of the discharge and regime
{(b) near the eége. Thus substitution of (10) and (11) into (8)
indicates that the radiation temperature near the edge is a weighted

average across the resonance surface, i.e.,

I+b n (R,z) T2 (R,z) dz
o = == aes k13D
ft: ne(RrZ) T(R,z) dz

where n, is the electron density.
However for the third harmonic E mode emission in DITE discharges,

regime (c) is valid. Thus substitution of (10) and (12) into (9) leads

to:

IO(R) +b
=k [, o, (R,z) 73(R,z) dz coe (14)
R - e
R 9 3
where K=648——°— L E——( 3 )
35 A, (1 - pla e m c?

In the constant K the symbols have their usual M.K.S. values and
lo is the wavelength of the radiation emitted at R = Ro. Thus if T(r)
is known, ne(r) can be derived from an Abel inversion (BRACEWELL, 1965)

of the LHS of equation (14) since, if cylindrical symmetry is assumed,

r2 = z2 + (R - R0)2 ... (15)



Application of these expressions to experimental data is given in

section 4.4.

2.3 TFinite Density Corrections and Refraction

The linear dependence of 7 on n, (11) and (12), is only correct

e!
at low density, i.e. w; << mz, for which the refractive index, N of the
radiation is unity. For finite density, the value of NE for the E mode

propagating perpendicular to B is given by STIX (1962):

S 7 1 L R (W |
_ (1 wp/w ) wc/m

I\Ié —_ - eo. (16)
1 - wp/w - wc/m
Thus for the second harmonic, the low density (i.e. NE = 0), cut-
off occurs for
2 = 2
w? 2w? csi LITD

As the density approaches cut-off 7 is slightly modified from the
low density scaling until just below cut-off, at which it drops to
zero (BORNATICI et al., 1981). However below cut-off, refraction of
ECE ray paths (fig 2) can cause radiation emitted from the cooler
regions of the plasma to be detected by viewiﬁg optics designed to view
in the z = 0 plane.

In order to quantify this effect, ray-tracing computations have
been carried out (NAVE and CLARK, 1980) of the extreme rays detected by

the optics using density profiles of the form:



ne(r) = no(1 - (r/2)P)8 _ ... (18)

and the magnetic field variation (4) to determine NE for the second
narmonic from (16). From these computations, the dimension D of the
antenna pattern in the plane perpendicular to B is calculated as a
function of the position of the resonance layer for the DITE antenna
geonmetry (see section 3.%3). The results for different profile shapes
and densities are plotted in figs 3(a) and 3(b) where n, is expressed
as a fraction of the cut-off density nc at r = 0, as calculated from
(17«

These curves indicate that for peaked profiles (p ~ 2, q ~ 4),
significant refraction occurs as the central density approaches 80% of
cut-off, in that D is doubie the vacuum value on the far side of the
plasma. For flat profiles (p ~ 2, q ~ 0.5) the effect is weaker except
that the region of cut-off emission is larger as the density exceeds
cut-off in the centre. For optically thick regions of the plasma, the
corresponding "antenna temperature"” may be estimated by calculating the
surface average value of T(R,z) over the region defined by D (allowing
for any region where the emission is cut-off). However since the

emission is no longer localised for optically thin regions, refraction

does not significantly affect the evaluation of T(R) given by 13,

except when the emission is cut-off in the centre (see section 4.2).

- 10 -



B. SPATIAL CORRECTIONS

2.4 Relativistic Resonance Layer Width

For emission close to perpendicular to B, i.e. cosf < ¢EE7EEE, the
physical thickness of the resonance layer due to the relativistic
electron mass is ~ RkT/mec2. TFor high temperatures in this situation,
the radiation at a given frequency is emitted from a broad layer as
illustrated in fig 4(a) where the absorption coefficient, a, is plotted
as a function of R. The variation of T within this layer depends, to
first order, on the magnitude of the normalised temperature gradient,

VT where:

dT

v = koL .. (19)
T dR

T
This variation gives rise to an error in T(R) which can be interpreted
in terms of an error, &R, in the w(R) transformation (1) and (4). &R
can be estimated by considering the correct solution of the ray
transport equation for emission at wy, (neglecting reflected radiation)

viz: (BEKEFI, 1966a)

T

I(w ) = [0 1, e " as ... (20)

where the variable t is obtained by integrating a« backwards along the

ray path,

t(R) = w—fgi a ds sl 20 )

- 11 -



see fig 4(a). In the low density 1limit, the integral (21) for the

second harmonic E mode can be expressed as (BORNATICI, 1980):

T =T 8 fﬁ e™* x5/2 ax wince: LR
15¢/T

where 10 is given by (11) and y is the normalised width parameter of

the resonance layer:

2 [Rq1 - R
y = — ais (E3)

kT R1

To first order, the variation of Ib within the resonance layer

is:

m c

IL(y) = I, (Ry) [1 - 3 "Tz VT} ... (24)

Thus substitution of (24) and the inverse of (22) into (20) leads to:

-7 -
T(wy) = I,(Ry) [1 R F(To)] e (25)
To _T
where F(ro) = Io y(t) e~ dx S -, |

In fig 4(b) the result of a numerical integration for F(To) is shown
and in the appendix a useful analytic approximation of F is derived for
Tt >> 1.
0
For the evaluation of &R, the self-absorption term can be dropped

as this relates to the finite optical depth correction of section 2.5.

Thus using (4) and the incremental approximation to (19) gives:

- 12 -



SR . _ kT g(q) e (27)

For To 2 1, F(zo) gradually decreases such that for high
" temperatures and moderate densities &R is considerably smaller than the
physical width of the layer as determined by the integrand of (22). It
has been pointed out (BARTLETT and COSTLEY, 1979) +that this
advantageous effect is due to emission from the bulk of the layer

behind Ry, being absorbed because of the large value of q.*

2.5 Magnetic Field Corrections

For the tokamak configuration, corrections to the vacuum magnetic
field (4) due to plasma current and diamagnetism are of order (r/R)2
(CONNOR and HASTIE, 1976). For r/R << 1, these.may be calculated from
an analytic solution of the MHD equilibrium to second order in r/R.

The magnitude &B of the total field correction is then given by

@.=B_+lbg ... (28)
B B 2
[s] (o]

where the normalised poloidal field be(r) is derived from the plasma

*This favourable situation does not apply for oblique emission, i.e.
cos® > YkT/mc2, as the layer thickness is determined by the doppler
shift. Then the profile of a is broader and symmetrical about Ry
leading, if T >> 1, to a larger correction of the opposite sign, (i.e.

AR ~ R cosB).

= Ay



current density j(r):

1!

by () == [jrar ves (29)
BO

and the diamagnetic contribution, ﬁ(r) is given Dby:

o~ ap db2 b2
_l_ﬁ =1_ __‘l'+ 6 +...._e_ . (30)
Bo dr 2 dr dr r

where the plasma perpendicular pressure pl(r) is normalised to:

2p_ P
Bl=_...__ﬁ° L wis E51)
B2 ,

o)

Although the absolute magnitude of these corrections is small
their relative variation across the plasma profile is of order r/R and
is important when considering how the electron isothermal surfaces are
affected by the shift (SHAFRANOV, 1962) of the centres, A(r), of

circular magnetic flux surfaces of radius r, where:

_8a _ - .. (32)

and surface average quantities are defined as

E - B rdr

| ¢ dr

- 14 -



If we assume that the isothermal surfaces can be identified with
the flux surfaces as shown in fig S(a), then the shift of their centres
(32) can be determined from the measured T(R) profile provided
correction (28) is applied consistently (see fig 5(b)).

Thus the shift Aece observed from the ECE profile assuming a
vacuum magnetic field, is related to the true shift A by

5B

Bece = B - Ro ;" ess [33)

o)

In order to see how this discrepancy between Aece and A varies

with plasma parameters, (30) may be substituted into the differential

of (28):
dAece dA bg 1 dBi
—== = E= R e cen (34)
dr dr r 2 dr

Thus the relative importance of the correction terms on the RES of
(34) depends on the magnitudes of the poloidal beta, ﬁp and the edge

safety factor, qa where

J1 Bt B cer (35)
P 2 b%(a)
AR - S cin (36)

and
R, be(a)

This is conveniently demonstrated by considering the ideal model

for the plasma column of a uniform current density and a parabolic,

= B i



isotropic pressure profile (i.e. radial variation (18) with p = 2 and q

1). Then the solution to (32) is

X
A =— (4B + 1) v (37)
8R P
o]
and integrating (34):
4(1 - 28_)
[a(x) - &a)] = [a(x) - ala)] ¢ -—72x L. (38)
Q2(1 +48)

Figure 6 illustrates how the ECE shift is enhanced or diminished
according to whether the plasma is diamagnetic (BP > 1) or paramagnetic
(ﬁp < 1). For this model 6B(r) is constant for Bp = 1/2, whereas in
general for Bp ~ 1 the plasma diamagnetism is very small and the only
correction is that of b2 which diminishes as q, increases. In section

6

4 these corrections are applied to experimental data.

3. SYSTEMATIC ERRORS ARISING FROM THE MEASUREMENT TECHNIQUE

3.1 General Principles of Quasi-Optical Technigues

Compared with microwave heterodyne techniques (see eg EFTHIMION,
1979), wusing - a Michelson interferometer to measure ECE has the
advantage of working over a wide frequency range. However for low
field tokamaks (B0 < 3T7), the aperture-to-wavelength ratio, d/\ is

typically no larger than 30 and consequently the performance of the

- 16 -



instrument cannot be adequately described in terms of geometrical
optics (MARTIN and LESURF, 1978). A simple model applicable at these
wavelengths is that of the oversize waveguide where the propagation of
radiation within the instrument is analysed in terms of its eigenmodes
(COSTLEY et al., 1980). If N(w) modes of a given polarisation can
propagate in the waveguide and the antenna pattern for each mode is
filled with blackbody radiation, the total power dP transported is
determined by equipartition theory (BEKEFI, 1966b).

dP = N(w) Ez-dw ... (39)

27

For the simple case of & square cross-section waveguide of
aperture d, each mode (m,n) is represented ‘by lattice points (+ mm/d, *
nn/d) in perpendicular wave-number space (kx,ky).' Those points lying

outside the waveguide cut-off circle:

() €)=

represent evanescent modes (fig 7(a)). If w, is the cut-off frequency
for the fundamental (1,0) mode, then as uMub increases, N(w) increases

in discrete steps (fig 7(b)) such that for large values the mode

spectrum tends to a continuum and

N(w) =+ 1:(9) 2 (3) & cer (41)
2 c T .

- T



Substituting (41) into (39) gives the same result as that
calculated from (2) across an area of d2 and a solid angle of 2m. Thus
a convenient definition of the frequency response F(w) of this "quasi-

optical" system for a given polarisation is:

Flw) =M/(“’— : ee. (42)
T L\JC

which is clearly not "flat" for low values of w/wb.

A further consideration when applying this model to a practical
instrument is that radiation from oblique angles is not transmitted by
the viewing optics (section 3.3). Thus although a large number of
modes can propagate in the instrument at the frequency of interest,
only those low order modes pfopagating within the acceptanée angle y of
the viewing axis, transport blackbody radiation to the detector.

Consequently the corresponding cut-off circle now becomes:

(ga_ g Y)z - (1) * (2 + g®) ver (43)
o d

Applying (43) to Flw), results in a reduction of the effective

cut-off frequency to w, siny. For the work reported here, d ~ 50mm,

c
w/ub ~ 40 and Y ~ 3°. Thus the instrument is operating in the regime

where only two or three modes contain blackbody radiation. This is a

direct consequence of having to limit the instrument Etendue to provide

a reasonable spatial resolution in the perpendicular directions.
Although the above results are derived for a square waveguide, the

principles apply to any “"quasi-optical” system. TFor example if lenses

- 18 -



or spherical mirrors are considered, the corresponding eigenmodes are

those of gaussian optics (MARTIN and LESURF, 1978).

3.2 Celibration of the Michelson Interferometer

Figure 8 shows the schematic arrangement of the apparatus used to
measure ECE from DITE tokamak. The radiation is observed via a wedged
shaped window of crystal quartz (wedge angle 3°, dia. 40mm) in the
meridian plane of the tokamak. The viewing optics (see section 5.%5)
select the E mode polarisation for transmission to the interferometer
via two plane reflecting bends, which preserve the polarisation
direction, and a cylindrical brass light pipe of length 3m and dia.
50mm. The two-beam polarisation-type Michelson interferometer (MARTIN
and PUPLETT, 1970) also selects the E mode polarisation gnd scans
sinuosoidally through a path difference of 32mm at a frequency of 35Hz.
An indium antimonide detector cooled to 4.2°K (QMC INSTRUMENTS) is used
to detect the radiation and the processing of the data is carried out
by a dedicated DEC LSI-11 minicomputer via an ADC and memory in a CAMAC
dataway.

In order to measure F(w) for such a system, a suitable blackbody
source of radiation is required which couples to the viewing optics in
the same way as the plasma ECE. Other workers in this field have used
large area sources at liquid nitrogen temperéture (7T7°K) (TAIT et al.,
1981; HUTCHINSON and KISSEL, 1979; SAKAI et al., 1980) which require a
large number of scans to achieve a reasonable signal-to-noise ratio.
In this work a source at 1000°K, i.e. three times the background
temperature, is used to overcome this problem. However it suffers from
the disadvantage of having a small aperture (dia. 10mm) and thus

requires careful matching to the viewing optics. Figure 9 shows the

= 19 -



arrangement of the source, (LDVANCED KINETICS oven BB10O00) where the
matching is achieved by a 1 in 8 copper conical taper and the quartsz
window is identical to the tokamak observation window.

The matching criterion is easily understood if the general
principles of section 3.1 are used. Thus for a square source aperture
of dimension ds’ all modes below cut-off contain blackbody radiation.
For an ideal taper between dimension ds and d, each mode retains this
power flux as its angle of propagation with the axis diminishes (i.e.
for d > ds). Thus provided the radius of the cut-off circle for the
aperture (40) is greater than that of the cut-off circle for the

interferometer acceptance angle (43), viz.

—= > sin v oo (44)

all of the modes which the instrument can accept are detected at a
blackbody 1level. To allow for power scattered between high and low
order modes within the wide end of an imperfect taper, criterion (44)
needs to be satisfied by a large margin. In this work ds/d ~ 1/5 and
sin y ~ 1/20, which should be sufficient, even for cylindrical
geometry. The geometric optics analogue of (44) is that the &tendue of
the source must be greater than the &tendue of the instrument.

Figure 10 shows the resulting calibration curve, F(w) obtained
using the blackbody source and the lens viewing optics described in
section 3.3. The experimental curve and error bars were obtained by
averaging 7 spectra where each spectrum is the fourier transform of the
average of 50 interferograms. Also shown is the theoretical response

curve (42) derived for a cylindrical waveguide (MORENO, 1948) with a
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fundamental cut-off frequency mb/2n = T75GHz and the resulting spectrum
convolved with the appropriate instrument function (see section 3.4).
For an aperture 4 = 40mm, Wy corresponds to an acceptance angle y =
3.3°. This is in good agreement with the acceptance angle defined by
the lens optics, thus illustrating the usefulness of oversize waveguide

principles for determining the performance of a quasi-optical system at

these wavelengths.

3.3 BSpatial Resolution of the Viewing Optics

Although the interferometer itself has a well collimated antenna
pattern, of divergence ~ 3°, +this may be degraded in the piasma by
irregular reflections in the light pipe assembly allowing radiation
collected from oblique angles (i.e. high order modes) to be scattered
into low order modes and thus be detected. To prevent this it is
necessary to define the antenna pattern and polarisation of the

radiation at the observation window. In this work two methods have

been used.

a) Lens-stop collimator

This device (fig 11(a)) is based on simple lens opties formulae

where the spatial dimension, D of the antenna pattern is given by:

D=4+ (L -2£) £ for L > 2f eeo (45)
f

where e is the diameter of an aperture in the focal plane of two lenses
with focal length f. Such a system is used routinely for measurements

on DITE with f = 90mm, d = 40mm and e = 10mm, although geometric optics

- 21 -



is not applicable for A ~ 2mm. However the properties of the system
are found to be adequately described by (45) in that the detected power
level is independent of e for e > 10mm (i.e. divergences > 3°). This

also suggests that the mode scattering in the light pipe is small.

b) Fundamental waveguide antenna

This device is based on the principles of diffraction optics. A
section of fundamental mode guide within a waveguide transmission
system ensures that a horn antenna is operating in its fundamental mode
over the frequency range of interest. Using a simple diffraction model

for the antenna pattern (COSTLEY et al., 1980), we have (see fig

11(v)):

. _ A d2
near field: D=4+ L— for L < —
d A
ssw (46)
A a2
far field: D =2L — for L > —
d A

Substituting the radial variation A(R) implicit in (4) into (46)

leads to an optimum value for the horn aperture do

awm (4T)

where LO is the major radius of the antenna and ho the wavelength at
RO. This corresponds to the plasma being positioned at the boundary
between the near and far field regions of (46). 1In this situation D(L)
has a parabolic variation with a maximum of 2d  at LO/2.

To test this idea, measurements were made using a horn of aperture
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40mm which tapers down to a section of rectangular waveguide, 30mm in
length operating in the fundamental mode over the range 90 to 180GHz
for the E mode polarisation. After this there is a taper up to 10GHz
band waveguide which transmits the signal over 2m to where it is
coupled to the interferometer aperture by =a taper and phase-correcting
lens.

Figure 12(a) shows the relative intensities of broad-band, non-
thermal ECE spectra taken from nominally identical discharges with both
types of viewing optics where the lens optics spectrum has been divided
by its calibration curve (fig 10). Over the bandwidth of the
* fundamental waveguide, the frequency response of the waveguide antenna
can be determined by the ratio of the two spectra. The result is shown
in fig 12(b) along with the theoretical response (40) for the
fundamental section of waveguide. There is good agreement between the
experimental and theoretical cut-off frequencies but the theory does
not take into account the significant attenuation in the waveguide at
frequencies close to cut-off, which is thought to be the main source of
discrepancy between the two curves. The absolute intensity of the
waveguide spectrum is at least a factor of 5 smaller than the lens
optics spectrum (see the vertical scale of fig 12b). Consequently it
is difficult to calibrate the waveguide antenna directly using the

blackbody oven since the signal-to-background ratio is reduced from 3

to < 0.6,

3.4 [Frequency Resolution Error of a Michelson Interferometer

The frequency resolution due to the finite maximum path

difference, X gives rise to a radial spatial resolution &R.
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Application of the Rayleigh resolution criterion (CHANTRY and FLEMMING,
1976) gives &R/a ~ 30% for & ~ 30mm. However in the case of a smooth
T(R) profile this is an over-estimate as can be seen by the following
argument.

To lowest order

&R I dIl
e 8L /88 ... (48)
R w dw

where &I is the difference between the true spectrum I(w) and the
measured spectrum Ii(m). The measured spectrum is determined by the

convolution integral:

I(0) == /7 (o - «') S(u') du' cee (49)
* 21

where S(w) is the instrument function which, if it has a bandwidth
appreciably less than I(w), allows a Taylor expansion of the integrand
in (49), vis,

2
Ii(w) ~ I(w) + 1 BL Poe ggre e 870 1B om g L. (50

21 dw Am dw?

Following the usual practice in fourier transform spectroscopy,
Ii(w) is apodised by multiplying the interferogram, Ii(t), with the
window function: cos2(nt/2to) where to = 2/c. TFor an ideal fourier

transform interferometer this leads to an instrument function,

= . :’to 5 cus 53]
w‘tO 11 - (r) ]
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Substitution of (51) into (50) causes the second term %o vanish
such that to lowest order, 8R = O in (48). To next order

2 2
87 P L ... (52)

2 2
4t0 dw

Since the higher order even integrals in (50) do not converge,
dI/dw and hence dT/dR must be sufficiently smooth for (52) %o be valid.
If this is the case the resolution error (52) can be estimated by
multiplying +the interferogram with the window function:

(nt/2t0)2 cosz(ﬂt/Qto) and fourier transforming the result.

Since it is a second order correction, (52) can be small over most
of the profile (an example is given in section 4). However for a
practical instrument, imper%ections may lead to an asymmetrical
instrument function such that the first order term in (49) no longer
cancels giving rise to a systematic frequency shift and consequently &R

is no longer zero.

4. EXPERIMENTAL DATA

4.1 Comparison with Laser Scattering

In order to calculate and check the corrections discussed in the
previous sections it is necessary to have data on the density profile,
ne(r) and an independent measure of T(R). On DITE these data are

provided by a laser scattering diagnostic (PRENTICE, 1978) which
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provides single point measurements on each of a series of nominally
identical discharges, and a 2mm microwave interferometer which provides
line average measurements of the density during each discharge.

Comparison between the ECE and laser T(R) profiles can be
problematical because (i) possible variation of discharge conditions,
(ii) the two measurements are made on different timescales (i.e. 8ms
and 25ns respectively) and (iii) an accurate calibration of the
absolute ECE intensity measured by the Michelson interferometer is
difficult. Thus the comparison involves a least-squares fitting of the
ECE profile to the laser data using the absolute ECE intensity factor
as a free parameter. Since photon statistics provide error bars for
the laser data, a statistical measure of the agreement between the two
profiles is provided by the normalised x2 parameter (LEWIS, 1963)
assuming no other random errors are involved.

Figure 13 shows such a comparison between the two profiles
measured in a set of discharges (a) before and (b) during a pulse of
neutral beam heating. The least squares fitting for the intensity
factor is applied to all of the laser data giving a x2 value of 1.2 for
21 points. The expected value of 2 is 1 with a standard deviation of
0.32 indicating a good measure of agreement. Each of the corrections
discussed in the preceding sections have been applied to the ECE
profiles but only the frequency calibration F(w), produced a
significant improvement in xz (see next section). The result of not

applying this is shown by the dashed profiles for which y2 = 2.4,

4.2 Quantative Estimate of the Corrections

As in section 2 systematic corrections are classified under

corrections &T to T and corrections &R to R. In
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fig 14(a) quantative estimates of the four 8T/T corrections are shown
for the profile in fig 13(b). The evaluation of the finite optical
depth correction is discussed in section 4.4. The refraction
correction was estimated by finding the line average temperature of the
measured T(R) over the antenna dimension D derived from ray tracing
data similar to fig 3 but using the relevant ne(r) profile (see section
Rells This estimate is no longer valid outside the region t > 1 for
which the optical depth correction is dominant. To show its relative
variation across the profile, the frequency response correction has
been normalised to unity at Ro = 1.17m. The frequency resolution error
was derived from (52) and tends to be small except near the edges of
the profile where d2T/dR2 gradients are large. The smoothness of T(R)
is probably due to the relatively coarse time resolution of the
instrument which tends to average any rapid fluctuations of T(R).
Apart from the frequency response, the estimation of these corrections
relies on them being small (< 15%) which is true over 2/3 of the
profile.

Figure 14(b) illustrates the corresponding 8R/R corrections which
in general are an order of magnitude smaller. For this particular
profile, BP ~ 1 (see section 4.3) and consequently the plasma magnetic
field correction is very small. For the angular divergence of the lens
optics, the relativistic resonance layer width correction (27) applies
to the central region of the discharge and also tends to be small
because kT/mc?2 << 1, By comparison the vacuum ripple field correction
to (4) which is due to the discrete nature of the toroidal field coils,
is relatively large, rising to 3% on the outside edge. This was
calculated along a major radius midway between adjacent DITE coils in

the meridian plane using a numerical solution for the vacuum field

(MARTIN, 1976).
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In general, apert from the frequency response, these corrections

in DITE are very small over most of the profile.

4.3 Measurements of the Temperature Surfaces

During the neutral beam heating pulse, the temperature profile
exhibits a clear asymmetry when compared with its shape before neutral
beam heating. To check if this distortion is consistent with the
expected change in plasma equilibrium, the following analysis of the
profiles was carried out. For each profile measured at the two times
of interest over a series of discharges, all the appropriate
corrections were applied, except the plasma magnetic field correction,
(28), and the centres Aece(r), of the temperature surfaces (assumed to
be circular cross-section) were calculated according +to the
prescription in fig 5(a). Aece was related to the position of the
plasma current axis deduced from magnetic flux loop measurements, (in
DITE this is controlled by a feedback circuit but there 1is an
uncontrolled variation of up to 10mm fr;m discharge to discharge during
the neutral beam pulse). The absolute position of the ECE axis, 1i.e.
Aece at r = 0, is determined by the value of Bo which was calculated
from the current measured in the toroidal field coils. The results are
shown in fig 15 where the error bars represent the standard error of
the average Aece over 20 profiles.

In order to calculate the expected B (33) it is necessary to
B. and b,. Before the neutral

L 0

beam pulse, the plasma pressure is isotropic and may be determined from

calculate A(r) from profile data of By

measured profiles of plasma density and electron and ion temperatures.
During the neutral beam pulse, the total pressure profiles cannot be

determined in this way Dbecause in this particular experiment the
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fast ion distribution is strongly anisotropic (CLARK et al., 1980).
However numerical solutions of (32) indicate that A(r) is relatively
insensitive to the det;iled shape of B"(r), and Bl(r) when compared
with their average values. At the plasma edge these may be calculated
from magnetic measurements as follows. At r = a (32) may be expressed

as:

(k+1) = B; * B ey, »e. (53)

where A is the coefficient of asymmetry and Li the internal inductance
(MUKHOVATOV and SHAFRANOV, 1971). Bl may be measured directly using a
plasma diamagnetic loop and Li may be calculated from (29) by assuming
j(r) is proportional to T(r)3/2. A may be determined from the value of

the vertical magnetic field, Bv’ required for plasma equilibrium, viz:

p I
B, = —= [2n(8R_/a) + & - 47 evr (54)
4nRo 2

where Ip is the plasma current. Thus before neutral beam heating (32)
and (34) were solved using measured profile data of density and
temperatures, the profile value of Bp being consistent with the
magnetic measurements. During the heating pulse, the measured profile
data were used in conjunction with profiles of ﬁn and Bl for the fast
ions of the form (18) with p = 2 and q = 2. The peak values of these
were chosen so as to provide edge values of BH and El which were
consistent with the magnetic measurements of 6p and A.

The results for both A and Aece are compared with the experimental
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data in fig 15 where the magnetic axis has been equated to the current
axis. Before the heating pulse the disFrepancy between A and Aece is
~ 6mm in the centre because the plasma is paramagnetic (SP ~ 0.4)
whereas during the pulse the plasma diamagnetism is very small (Bp ~ 1)
and the discrepancy correspondingly small (g.v. section 2.5). For
this case the plasma magnetic field correction is shown in fig 14(b).

Overall agreement between calculation and measurement in fig 15 is
good considering that an accuracy of better than (r/R)?2 is required of
T(R). In particular: i) the absolute position of the temperature
profile centre agrees with the plasma current position to within 0.2%
of Ro which is less than the measurement errors associated with the
flux loops or the toroidal field coil current; ii) the increased shift
of the flux surface centres associated with the increased BP on heating
is clearly detected by the ECE profile; iii) agreement is reasonable
over 60% of the minor radius. The large discrepancy which occurs for r
> .15m is thought to be due to residual measurement errors on the edge
of the second harmonic profile where the signal level is low, possibly
because the instrument function is not ideal (q.v. section 3.4).

The assumption that the temperature surfaces can be identified
with the flux surfaces is not surprising since electron thermal
conduction along the magnetic field lines is very high. Also the
displacement of the electron drift orbit surfaces from the flux

surfaces is ~ QT for free passing electrons and ~ q, rL/RO/a for

L

trapped electrons, where rL is the larmour radius (ARTSIMOVICH, 1972).

In DITE these displacements are no greater than 4mm.
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4.4 Analysis of the Third Harmonic Emission

The spectrum corresponding to the T(R) profile of fig 13(b) is
shown in fig 16. Using the wall reflection model described in section
2.2, the density profile may be determined from (14) by Abel inversion
of the Io/R profile for the third harmonic and dividing by T3(r)
derived from the second harmonic. Figure 17 shows the result of this
for a value of (1 - p)A Which corresponds to p = 0.984 for a nominal
value of A = 22m2.

The upturn of ne(r) for r > 60mm is incorrect suggesting that a
complete solution of (5) and (7) is required for both harmonics. Thus
for the second harmonic, using the ne(r) profile derived from the laser
scattering and microwave diagnostics, the profiles of t(R) and <i-e~">
may be calculated from (11) and (10) (see fig 18). Then expressing (5)

in terms of the radiation (i.e. meésured) temperature profile on axis,

Tr(R):

T.(R) = T(R) [1 - e”"] + T(R)e~" oo (55)

a solution for T(R) may be obtained by iteration using Tr(R) as an
initial estimate until a self-consistent result is obtained; (the
iteration converges rapidly except at the edges of the profile). The
percentage correction, 8T/T to be applied to the measured profile is
shown in fig 14(a) illustrating that, given the high wall reflectivity,
an average self-absorption of only 20% requires a correction of the
same order. However because of the T3 factor, this magnitude is

trebled when the ne(r) profile is de-convolved from the third harmonic

profile.
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The corresponding T(R) profile of the third harmonic is shown in
fig 19 along with the correction to be made to IO(R)/R before Abel
inversion, i.e. the relative magnitude of the second term compared with
the first in the denominator of (7), which increases with t until the
emission becomes optically thick by means of reflections (8).

The final result for ne(r) is shown in fig 20(b) along with the
initial assumption used to calculate the optical depth corrections.
Here a self-consistent solution of (5) for the third harmonic is
obtained by iteration of ne(r). Figure 20(a) shows the result of the
same analysis at a lower density (i.e. the spectrum corresponding to
fig 13(a)) which does not give as good agreement. Also shown are the
laser scattering data for ne(r) taken over the series of discharges,
the absolute values being calibrated by the 2mm interferometer data.
Figure 21 shows the comparison between central denéities, n deduced by
this analysis from ECE spectra during one discharge and from the laser
scattering data over 12 discharges. The value p = 0.984 was chosen so
as to give the best agreement between the two methods of measuring n-

Provided optical depth corrections are included, the agreement
between the two measurements of central density is to within 10% over a
factor of 3 in density range. The main correction required at higher
densities (fig 19) is due to the increase of self-absorption of the
third harmonic compared with the wall absorption. The agreement
between the profile measurements appears to break down beyond 1/3 of
the minor radius. This is thought to be due to inaccuracies in the
measurement of I(w) at low levels and moreover, the problem of harmonic
overlap (BARTLETT and COSTLEY, 1979) prevents the measurement of the
third harmonic intensity over the whole cross-section of the plasmna.

However the results for n shown in fig 21 support the wall reflection
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model as the amplitude of the third harmonic varies by a factor of 4
over the range of data shown. Measurement of the density by this
method does require at 1least one calibration point in order to

determine the wall reflection coefficient pe.

5. CONCLUSION

With the exception of the frequency response calibration, the
systematic corrections to the elementary I(w) to T(R) transformation
are small in DITE. This is largely a consequence of the fact that, for
the large aspect ratio (Ro/a = 4.5) it is rossible to infer the spatial
temperature distribution from the ECE spectrum viewed in the meridian
plane. For large volume, non-circular cross-section plasmas this is no
longer the case and in particular (i) well collimated optics are
reiuired for viewing ECE off the meridian plane, (ii) the radiation
temperature of ECE from regions off the meridian plane where © < 1 will
not equal the local electron temperature and (iii) corrections to the
vacuum magnetic field require a full solution of the plasma MHD
equilibrium. However the larger optical depths expected in these
plasmas will help offset these disadvantages. Higher temperatures will
also cause the resonance layer width correction to increase.

The configuration of the electron temperature surfaces in DITE
inferred from the corrected temperature profile in the meridian plane
is consistent with the calculated MHD equilibrium over most of the
plasma cross-section. This suggests the possibility of wusing this
analysis to derive B(r) or Be(r) directly from ECE spectral
measurenents.

The isotropic wall reflection model requires a reasonable value

for the wall reflectivity to explain the peak third harmonic intensity,
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given the ceptral electron temperature and density. However the
density profile derived from the profile of the third harmonic does not
appear to be reliable beyond r/a = 1/4. Although this might be
improved by more accurate measurements of the emission at the base of
the third harmonic, the diagnostic potential of this analysis is
somewhat limited, particularly in small aspect ratio tokamaks where the
harmonic overlap prevents the higher harmonics from being well defined

in the ECE spectrum.
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APPENDIX

Asymptotic approximations for F(mol

a) T << 1

In this limit, the e~ ' factor in the integrand (26) is

approximately unity over the range of integration, thus:

F(to) =T ji y(E) dE = T, fz (1 - &) ay

=¥
where L = E(y) = erf(Vy) - ﬁi_i__.(ayZ + 20y + 30)
TO 15v7

oo (A1)

.o (A2)

After substitution of (42) into (A1) the integration can be

carried out by making use of the properties of repeated integrals of

the error function (ABRAMOWITZ and STEGUN, 1965). This leads to:

F(TO)

n
-3
<

b) T >> 1

In this limit, the e~"

«o. (43)

factor in the integrand (26) decays rapidly

over the range of integration such that the inversion <(y) can be

evaluated for small y. Thus expanding the integrand of (22) to second

crder leads to:
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S y72(1 =Ly g2y

g 2

[
|

where: t =1 = 1 L
T

0 o]

By expressing y as a power series in t2/7 and evaluating it to

second order:

AT w2 207 4 BE gy
9 891

y:

(26) can be integrated to give:

F(t ) = (5—)2/7!1"(9/7) w2 A—)m r(11/7) + 8 [A Y7 ry5/7)

Evaluating the constants gives:

.. (84)

¥ = 1.814 0.804 . 0.570

@ c 2/7 g 4T 4 6/7
0 0 o]

F(t

Numerical integration of (26) (see fig 4(b)) indicates that
approximation (A3) is accurate to better than 10% for By ® 0.1 and

approximation (A4) accurate to better than 10% for To > 3.
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Functions"”, p299, Dover, New York.
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Fig.15 Comparison between the measured ECE shift (points), the expected ECE shift (solid line)

and the true Shafranov shift (dashed line);

(a) before neutral beam heating,
L;=2.06,8,=042,A=0.46,q,=6.5

(b) during neutral beam heating
L;=182,6,=102,A=195,q, =65.
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Fig.16 ECE spectrum for E mode during neutral beam heating.
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Fig.17 Uncorrected density profile n(r) derived from the third harmonic E
mode emission for wall reflectivity p = 0.984 and wall area A =22m?.
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Fig.18 Radial variation of the optical depth 7 (solid line) and the solid angle average value
of the self-absorption {1-e~7) for the second harmonic E mode.
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Fig.19 Radial variation of the optical depth 7 (dashed line) for the third harmonic E mode and the
percentage correction (solid line) to the profile of I /R before inversion to the density profile.
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Fig.20 Comparison between density profiles n(r) from ECE (corrected) and laser scattering for
wall reflectivity p = 0.984; (dashed lines represent the functional form (18) assumed for n(r)):
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Fig.21 Comparison of measurements of central density n, from ECE and laser scattering for
wall reflectivity p = 0.984; (squares are corrected ECE data, crosses uncorrected data).
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